

PHP:
	

Learn	PHP	in	24	Hours	or	Less
	

A	Beginner’s	Guide	To	Learning	PHP
Programming	Now

Table	of	Contents
	
Introduction

Chapter	1:	PHP	–	The	Basics

HTML	Embedding

Comments

Variables

The	Data	Types

Constants

Operators

Chapter	2:	The	Control	Structures

Conditional	Structures

The	Loop	Structures

The	Code	Inclusion	Structures

Chapter	3:	The	Functions	of	PHP

The	User-Defined	Functions

The	Scope	of	a	Function

The	“By	Value”	Method	of	Returning	a	Value

The	“By	Reference”	Method	of	Returning	a	Value

How	to	Declare	a	Function	Parameter

The	Static	Variables

Chapter	4:	Object-Oriented	Programming

Objects	–	The	Basics

Class	Declarations

Creating	Class	Instances

The	Destructor	Functions

How	to	Use	“$this”

The	Class	Constants

Cloning	an	Object

Polymorphism

Chapter	5:	How	to	Handle	Exceptions

Chapter	6:	The	Advanced	Concepts	of	Object-Oriented	Programming

The	Overloading	Capabilities	of	OOP

The	Iterators

The	Design	Patterns

Chapter	7:	Using	PHP	to	Create	an	Application

PHP	and	HTML

Users’	Input

How	to	Handle	User	Input	Safely

Sessions

File	Uploads

Architecture

Chapter	8:	Databases	and	the	PHP	Language

MySQL	–	The	Basics

More	Information	about	MySQL

Database	Queries

Conclusion

Introduction
	

In	 this	 book	 you	will	 find	 detailed	 instructions	 on	 how	 to	 learn	 the	 basics	 of	 the	 PHP
language.

This	 eBook	 will	 explain	 what	 PHP	 is	 and	 how	 it	 can	 help	 you	 in	 building	 web
applications.	Aside	from	giving	theoretical	explanations,	this	book	will	provide	you	with
actual	 codes	 and	 practical	 examples.	 You	will	 be	 able	 to	 learn	 this	 computer	 language
quickly	 even	 if	 you	 have	 never	 programmed	 anything	 before.	 If	 you’re	 looking	 for	 a
comprehensive	reference	for	PHP,	this	is	the	book	you	need.

By	reading	this	book,	you	will	be	able	to:

Learn	the	fundamental	elements	of	PHP

Know	the	syntax	that	you	should	use	while	writing	PHP	scripts

Create	your	own	variables	and	constants

Call	the	built-in	methods	and	functions	of	PHP

Handle	errors	and	exceptions	in	your	web	applications

Receive	and	store	user	inputs	securely

Master	the	basics	of	OOP	(i.e.	object-oriented	programming)

Create	classes	and	subclasses

Know	the	connection	between	PHP	and	MySQL

	

PHP	 is	 an	 excellent	 scripting	 language.	 It	 can	 help	 you	 create	 robust	websites	 and	web
applications.	 If	 you	 want	 to	 be	 an	 effective	 PHP	 user	 in	 just	 24	 hours,	 read	 this	 book
carefully.													

Let’s	begin	the	journey.

Chapter	1:	PHP	–	The	Basics
	

The	 PHP	 language	 (i.e.	 PHP:	 Hypertext	 Processor)	 borrows	 some	 of	 its	 syntaxes	 from
other	programming	languages	(e.g.	C,	Perl,	Java,	etc.).	People	consider	PHP	as	a	hybrid
computer	 language,	 acquiring	 the	 best	 functionalities	 of	 other	 languages	 and	 forming	 a
powerful	and	intuitive	scripting	language.

	

In	 this	 chapter,	 you’ll	 learn	 about	 the	 fundamental	 aspects	 of	 PHP	 such	 as	 variables,
comments,	 and	 language	 structure.	 Read	 this	 material	 carefully	 if	 you	 want	 to	 be	 an
effective	PHP	user.

	

HTML	Embedding

You’ll	use	PHP	to	create	dynamic	webpages.	Thus,	you	should	know	how	to	embed	it	into
the	most	 popular	 scripting	 language:	HTML	 (i.e.	HyperText	Markup	Language).	Check
the	following	code:

	

<HTML>

<HEAD>	This	is	a	sample.	</HEAD>

<BODY>

This	code	wants	to	greet	you:

	

<?php

	

		print	“Hi,	how	are	you?”;

	

?>

	

</BODY>

</HTML>

	

This	example	 shows	you	how	 to	embed	PHP	snippets	 into	HTML	codes.	Each	 time	 the
language	 interpreter	 encounters	 the	 “open”	 tag	 of	 PHP	 (i.e.	 <?php),	 it	 executes	 the
embedded	code	until	it	reaches	the	“close”	tag	(i.e.	?>).	Here,	PHP	will	replace	the	PHP
snippet	with	the	appropriate	output	(if	any)	and	pass	the	non-PHP	code	(e.g.	HTML)	to	the
user’s	website	client.	If	you	will	run	the	code	given	above,	your	screen	will	show	you	this:

	

<HTML>

<HEAD>	This	is	a	sample.	</HEAD>

<BODY>

	

This	code	wants	to	greet	you:

	

Hi,	how	are	you?

	

</BODY>

</HTML>

	

	

Comments

You	also	need	to	learn	how	to	add	comments	to	your	PHP	codes.	As	a	programmer,	you
will	use	comments	to	add	details	and	descriptions	to	your	work	without	affecting	its	output
and	behavior.	The	PHP	language	supports	three	methods	of	commenting.	These	methods
are:

	

The	“Shell”	Method	(i.e.	#)	-	In	this	method,	you’ll	begin	your	comments	with	the
hashtag	symbol.	This	symbol	only	works	for	single-line	comments.	For	example:

	

#	This	comment	is	awesome.

	

The	 “C”	Method	 (e.g.	 /*	 */)	 -	 This	 method	 is	 taken	 from	 the	 C	 language.	 This
option	allows	you	to	create	multi-line	comments.	For	instance:

	

/*	This	comment

spans

multiple	lines.	*/

	

The	“C++”	Method	(i.e.	//)	-	Use	this	method	when	writing	a	single-line	comment.
Here’s	an	example:

	

//	This	is	a	sample.

	

Variables

The	variables	used	in	PHP	are	different	from	those	of	compiled	languages	(e.g.	C,	C++,
Java,	etc.).	This	difference	lies	in	the	fact	that	PHP	variables	are	“weakly	typed.”	Simply
put,	PHP	allows	you	 to	use	variables	 even	without	prior	 declaration.	You	don’t	 have	 to
declare	 variables	 explicitly	 or	 assign	 their	 type.	 Thus,	 you	 can	 change	 the	 data	 type	 of
your	variables	whenever	you	want.

	

In	 the	PHP	 language,	 you	 should	 introduce	your	variables	using	 the	dollar	 sign	 (i.e.	 $).
You	can	use	letters,	numbers,	and	underscores	when	naming	your	variables.	However,	you
can’t	use	a	number	as	the	first	character	of	a	variable’s	name.	That	means	$one_apple	is
valid	while	$1_apple	isn’t.

	

As	mentioned	earlier,	PHP	lets	you	use	undeclared	variables.	The	examples	given	below
will	illustrate	this	idea:

	

$PI	=	3.14159;

$radius	=	10;

	

This	code	created	 two	variables	without	declaring	 their	data	 type.	Here,	“PI”	belongs	 to
the	floating-point	type	while	“radius”	belongs	to	the	integer	type.

	

Important	Note:	The	PHP	language	is	not	compatible	with	global	variables.	Each	variable
is	local	to	its	scope.	If	it	is	created	within	a	function,	it	will	disappear	once	the	function	no
longer	exists.

Indirect	Reference

	

PHP	allows	you	to	access	a	variable	using	indirect	reference.	That	means	you	can	generate
and	access	a	variable	by	name	during	runtime.	Analyze	this	example:

	

$car	=	“BMW”;

$$car	=	“Z4”;

print	$car;

	

Your	 screen	will	display	“Z4”	 if	you	will	 run	 this	code	 snippet.	The	 second	 line	of	 this
code	accesses	 the	variable	named	“car”	and	changes	 its	value.	As	you	can	see,	 that	 line
has	an	extra	dollar	 sign.	That	 sign	 tells	 the	PHP	 interpreter	 that	you	are	 referring	 to	 the
value	contained	by	the	variable	involved.	In	this	example,	a	new	variable	named	“Z4”	is
generated.

	

Important	Note:	There	are	no	limits	regarding	the	number	of	indirect	references	that	you
can	use.	That	means	you	can	place	any	number	of	dollar	signs	before	a	variable’s	name.

How	to	Manage	Variables													

	

There	 are	 three	 constructs	 that	 you	 can	 use	 to	 manage	 your	 PHP	 variables.	 These
constructs	 allow	 you	 to	 verify	 the	 existence	 of	 certain	 variables,	 delete	 variables,	 and
check	their	truth	values.	Let’s	discuss	each	language	construct	in	detail:

	

isset()	 -	 This	 construct	 checks	whether	 PHP	 has	 declared	 a	 particular	 variable.	 It
will	give	you	“true”	 (i.e.	 a	Boolean	value)	 if	your	chosen	variable	 already	exists;
otherwise,	it	will	give	you	false.	The	script	given	below	will	illustrate	this	concept:

	

if	(isset	($my_name))	{

print	‘$my_name	exists’;

}

	

If	 the	 variable	 named	 “my_name”	 exists,	 your	 screen	 will	 display	 “$my_name
exists.”	If	your	code	doesn’t	have	that	variable,	however,	you	won’t	get	any	output.

	

unset()	 -	 Use	 this	 construct	 to	 “undeclare”	 an	 existing	 variable.	 If	 there	 are	 no
references	that	point	to	the	variable’s	value,	the	memory	assigned	to	it	will	become
freed	up.	Invoking	isset()	on	a	variable	that	you’ve	deleted	gives	you	“false.”	Here’s
an	example:

	

$gameconsole	=	“PlayStation	4”;

unset	($gameconsole);

if	(isset	($gameconsole))	{

print	‘$gameconsole	exists’;

}

	

Important	Note:	You	can	also	use	unset()	and	isset()	on	object	properties	and	array
elements	(you’ll	learn	about	these	later).	The	syntax	that	you	should	use	is:

	

◦							For	object	properties:

	

◦							if	(isset	($object	–	property))	{	…	}

	

◦							For	array	elements:

	

◦							if	isset	($array	[“offset”}))	{	…	}

	

empty()	-	With	 this	construct,	you	can	check	whether	a	variable	exists	or	 is	set	 to
false.	While	 checking	 the	 truth	 value	 of	 a	 variable,	 empty()	will	 convert	 the	 data
into	Boolean	and	checks	whether	it	is	true	or	false.	Check	the	following	script:

	

if	(empty	($gameconsole))	{

print	‘Sorry,	this	variable	doesn’t	have	a	value’;

}

	

The	Superglobal	Variables

	

In	general,	you	can’t	use	global	variables	(i.e.	variables	that	you	can	access	from	any	part
of	your	code)	in	PHP.	However,	this	scripting	language	has	built-in	variables	that	act	like
typical	global	variables.	These	variables,	known														as	superglobals,	are	one	of	the
best	tools	that	you	can	use	while	writing	PHP	scripts.	Here	are	some	of	the	superglobals
that	you	will	encounter:

	

$_ENV[]	-	This	is	an	array		that	contains	environment	variables.

$_GET[]	-	This	array	holds	all	of	the	“GET”	variables	gathered	from	the	user’s	web
browser.

$_POST[]	 -	 This	 superglobal	 is	 similar	 to	 $_GET.	 The	 only	 difference	 is	 that
$_POST	involves	POST	variables	only.

$_SERVER	–	This	kind	of	array	holds	the	values	of	web-server	variables.

The	Data	Types

The	 PHP	 language	 supports	 eight	 data	 types.	 Five	 of	 these	 data	 types	 are	 scalar.	 The
remaining	 three,	 however,	 has	 unique	 properties	 that	 differentiate	 them	 from	others.	As
mentioned	earlier,	a	PHP	variable	can	hold	any	data	type.	Keep	in	mind	that	PHP	variables
behave	 according	 to	 the	 type	 of	 data	 they	 hold.	 Here	 are	 the	 data	 types	 that	 you	 will
encounter	while	using	PHP:

	

Integers

	

An	integer	is	a	whole	number	and	has	the	same	range	as	the	“long”	data	type	of	C.	In	most
machines	(e.g.	Intel	Pentium	processors),	an	integer	is	a	32-bit	signed	number	that	can	be
as	low	as	-2,147,483,648	or	as	high	as	2,147,483,647.

	

You	may	write	an	integer	in	octal	(with	zero	as	a	prefix),	in	decimal	(without	any	prefix),
and	in	hexadecimal	form	(with	0x	as	a	prefix).	Additionally,	PHP	integers	can	be	positive
or	negative.	Here	are	some	examples	of	valid	PHP	integers:

	

30000

0xCDEF

003

-90

Floating-Point	Numbers

	

A	 floating-point	 number,	 also	 called	 real	 number,	 is	 PHP’s	 own	 version	 of	 the	 C
language’s	 “double”	 type.	 When	 accessed	 using	 a	 typical	 platform,	 a	 floating-point
number	is	8	bytes	in	size	and	can	reach	as	high	as	1.8E+308	down	to	2.2E-308.	In	general,
a	floating-point	value	can	have	an	exponent,	a	decimal	point,	and	“+”	or	“-”	sign.	The	list
given	below	shows	some	valid	floating-point	numbers:

	

65.7E43

-1800.4

+0.8e-3

	

String

	

In	 PHP,	 strings	 are	 sequences	 of	 characters	 (i.e.	 letters	 and	 numbers)	 that	 are	 null-
terminated	all	 the	 time.	Unlike	other	computer	 languages,	however,	PHP	remembers	 the
length	 of	 a	 string	 internally	 rather	 than	 relying	 on	 the	 null	 terminator.	 This	 approach
allows	the	PHP	interpreter	to	handle	binary	information	easily.	For	instance,	you	can	use
this	function	to	generate	images	on-the-fly	and	send	it	to	a	web	browser.	The	largest	size	a
string	can	have	depends	on	the	C	compiler	and	computer	that	you’re	using.	However,	you
can	be	sure	it	can	handle	2GB	of	data	without	any	problems.

	

Important	 Note:	 Don’t	 create	 programs	 that	 verify	 the	 limit	 discussed	 above.	 You	 will
likely	reach	the	memory	limit	of	your	platform	first.

	

While	adding	a	string	value	to	your	PHP	code,	you	may	use	single	quotes,	double	quotes,
or	here-docs.	Let’s	discuss	these	options	in	detail:

	

Single	Quotes	–	This	is	the	simplest	option	that	you	can	use	when	creating	a	string.
Write	 your	 string	 between	 a	 pair	 of	 quotes.	 This	 approach	 supports	 two	 types	 of
escape	characters,	which	are:	'	and	\.	You	will	learn	about	escape	characters	later.

	

Double	Quotes	–	This	option	is	more	complex	than	the	previous	one.	You	can	use
this	to	hold	any	character.	However,	when	working	with	a	special	symbol,	you	need
to	 use	 the	 backslash	 character.	 Adding	 a	 backslash	 before	 a	 special	 character	 is
called	 “escaping.”	 Here	 are	 the	 escape	 characters	 that	 you	 will	 encounter	 while
using	PHP:

	

\n	–	Use	this	to	add	a	newline	character	to	your	codes.	A	newline	character	is
the	character	you’ll	get	after	pressing	the	Enter	key.

\t	–	With	this,	you	can	add	a	tab	character	to	your	PHP	codes.

\	-	You	can	use	this	symbol	to	add	a	backslash	character	to	your	scripts.	As
you	can	see,	the	backslash	character	is	used	to	activate	the	special	functions
of	other	characters.	Thus,	you	need	to	type	two	backslash	characters	in	order
to	get	an	ordinary	backslash.

\”	-	Double	quotes	are	used	to	enclose	strings.	To	add	a	normal	double	quote
character,	you	need	to	introduce	it	using	a	backslash.

\r	–	This	escape	symbol	allows	you	to	insert	a	line	feed	to	your	PHP	script.

\$	-	Use	this	symbol	to	add	a	normal	dollar	sign	to	your	codes.	As	you	know,
$	is	used	to	create	a	PHP	variable.

\0	–	With	this	symbol,	you	can	add	the	0	character	of	ASCII.

\{octal	number}	–	Use	this	to	add	an	ASCII	character	to	your	code.	Here,	you
should	use	the	octal	representation	of	the	character	you	want	to	add.

\x{hexadecimal	 number}	 –	This	 escape	 character	 is	 almost	 identical	 to	 the
octal	 one.	 The	 only	 difference	 is	 that	 this	 escape	 symbol	 requires	 the
hexadecimal	representation	of	the	character.

	

Another	 powerful	 functionality	 of	 a	 double-quoted	 string	 is	 that	 it	 can	 hold	 the
notation	 of	 an	 expression	 or	 variable.	 The	 samples	 given	 below	 will	 help	 you
understand	how	this	function	works.	The	system	will	automatically	replace	variable
references	with	 the	value	of	 the	variables	 involved.	 If	 the	value	 isn’t	a	 string,	 the
system	will	convert	 that	data	 into	its	corresponding	string	representation	(e.g.	999
will	be	converted	to	“999”).

	

“The	answer	is	$answer\n”

The	$i	array	offset	holds	$array[$i]”

	

In	situations	where	you	want	to	concatenate	a	string	with	a	value	(e.g.	an	expression
or	a	variable)	and	its	syntax	is	insufficient,	you	may	use	the	dot	operator	(i.e.	“.”)	to
combine	 (or	 concatenate)	 multiple	 strings.	 You’ll	 learn	 more	 about	 this	 operator
later.

	

Here-Docs	–	This	option	allows	you	to	embed	huge	pieces	of	content	to	your	codes.
These	pieces	of	content	may	have	single	quotes	or	double	quotes.	When	using	the
here-docs	delimiter,	you	won’t	have	to	worry	about	escaping	your	symbols.

Boolean

	

As	mentioned	earlier,	PHP	converts	data	types	automatically.	You	should	know	that	data
types	are	often	converted	to	Boolean	during	runtime.	That’s	because	in	conditional	codes
(e.g.	 	 loops,	 “if”	 statements,	 etc.),	 the	 system	will	 convert	 the	 data	 types	 involved	 into
Boolean	 to	 see	 whether	 they	 satisfy	 the	 given	 condition.	 In	 addition,	 the	 comparison
operators	of	PHP	produce	Boolean	values.	Analyze	the	following	snippet:

	

$first_value	=	3;

$second_value	=	4;

	

if	($second_value	>	$first_value)	{

		print	“The	second	value	is	greater	than	the	first	one\n.”;

}

	

Here,	 the	system	will	check	whether	 the	condition	 is	met.	The	result	 is	a	Boolean	value
(i.e.	 either	 true	 or	 false).	 If	 the	 conditional	 statement	 evaluates	 to	 true,	 the	 command
included	inside	the	curly	braces	will	run.

Null

	

This	data	type	can	only	have	one	value,	which	is	“NULL.”	You	will	use	this	type	to	mark
empty	variables.	 If	 you	 are	working	with	databases,	 you	 can	use	 “Null”	 to	differentiate
invalid	values	and	empty	strings.

	

The	 isset()	 operator	 of	 this	 language	 gives	 false	 for	 Null	 values	 if	 the	 variable	 being
checked	exists.	When	used	on	other	data	types,	however,	isset()	will	give	you	true	if	the
variable	exists.

	

Resource

	

This	 is	 considered	as	 a	 special	 type	of	data.	 It	 represents	 an	 extension	 resource	of	PHP
such	 as	 an	 open	 file.	Keep	 in	mind	 that	 you	won’t	 handle	 a	 resource	 variable	 directly.
Rather,	you	will	 simply	send	 it	 to	different	 functions	 that	can	 interact	with	 the	 involved
resource.

	

Arrays

	

In	 the	 PHP	 language,	 an	 array	 is	 a	 group	 of	 value/key	 pairs:	 it	 indexes	 keys	 to	 their
respective	values.	An	array	index	can	take	the	form	of	a	string	or	integer	while	values	can
belong	to	any	data	type	(even	other	arrays).

	

Declaring	an	Array	–	You	 can	use	 the	 array()	 construct	when	declaring	 an	 array.
This	construct	requires	the	following	syntax:

	

array([key_to_be_used	=>]	value,	[key_to_be_used	=>]	value,	…)

	

In	 this	 syntax,	 the	 “key_to_be_used”	 entry	 is	 completely	 optional.	 If	 you	 won’t
specify	the	key,	the	system	will	automatically	create	one	for	you.	The	key	will	be
the	highest	available	integer	plus	one.	PHP	allows	you	to	mix	keyed	and	non-keyed
arrays	inside	a	single	declaration.

	

Accessing	 an	Array	Element	 -	You	 need	 to	 use	 the	 $arr[key]	 syntax	 to	 access	 an
array	element.	In	this	syntax,	“key”	can	be	a	string	or	an	integer.	Make	sure	that	you
will	 include	 the	 quotation	 marks	 while	 using	 constant	 strings	 as	 keys	 (e.g.

$arr[“string”].	 This	 syntax	 is	 extremely	 useful:	 you	 can	 use	 it	 to	 read	 existing
elements	or	create	new	ones.

Constants

While	using	PHP,	you	can	 set	 names,	 known	as	 constants,	 for	basic	values.	 Just	 like	 in
other	 languages,	 you	 can’t	 alter	 a	 PHP	 constant	 once	 you	 have	 assigned	 its	 value.	 The
rules	for	naming	a	constant	are	almost	 identical	 to	 those	used	in	naming	a	variable.	The
only	 difference	 is	 that	 a	 constant	 doesn’t	 need	 a	 dollar	 sign	 before	 its	 name.	 When
declaring	 constants,	 most	 programmers	 opt	 for	 uppercase	 letters.	 This	 approach	 helps
them	to	achieve	readability	for	their	codes.

	

PHP	allows	you	to	access	a	constant	at	any	part	of	your	code.	That	means	you	don’t	need
to	 declare	 them	 in	 each	 of	 your	 functions	 and	 PHP	 files.	 Here’s	 the	 function	 that	 you
should	use	when	defining	a	constant:

	

define(“NAME_OF_CONSTANT”,	value)

	

Where:

	

“NAME_OF_CONSTANT”	is	a	typical	string	that	consists	of	letters	and	numbers.

value	is	any	PHP	expression	except	objects	and	arrays.

	

The	code	snippet	given	below	will	show	you	how	to	define	and	use	constants:

	

define(“OK”	0);

define(“ERROR”,	1);

	

if	($errorcode	==	ERROR)	{

		print(“An	error	has	occured\n”);

}

Operators

The	PHP	language	supports	three	kinds	of	operators:	unary,	binary	and	ternary.

	

A	binary	operator	requires	two	operands.	For	example:

	

1	+	5

	

13	*	3.14

	

$x	/	10

	

Keep	in	mind	that	you	can	only	conduct	a	binary	operation	on	values	 that	belong	to	 the
same	data	 type.	 If	 the	operands	you’re	working	on	have	different	data	 types	 (e.g.	 string
and	integer),	the	PHP	language	will	perform	automatic	conversion.	Thus,	it	will	convert	a
data	 type	 to	 a	 different	 one	 to	 attain	 consistency.	This	 automatic	 conversion	works	 this
way:

	

If	you	are	working	with	an	integer	and	a	floating-point	number,	the	former	will	be
converted	to	the	data	type	of	the	latter.

If	you	are	dealing	with	a	string	and	an	integer,	PHP	will	convert	the	former.

If	you’re	working	on	a	real	value	and	a	string,	PHP	will	convert	the	latter.

	

The	Binary	Operators

	

The	Assignment	Operators

	

An	assignment	operator	allows	you	to	assign	values	 to	your	variables.	Here,	you	should
write	the	variable’s	name	on	the	left-hand	side	of	the	expression.	Place	the	value	you	want
to	assign	at	the	right-hand	side	of	the	expression.	For	instance,	in	the	expression	$sample
=	10,	you	will	assign	10	to	the	variable	named	“sample.”

	

Aside	 from	“=”,	 there	are	various	assignment	operators	 that	you	can	use	 in	PHP.	These
operators,	which	involve	certain	mathematical	symbols,	perform	an	operation	and	give	the
result	to	the	left-hand	operand.	Here	are	some	examples:

	

$counter	+=	1;	 	 /*	 In	 this	expression,	PHP	will	add	1	 to	 the	current	value	of	 the
counter.	Then,	it	will	assign	the	sum	as	the	new	value	of	that	variable.	*/

	

$fund	 -=	 $expenses;	 	 /*	 Here,	 PHP	 will	 deduct	 the	 value	 of	 a	 variable	 named
expenses	from	that	of	“fund”	and	assign	the	difference	as	the	latter’s	new	value.	*/

	

PHP	supports	the	following	assignment	operators:

	

=,	-=,	/=,	*=,	+=,	.=,	|=,	>>=,	<<=,	&=,		^=,	and	&=

	

The	Numeric	Operators

	

In	 general,	 binary	 operators	 require	 numeric	 operands.	 If	 you	 are	 dealing	 with	 nulls,
strings,	 resources,	 or	 Booleans,	 the	 system	 will	 convert	 the	 values	 to	 numbers	 before
performing	any	calculation.	Here	are	the	numeric	operators	that	you	will	find	in	PHP:

	

“+”	-	This	is	called	the	“Addition”	operator.	It	adds	the	values	of	two	operands	and
returns	the	sum.

“-”	-	Programmers	refer	to	this	as	the	“Subtraction”	operator.	It	deducts	the	value	of
the	right-hand	operand	from	that	of	the	left-hand	operand	and	returns	the	difference.

“*”	-		This	is	the	“Multiplication”	operator.	It	multiplies	the	values	of	two	operands
and	returns	the	product.

“/”	-	With	this	operator,	you	can	divide	the	value	of	the	left-hand	operand	by	that	of
the	right-hand	operand	and	returns	the	quotient.

“%”	-	This	is	the	“Modulus”	operator.	It	divides	the	value	of	the	left-hand	operand
by	that	of	the	right-hand	operand	and	returns	the	remainder.

	

The	Concatenation	Operator

	

This	operator	allows	you	 to	concatenate	 strings.	Since	 it	only	works	on	string	values,	 it
converts	non-string	operands	before	doing	any	operation.	The		code	snippet	given	below
will	give	you	“My	favorite	number	is	23”:

	

$favorite_number	=	23;

print	“My	favorite	number	is	”	.	$favorite_number;

	

The	concatenation	operator	 converts	 the	 integer	$favorite_number	 to	 a	 string	 (i.e.	 “23”)
before	combining	the	operands.

The	Comparison	Operators

	

You	 can	 use	 these	 operators	 to	 compare	 the	 values	 of	 two	operands.	 If	 you	 are	 dealing
with	two	string	operands,	PHP	will	perform	the	comparison	in	a	lexicographical	manner.
Thus,	 it	 will	 give	 a	 Boolean	 result.	 The	 comparison	 operators	 listed	 below	 perform
automatic	data	type	conversions	whenever	necessary:

	

“==”	 -	This	operator	 checks	whether	 the	operands	have	equal	values.	 It	will	give
you	true	if	the	values	are	equal.	For	example,	“3	==	4”	evaluates	to	false.

“!=”	-	This	is	the	exact	opposite	of	the	previous	operator.	It	will	give	you	true	if	the
values	inside	the	operands	are	not	equal.	For	instance,	“3	!=	4”	evaluates	to	true.

“>”	-	With	this	operator,	you	can	check	whether	the	value	of	the	left-hand	operand
is	greater	than	that	of	the	right-hand	operand.	If	so,	you	will	get	true	as	the	result.
For	instance,	“3	>	4”	will	give	you	false.

“<”	-	Use	 this	operator	 to	determine	whether	 the	 left-hand	operand’s	value	 is	 less
than	that	of	the	right-hand	operand.	If	it	is,	you	will	get	true.	For	example,	“3	<	4”
evaluates	to	true.

“<=”	-	Programmers	refer	to	this	as	the	“less	than	or	equal	to”	operator.	It	will	give
you	 true	 if	 the	 value	 of	 the	 left-hand	 operand	 is	 less	 than	 or	 equal	 to	 the	 second
operand.	For	example,	“3	<=	4”	will	give	you	false.

“>=”	-	This	is	the	“greater	than	or	equal	to”	operator.	If	the	value	of	the	left-hand
operand	 is	 greater	 than	 or	 equal	 to	 that	 of	 the	 right-hand	 one,	 you	will	 get	 true;
otherwise,	you	will	get	false.	For	example,	“3	>=	4”	evaluates	to	false.

	

The	Logical	Operators

	

This	 kind	 of	 operator	 converts	 its	 operands	 to	 Boolean	 form	 before	 performing	 any
comparison.	Here	are	the	logical	operators	that	PHP	supports:

	

“&&”	-	This	is	called	the	“Logical	AND”	operator.	It	will	give	you	true	if	both	of
the	operands	are	true.

“||”	-	Programmers	call	this	the	“Logical	OR”	operator.	When	used	in	PHP	codes,	it
will	give	you	true	if	at	least	one	of	operands	is	true.

“xor”	-	This	is	the	“Logical	XOR”	operator.	It	will	give	you	true	if	only	one	of	the
operands	is	true.	Thus,	you	will	get	false	if	both	of	the	operands	are	true	or	false.

	

Important	 Note:	 The	 Logical	 OR	 and	 Logical	 AND	 operators	 allow	 short-circuit
evaluation.	That	means	they	can	give	a	result	even	without	checking	the	entire	expression.
Logical	OR,	for	example,	will	give	you	true	if	the	first	operand	is	true,	since	its	condition
has	already	been	met	(i.e.	at	least	one	of	the	operands	should	be	true).	The	Logical	AND
operator,	on	the	other	hand,	will	give	you	false	if	the	first	operand	is	false.	It	won’t	check
the	second	operand	anymore	since	 the	assigned	condition	cannot	be	met	no	matter	what
(i.e.	both	operands	should	be	true).

	

The	Bitwise	Operators

	

A	 bitwise	 operator	 conducts	 operations	 on	 the	 bitwise	 form	 of	 its	 operands.	Unless	 the
operands	 are	 strings,	 they	 will	 be	 converted	 to	 their	 respective	 binary	 form,	 and	 the
operation	will	run.	In	situations	where	both	of	the	operands	are	strings,	PHP	will	perform
the	 operation	 by	matching	 character	 offsets	 (e.g.	 the	 system	will	 treat	 the	 characters	 as
binary	numbers).

	

“&”	 -	This	 is	 the	“Bitwise	AND”	operator.	 It	will	place	1	 in	each	position	where
both	operands	have	1.

“|”	-	This	operator,	known	as	Bitwise	OR,	places	1	in	positions	where	at	least	one
operand	has	1.

“^”	-	Programmers	refer	to	this	as	the	“Bitwise	XOR”	operator.	It	places	1	in	each
position	where	only	one	of	the	operands	has	1.

The	Unary	Operators

	

Operators	that	belong	to	this	type	work	on	single	operands.

	

The	Negation	Operators

	

These	 operators	 reverse	 the	 current	 value	 of	 its	 operand.	 PHP	 supports	 two	 negation
operators,	which	are:

	

“!”	-	Programmers	call	this	the	“Logical	Negation”	operator.	It	will	give	you	true	if
the	operand’s	value	is	false.	If	the	value	is	true,	on	the	other	hand,	this	operator	will
give	you	false.

“~”	-	This	is	the	Bitwise	Negation	operator.	It	replaces	0	with	1,	and	vice	versa.

The	Increment	and	Decrement	Operators

	

These	operators	have	a	unique	characteristic	–	they	work	on	a	variable,	not	on	the	stored
value.		This	is	because	aside	from	getting	the	result	of	an	operation,	they	also	change	the
value	stored	inside	the	variable.	The	PHP	language	supports	two	increment	operators	and
two	decrement	operators.	These	are:

	

$sample++	 -	This	 is	 the	“Post-increment”	operator.	 It	 returns	 the	current	value	of
the	variable	and	increases	it	by	1.

$sample—	-	Programmers	refer	to	this	operator	as	“Post-decrement.”	Basically,	this
operator	gives	the	current	value	of	a	variable	before	decreasing	it	by	1.

$++sample	–	This	operator,	which	is	called	“Pre-increment,”	increases	the	value	of
the	variable	it	is	attached	to	and	returns	the	resulting	value.

$—sample	–	With	this	operator,	you	can	decrease	the	value	of	an	operand	by	one
before	retrieving	an	output.

	

The	Cast	Operators

	

PHP	offers	six	cast	operators	that	you	can	use	to	force	type	conversions.	You	should	place
the	 operator	 on	 the	 left-side	 of	 the	 operand.	The	 list	 given	 below	 shows	 all	 of	 the	 cast
operators	in	PHP:

	

(array)	–	This	operator	changes	the	data	type	of	a	value	to	“array.”

(int)	or	(integer)	–	Use	this	operator	to	convert	values	into	integers.

(string)	–	This	is	the	operator	that	you	should	use	to	create	string	values	out	of	non-
string	ones.

(object)	–	With	this	operator,	you	can	tag	any	value	as	an	“object.”

(real),	(float)	or	(double)	–	This	operator	allows	you	to	convert	values	from	any	data
type	into	floating-point	values.

(bool)	or	(boolean)	–	Use	this	operator	to	convert	any	value	into	its	Boolean	form.

	

Keep	in	mind	that	a	cast	operator	affects	the	value	of	a	variable,	not	the	variable	itself.	For
instance:

	

$sample_string	“10”;

$sample_number	=	(int)	$sample_string;

	

In	this	example,	the	variable	named	$sample_number	gets	the	integer	10	as	its	value.	The
variable	called	$sample_string,	however,	still	belongs	to	the	string	type.

The	Ternary	Operator

	

Programmers	consider	the	question	mark	operator	(i.e.	?)	as	one	of	the	coolest	operators	of
any	language.	In	PHP,	the	format	of	this	operator	is:

	

conditional_statement	?	first_expression	:	second_expression

	

The	“?”	operator	evaluates	the	result	of	“conditional_statement.”	If	the	result	is	true,	the
operator	will	return	the	value	of	“first_expression.”	If	the	result	is	false,	the	operator	will
give	you	the	value	of	“second_expression.”

	

The	code	snippet	given	below	will	help	you	to	understand	how	this	operator	works:

	

$x	=	100;

$sample_message	=	isset($a)	?	‘$x	exists’	:	‘$x	doesn’t	exist’;

print	$sample_message;

	

If	you	will	run	this	code,	your	screen	will	print	the	following:

	

“$x	exists”

Chapter	2:	The	Control	Structures
	

This	programming	language	supports	the	best	control	structures	offered	by	other	computer
languages.	PHP	users	divide	control	structures	into	two	types:	conditional	control	and	loop
control.	A	 conditional	 control	 structure	 influences	 the	program’s	 flow	and	 runs	or	 skips
certain	codes	based	on	predetermined	criteria.	A	loop	control	structure,	on	the	other	hand,
runs	a	piece	of	code	multiple	times	according	to	the	criteria	set	by	the	programmer.	Let’s
discuss	each	type	of	structures	in	detail:

	

Conditional	Structures

You	need	 to	use	 conditional	 statements	when	writing	programs.	These	 statements	 allow
your	programs	to	behave	differently	based	on	the	user’s	inputs	and	their	own	“decisions.”
In	PHP,	you	can	use	“if”	statements	and	“switch”	statements.	These	statements	are	two	of
the	most	popular	control	structures	in	computer	programming.

	

The	“if”	Statements

	

This	category	consists	of	three	statements,	namely:

	

1.	 if	(conditional_expression)

statement/s

2.	 elseif	(conditional_expression)

statement/s

3.	 elseif	(conditional_expression)

statement/s

…

else

statements

	

These	 statements	 are	 considered	 as	 the	 most	 popular	 conditional	 constructs	 in
programming	and	scripting.	Actually,	you’ll	find	them	in	most	computer	languages.	Each
“if”	 statement	 has	 a	 conditional	 expression	 known	 as	 the	 “truth	 expression.”	 If	 an	 “if”
statement’s	truth	expression	results	 to	true,	 the	statement	or	group	of	statements	under	it
will	run;	otherwise,	they	will	be	ignored.

	

You	may	place	an	“else”	clause	to	your	“if”	statement	to	run	codes	only	if	the	conditional
expressions	you	have	provided	evaluates	to	false.	Here’s	an	example:

	

if	($sample	>=	100)	{

		print	‘$sample	is	within	the	given	range’;

		}		else	{

print	‘$sample	is	invalid’;

}

	

As	 you	 can	 see,	 curly	 braces	 define	 the	 statements	 under	 each	 “if”	 and	 “else”	 clauses,
turning	these	statements	into	a	“code	block.”	In	this	example,	you	may	remove	the	curly
braces	since	each	code	block	holds	a	single	statement.	However,	it’s	still	best	if	you	will
write	 braces	 in	 situations	 where	 they	 are	 completely	 optional.	 Braces	 improve	 the
readability	of	PHP	codes.

	

You	can	use	an	“elseif”	construct	 to	perform	a	sequence	of	conditional	assessments	and
only	run	the	code	under	the	first	satisfied	condition.	For	instance:

	

if	($sample	<	0	{

		print	‘$sample	is	a	negative	integer’;

}	elseif	($sample	==	0)	{

		print	‘sample	is	equal	to	zero’;

}	elseif	($sample	>	0	{

		print	‘$sample	is	a	positive	integer’;

}

	

The	“switch”	Statement

	

The	syntax	of	a	switch	statement	is:

	

switch	(expression)	{

		case	expression:

statement/s

		case	expression:

statement/s

	

		…

		default:

statement/s

}

	

Programmers	 use	 switch	 statements	 to	 replace	 complicated	 if-elseif	 statements.	 Switch
statements	compare	an	expression	against	all	of	 the	possible	entries	 inside	 their	body.	 If
they	don’t	find	an	exact	match,	the	program	will	run	the	“default”	clause	and	ignore	the
rest	 of	 the	 statement.	 In	PHP,	 you	may	use	 a	 “break”	 statement	 to	 terminate	 the	 code’s
execution	 and	 pass	 the	 control	 to	 the	 succeeding	 scripts.	 Most	 programmers	 place	 the
break	statement	at	the	last	part	of	the	switch	structure.	Analyze	the	following	example:

	

switch	($solution)	{

		case	‘x’:

		case	‘x’:

print	“The	solution	is	correct\n”;

break;

		case	‘u’:

		case	‘U’:

print	“The	solution	is	incorrect\n”;

		break;

		default:

print	“Error:	The	system	doesn’t	recognize	the	solution\n”;

break;

}

	

The	Loop	Structures

You	can	use	loop	structures	to	repeat	certain	processes	in	your	PHP	scripts.	For	instance,
you	can	use	a	“loop”	 to	 submit	 the	 results	of	a	query	multiple	 times.	 In	 this	part	of	 the
book,	you’ll	learn	about	the	loop	structures	supported	by	the	PHP	language:

	

The	“while”	Loop

	

When	writing	a	“while”	loop,	you	should	use	the	following	syntax:

	

while	(expression)

		statement/s

	

Most	programmers	consider	“while”	loops	as	the	simplest	type	of	loops	in	any	language.
At	the	start	of	each	repetition,	the	program	will	evaluate	the	loop’s	truth	expression.	If	the
expression’s	result	is	true,	the	loop	will	run	all	the	statements	inside	it.	If	the	result	is	false,
however,	the	loop	will	end	and	pass	the	program	control	to	the	statements	after	it.

	

The	“break”	and	“continue”	Clauses

	

In	PHP,	“break”	clauses	and	“continue”	clauses	require	the	following	syntax:

	

break;

break	expression;

	

continue;

continue	expression;

	

There	are	times	when	you	need	to	end	the	loop	during	an	iteration.	Because	of	this,	PHP
offers	 “break”	 statements.	 If	 a	 break	 statement	 appears	 as	 a	 single	 line	 (i.e.	 break;),	 the
program	will	affect	the	innermost	loop.	You	can	specify	the	maximum	levels	you	want	to
work	on	by	setting	an	argument	for	your	“break”	clause.	Here’s	the	syntax:

	

break	x;

The	“do…	while”	Loop

	

This	is	the	syntax	that	you	should	use	while	writing	a	“do…	while”	loop.

	

do

		statement/s

while														(expression);

	

A	“do…	while”	loop	is	like	an	ordinary	“while”	loop.	The	only	difference	is	that	a	“do…
while”	loop	checks	its	truth	expression	before	ending	each	iteration.	Basically,	this	kind	of
loop	 makes	 sure	 that	 your	 statement/s	 will	 run	 at	 least	 once,	 regardless	 of	 the	 truth
expression’s	value.

	

Programmers	 use	 “do…	 while”	 loops	 to	 terminate	 code	 blocks	 upon	 satisfying	 a
predetermined	condition.	Here’s	an	example:

	

do	{

		statement/s

		if	($sample)	{

break;

		}		statement/s

		}	while	(false);

	

	

Since	a	“do…	while”	loop	run	at	least	once,	the	statement	or	statements	you	place	inside
this	 loop	 will	 run	 once	 only.	 Additionally,	 the	 value	 of	 its	 truth	 expression	 always
evaluates	 to	 false.	PHP	allows	you	 to	place	break	clauses	 inside	a	“do…	while”	 loop	 to
terminate	 its	 execution	 anytime.	Obviously,	 you	may	 use	 this	 kind	 of	 loop	 to	 facilitate
typical	reiteration	processes.

The	“for”	Loop

	

The	“for”	loop	of	PHP	is	similar	to	that	of	the	C	language.	This	kind	of	loop	takes	three
parameters:

	

for	(start_expression;	truth_expression;	increment_expression)

	

Usually,	programmers	use	a	single	expression	for	each	part	of	the	loop	(i.e.	truth,	start,	and
increment).	Thus,	you	can	use	the	following	syntax	to	create	a	basic	“for”	loop:

	

for	(expression;	expression;	expression)

statement/s

	

The	PHP	interpreter	evaluates	the	“start_expression”	once.	This	expression	initializes	the
control	 variable	 of	 the	 loop	 it	 belongs	 to.	 The	 element	 named	 “truth_expression”,
meanwhile,	runs	at	the	start	of	each	loop	iteration.	All	of	the	statements	within	the	“for”
loop	will	run	if	truth_expression	evaluates	to	true;	if	it	evaluates	to	false,	the	loop	will	end.
The	 interpreter	 checks	 the	 increment_expression	 before	 ending	 each	 iteration.
Programmers	 use	 the	 increment_expression	 to	 adjust	 the	 value	 of	 the	 loop’s	 control
variable.

	

You	can	include	“continue”	and	“break”	statements	in	your	“for”	loops.	Keep	in	mind	that
“continue”	forces	the	PHP	interpreter	to	evaluate	“increment_expression”	before	checking
“truth_expression.”	The	following	example	will	show	you	how	a	“for”	loop	works:

	

for	($x	=	0;	$x	<	5;	$x++)	{

		print	“The	square	of	this	variable	is	“	.	$x*$x	.	“\n”;

}

	

Just	like	C,	PHP	allows	you	to	provide	multiple	expressions	for	each	argument	of	the	loop.
You	just	have	to	delimit	those	expressions	using	commas.	If	you	will	use	this	option,	each
argument	will	take	the	value	of	its	rightmost	expression.

	

Additionally,	 you	don’t	 have	 to	provide	 arguments	 for	your	 “for”	 loops.	The	 interpreter
will	just	assume	that	the	missing	arguments	evaluate	to	true.	For	instance,	the	code	snippet
given	below	will	run	continuously:

	

for	(;	;)	{

		print	“This	loop	is	infinite\n”;

}

The	Code	Inclusion	Structures

You	 can	 use	 a	 code	 inclusion	 structure	 to	 organize	 the	 source	 of	 your	 programs.	Aside
from	turning	your	complex	codes	into	manageable	blocks,	a	code	inclusion	structure	can
help	you	apply	your	codes	on	other	PHP	projects.

	

The	“include”	Statement

	

Just	like	other	computer	languages,	PHP	supports	the	usage	of	an	“include”	statement	to
divide	 codes	 into	 several	 files.	 Dividing	 your	 source	 code	 into	 different	 files	 is	 often
useful	for	“code	recycling”	(i.e.	using	the	same	code	on	different	scripts)	or	attaining	code
readability.	Whenever	 you	 execute	 this	 statement,	 PHP	will	 read	 a	 file,	 compile	 it	 into
workable	code,	and	run	it.

	

The	behavior	of	this	statement	is	similar	to	that	of	a	function.	Keep	in	mind,	however,	that
“include”	 is	 a	 pre-installed	 construct	 of	 the	 PHP	 language.	When	writing	 an	 “include”
statement,	you	should	use	the	following	syntax:

	

include	name_of_file;

	

The	examples	given	below	will	show	you	how	to	write	an	“include”	statement:

	

error_files.php

	

<?php

	

$system_ok	=	1;

$system_error	=	0;

	

?>

	

check.php

	

<?php

	

include	“error_files.php”;

	

print	(‘The	variable	named	$system_error	holds	‘	.	“$system_error\n”);

?>

	

If	you	will	run	this	script,	your	screen	will	show	you	the	following	message:

	

“The	variable	named	$system_error	holds	0”

	

The	eval()	Function

	

This	 function	 is	 similar	 to	 the	 “include”	 statement.	However,	 rather	 than	 compiling	 and
running	codes	from	a	PHP	file,	it	treats	codes	as	basic	strings.	This	feature	can	help	you
run	dynamically	generated	codes	or	manually	 retrieve	codes	 from	external	 sources.	You
should	 know	 that	 using	 eval()	 is	 more	 complex	 than	 writing	 codes	 manually.	 Thus,	 it
would	be	best	if	you’ll	avoid	using	this	function.

Chapter	3:	The	Functions	of	PHP
	
PHP	 supports	 built-in	 and	 user-defined	 functions.	 All	 PHP	 functions	 respond	 to	 the
following	call:

	

func	(argument_1,	argument_2,	argument_3,	…)

	

The	arguments	 that	you	can	include	in	a	call	depends	on	the	function	you’re	using.	You
may	use	 any	PHP	expression	 as	 an	 argument.	Actually,	 you	 can	 also	 tag	other	 function
calls	as	arguments.	Here	is	one	of	the	built-in	functions	of	this	language:

	

$sample	=	strlen(“elephant”);

	

The	 strlen()	 function	 accepts	 a	 string	 and	 returns	 its	 length.	 Thus,	 the	 variable	 named
$sample	will	get	8	as	its	length,	since	“elephant”	is	eight	characters	long.

	

The	User-Defined	Functions

This	is	the	syntax	that	you	should	use	while	defining	a	function:

	

function	name_of_function	(argument_1,	argument_2,	argument_3,	…)

{

		statement/s

}

	

You	 can	 retrieve	values	 from	your	 functions	by	 invoking	 the	 “return”	 expression	 inside
them.	 By	 doing	 this	 call,	 you	 will	 stop	 the	 function’s	 execution	 and	 get	 an	 immediate
value.	The	example	given	below	will	show	you	how	to	define	a	function:

	

function	square	($a)

{

		return	$a*$a;

}

	

The	Scope	of	a	Function

Each	function	has	a	unique	collection	of	variables.	The	variables		you	will	define	outside
the	definition	of	a	function	are	 inaccessible	while	you	are	 inside	 the	function.	Once	you
run	 a	 function,	 you	 will	 also	 define	 its	 parameters.	 Using	 a	 new	 variable	 within	 the
function	 defines	 that	 variable	 inside	 that	 function	 only.	 Additionally,	 that	 variable	 will
disappear	as	soon	as	the	function	that	contains	it	ends.	The	code	snippet	given	below	will
illustrate	this	idea:

	

function	example()

	

{

		$favorite_number	=	1;

}

	

$favorite_number	=	3;

example();

	

print	$favorite_number;

	

Once	 you	 call	 the	 example()	 function,	 the	 variable	 named	 $favorite_number	 inside	 it
won’t	affect	the	variable	declared	outside	the	function.	Thus,	this	snippet	will	print	“3”	on
your	screen.

	

You	probably	want	 to	 know	how	you	 can	 access	 and/or	modify	$favorite_number	 from
outside	the	function.	As	mentioned	in	the	first	chapter,	you	may	use	the	pre-installed	array
called	$GLOBALS[]	to	access	any	variable	inside	your	script.	You	can	rewrite	the	script
given	above	as:

	

function	example();

	

{

		global	$favorite_number;

		$favorite_number	=	1;

}

	

$favorite_number	=	3;

example();

print	$favorite_number;

	

With	this	code,	your	screen	will	display	“1.”

	

Additionally,	the	global	keyword	allows	you	to	define	which	global	variable/s	you	like	to
access.	 If	 you	 will	 use	 this	 feature,	 the	 system	 will	 import	 the	 global	 variable/s	 you
selected	to	the	scope	of	your	function.

	

The	“By	Value”	Method	of	Returning	a	Value

You	can	use	a	“return”	statement	to	get	values	from	your	functions.	This	kind	of	statement
returns	a	value	“by	value.”															Basically,	it	creates	a	copy	of	the	appropriate	value
and	sends	it	to	the	user.	Here’s	an	example:

	

function	sample_function($test)

{

		return	$GLOBALS[$test];

}

	

$numeral	=	4;

$sample_value	=	sample_function(“numeral”);

print	$sample_value;

	

You	will	get	“4”	 if	you	will	 run	 this	code	snippet.	However,	altering	 the	$sample_value
variable	before	“print”	will	affect	that	variable	only.	The	changes	that	you	will	make	won’t
affect	$test,	which	is	a	global	variable.

	

The	“By	Reference”	Method	of	Returning	a	Value

In	PHP,	you	can	also	use	a	reference	to	return	values.	That	means	you	won’t	get	a	copy	of
the	variable	involved.	Rather,	you	will	get	the	address	of	that	variable.	This	feature	allows
you	to	modify	any	variable	from	the	call’s	scope.	To	use	this	method,	you	need	to	place
“&”	 before	 the	 name	 of	 the	 function	 and	 within	 the	 invoker’s	 code.	 The	 following
example	will	show	you	how	this	method	works:

	

function	&sample_function($fruit)

{

		return	$GLOBALS[$fruit];

}

	

$favorite_number	=	5;

$sample_value	=&	sample_function(“favorite_number”);

print	$sample_value	.	“\n”;

$sample_value	=	10;

print	$favorite_number;

	

If	you	will	run	the	code	given	above,	your	screen	will	display	these	numbers:

	

5

10

	

You	were	 able	 to	modify	 $favorite_number	 using	 $sample_value	 since	 	 the	 latter	 is	 an
active	reference	to	the	former.

	

Important	 Note:	 Programmers	 rarely	 use	 this	 method.	 That’s	 because	 it	 is	 inherently
complex	and	often	leads	to	bugs.

	

How	to	Declare	a	Function	Parameter

PHP	doesn’t	have	a	 limit	 in	 terms	of	 the	number	of	 arguments	 that	you	can	assign	 to	a
function.	 In	 this	 language,	you	 can	pass	 arguments	using	 two	different	 approaches.	The
first	 one,	 known	 as	 “passing	 by	 values,”	 is	 the	most	 popular.	 Programmers	 refer	 to	 the
second	method	as	“passing	by	references.”	You	should	specify	the	method	that	you	want
to	use	while	defining	the	function.	Indicating	the	method	during	a	function	call	will	result
to	runtime	errors.

	

The	By-Value	Parameters

	

This	method	 accepts	 any	PHP	expression.	Here,	 the	program	will	 evaluate	 the	 assigned
expression	 and	 assign	 its	 value	 to	 a	 variable	 inside	 the	 function.	 For	 instance,	 in	 the
example	given	below,	$a	gets	6	as	its	value	while	$b	gets	the	value	of	another	variable:

	

function	sample($a,	$b)

	

{

		…

	

}

	

sample(2*3,	$x);

The	By-Reference	Parameters

	

In	this	method,	you	need	to	use	variables	as	arguments.	Rather	than	passing	the	variable’s
actual	 value,	 a	 variable	 inside	 the	 function	 refers	 straight	 to	 the	 selected	 argument
whenever	activated.	Thus,	any	modification	done	on	the	variable	within	the	function	will
also	affect	the	variable	outside	the	function’s	scope.	Here’s	an	example:

	

function	sample(&$a)

	

{

		$a	=	$a*$a;

}

	

$favorite_number	=	5;

sample	($favorite_number);

print	$favorite_number;

	

The	ampersand	sign	before	$a	inside	the	function’s	parameter	requires	PHP	to	use	the	by-
reference	method.	If	you	will	run	this	code	snippet,	your	screen	will	show	“25.”

The	Default	Parameters

	

A	 default	 parameter	 allows	 you	 to	 set	 default	 values	 for	 your	 functions.	 Thus,	 your
functions	will	get	a	parameter	automatically	if	you	won’t	assign	one.	In	the	PHP	language,
you	need	to	use	constant	values	while	setting	default	parameters.

	

Here’s	an	example:

	

function	increase(&$number,	$sample	=	5)

{

		$number	+=	$sample;

}

	

$number	=	1;

increase	($number);

increase	($number,	2);

The	Static	Variables

Similar	to	C,	the	PHP	language	supports	the	declaration	of	static	variables.	Static	variables
stay	as	they	are	between	function	invocations.	However,	you	can	only	use	them	inside	the
function	that	contains	them.	You	can	initialize	a	static	variable.	The	initialization	process
will	take	place	once	the	program	reaches	the	variable’s	declaration.

	

The	following	code	snippet	will	show	you	how	to	declare	a	static	variable:

	

function	something_useful()

{

		static	test	=	true;

	

		if	(test)	{

//	Run	this	code	once	the	function	is	invoked.

	

		…

}

	

		//	Run	the	main	logic	of	the	function	each	time	this	function	is	invoked.

	

		…

	

}

Chapter	4:	Object-Oriented	Programming
	

This	chapter	will	focus	on	the	object-oriented	style	of	programming.	It	will	teach	you	the
fundamentals	of	the	object-oriented	model.	Additionally,	it	will	provide	you	with	detailed
instructions	on	how	to	create	and	control	objects.	Study	this	material	carefully	if	you	want
to	be	a	skilled	PHP	user.

	

Objects	–	The	Basics

In	OOP	(i.e.	object-oriented	programming),	you	will	combine	codes	and	data	to	create	an
object.	A	computer	application	created	using	this	style	consists	of	different	objects	that	can
communicate	with	each	other.	Often,	these	objects	are	self-contained	and	possess	different
methods	and	properties.

	

Properties	 serve	 as	 an	object’s	 data.	Thus,	 these	 are	variables	owned	by	 the	object	 they
point	to.	The	methods,	on	the	other	hand,	are	functions	an	object	supports.

	

Classes	 serve	 as	 templates	 for	 a	 programming	 object.	 They	 describe	 the	 properties	 and
methods	 that	 an	 object	 will	 possess.	 In	 the	 example	 given	 below,	 the	 class	 describes	 a
vehicle.	For	each	vehicle	inside	your	computer	program,	you	may	create	an	instance	of	the
class	to	represent	that	vehicle’s	data.	For	instance,	if	two	vehicles	in	your	application	are
named	“Car”	and	“Motorcycle,”	you	will	create	two	instances	of	your	class	and	initialize
the	appropriate	variable	for	each	vehicle.

	

To	initialize	the	variables,		you	need	to	invoke	the	method	named	setName()	for	the	two
vehicles.	The	members	and	methods	that	interacting	objects	can	utilize	are	known	as	the
“contract”	of	the	class.	For	the	example	below,	the	car’s	contracts	are	the	“get”	and	“set”
methods,	getType()	and	setType().

	

Class	Vehicle	{

	

		private	$type;

	

		function	setType	($type)

		{

$this→type	=	$type;

		}

		function	getType()

		{

return	$this→type;

		}

};

	

$car	=	new	Vehicle();

$car→setType	(“Car”);

	

$motorcycle	=	new	Vehicle();

$motorcycle→setType	(“Motorcycle”);

	

print	$car→getType()	.	“\n”;

print	$motorcycle→getType	.		“\n”;

	

Class	Declarations

In	PHP,	declaring	your	own	classes	is	easy	and	simple.	You’ll	just	type	the	word	“class,”
specify	 the	 name	 you	 want	 to	 use,	 and	 indicate	 all	 of	 the	 properties	 and	methods	 that
instances	from	this	class	will	possess.	The	syntax	that	you	should	use	is:

	

class	YourClass	{

		…	//	Place	the	methods	you	want	to	use	here.

		…

		…	//	Place	the	properties	you	want	to	use	here.

		…

}

	

Important	 Note:	 You	 probably	 noticed	 the	 keyword	 “private”	 while	 working	 on	 the
previous	example	(i.e.	private	$type).	This	keyword	 informs	PHP	 that	only	 the	methods
inside	the	class	can	use	$type.	Because	of	 this	keyword,	you	need	to	use	setName()	and
getName()	to	set	or	get	the	$type	property.

Creating	Class	Instances

You	need	to	use	“new”	(i.e.	a	PHP	keyword)	to	create	class	instances.	In	the	last	example,
you	generated	an	instance	of	the	Vehicle	class	using	$car	=	new	Vehicle();.	One	you	run
this	statement,	PHP	will	create	a	new	object	and	give	 it	all	of	 the	properties	declared	 in
your	chosen	class.	Then,	PHP	will	invoke	the	object’s	constructor	in	case	you	defined	one.
A	constructor	is	a	PHP	keyword	that	“new”	invokes	automatically	after	generating	a	new
object.	You	can	use	a	constructor	to	perform	automated	initializations.

	

Important	 Note:	 PHP	 allows	 you	 to	 set	 an	 argument	 or	 a	 group	 of	 arguments	 to	 your
constructors.	 While	 using	 this	 feature,	 you	 have	 to	 write	 the	 parameters	 inside	 the
parentheses.

The	Destructor	Functions

A	destructor	 function	 is	 the	opposite	of	a	constructor.	Programmers	call	 it	 to	destroy	an
object	 (e.g.	 when	 references	 to	 an	 object	 no	 longer	 exist).	 However,	 since	 the	 PHP
language	 frees	 all	 of	 the	 system	 resources	 upon	 ending	 each	 request,	 the	 usefulness	 of
destructor	functions	is	severely	limited.	You	may	utilize	them	to	flush	resources	or	to	log
data	while	destroying	an	object.

	

You	can	only	invoke	a	destructor	during	the	following	situations:

1.	 You	 are	 executing	 your	 script	 and	 you	have	 destroyed	 all	 of	 the	 references	 to	 an
object

2.	 When	 the	 application	 has	 reached	 the	 end	 of	 your	 script	 and	PHP	 terminates	 the
request

	

The	second	scenario	 is	complex	since	you	will	 rely	on	objects	 that	may	no	longer	exist.
That	means	you	need	to	be	careful	when	facing	that	kind	of	situation.

	

Defining	 destructor	 functions	 is	 as	 easy	 as	 typing	 “_destruct()”	 inside	 your	 PHP	 class.
Here’s	an	example:

	

class	YourClass	{

		function	_destruct()

		{

print	“		This	code	destroys	a	\”YourClass\”	object”;

		}

}

	

$sample_object	=	new	YourClass();

$sample_object	=	NULL;

	

If	you	will	run	this	script,	your	screen	will	show	you	the	following	message:

	

“This	code	destroys	a	YourClass	object”

	

Here,	 once	 the	 program	 reaches	 $sample_object	 =	 NULL;,	 the	 only	 reference	 to	 that

object	disappears.		This	triggers	the	destructor	method,	which	eliminates	the	object	itself.
It	is	important	to	note	that	the	destructor	will	still	run	even	if	the	final	line	doesn’t	exist.
However,	that	will	happen	at	the	termination	of	the	request.

	

Important	Note:	PHP	doesn’t	guarantee	an	exact	time	for	calling	the	destructor	method.	In
some	 cases,	 the	 destructor	 might	 execute	 several	 statements	 after	 releasing	 the	 final
reference	to	an	object.	Keep	this	fact	in	mind	while	writing	your	PHP	scripts.

How	to	Use	“$this”

While	 executing	 a	 method	 of	 an	 object,	 PHP	 will	 define	 a	 variable	 named	 “$this”
automatically.	This	variable	is	a	reference	that	points	to	the	programming	object	involved.
You	can	reference	the	properties	and	methods	of	an	object	further	using	“→”	and	“$this.”
For	instance,	you	can	use	$this→type	to	access	the	$type	property	of	your	object.	As	you
can	see,	you	don’t	need	to	type	the	dollar	sign	before	the	property’s	name.	This	is	also	the
technique	that	you	should	use	to	access	a	method.	For	example,	to	get	a	vehicle’s	method,
you	may	type:	$this→getType().

	

The	Private,	Protected,	and	Public	Properties

	

Access	protection	and	encapsulation	of	properties	play	an	important	role	in	object-oriented
programming.	The	most	popular	object-oriented	languages	offer	three	keywords	for	access
restriction:	private,	protected,	and	public.

	

While	defining	members	in	the	class’s	definition,	you	should	indicate	the	access	modifier
that	you	want	 to	use	before	specifying	the	members	 themselves.	The	code	snippet	given
below	will	show	you	how	to	use	these	access	modifiers:

	

class	YourClass	{

		private	$privateSample	=	“private	sample”;

		private	$protectedSample	=	“protected	sample”;

		public	$publicSample	=	“public	sample”;

	

		function	yourMethod()	{

	

//	This	is	an	example.

		}

}

	

$newObject	=	new	YourClass();

	

Let’s	discuss	each	modifier	in	detail:

	

private	–	To	access	an	object’s	private	members,	you	need	to	be	inside	one	of	 the
methods	 of	 that	 object.	 You	 can’t	 access	 these	 members	 while	 you	 are	 inside	 a
method	 of	 derived	 objects.	 Since	 you	 can’t	 “see”	 private	 properties	while	 you’re
inside	 an	 inheriting	 class,	 two	 different	 classes	 can	 declare	 identical	 private
properties.

protected	 –	A	 protected	member	 is	 similar	 to	 a	 private	 one	 in	 that	 you	 can	 only
access	 it	 from	 inside	 the	method	of	 an	object.	The	only	difference	between	 these
members	is	that	a	protected	member	is	visible	from	an	inheriting	class.	In	this	kind
of	situation,	you	need	to	use	the	$this	variable	to	access	the	protected	members.

public	–	You	can	access	a	public	member	both	from	inside	the	object	(i.e.	using	the
$this	variable)	and	outside	the	object	(i.e.	 through	$object→Member).	These	rules
will	 apply	 if	 	 a	 different	 class	 inherits	 public	members.	Here,	 you	 can	 access	 the
members	both	from	inside	the	class’s	methods	and	outside	its	objects.

	

Programmers	 use	 the	 “public”	 modifier	 for	 member	 variables	 that	 they	 need	 to	 access
from	outside	the	methods	of	an	object.	These														people	use	“private”	for	variables
that	must	be	kept	 inside	 the	 logic	of	an	object.	Lastly,	 they	use	 the	“protected”	modifier
for	variables	that	are	placed	inside	an	object,	but	will	be	passed	on	to	inheriting	classes.
The	following	example	will	illustrate	these	ideas:

	

class	YourDatabaseConnection	{

		public	$searchResult;

		protected	$databaseHostname	=	“127.0.0.1”;

		private	$connectionID;

	

		//	This	is	an	example.

}

	

class	MyDatabaseConnection	extends	YourDatabaseConnection	{

		protected	$databaseHostname	=	“192.168.1.1”;

	

This	 example,	 although	 incomplete,	 shows	 the	 proper	 usage	 of	 each	 access	 modifier.
Basically,	the	class	involved	handles	database	connections	(e.g.	database	queries):

	

The	system	stores	the	connection	ID	inside	a	“private”	data	member.	That’s	because
only	the	internal	logic	of	the	class	needs	access	to	this	information.

Here,	 the	 user	 of	 the	 YourDatabaseConnection	 class	 cannot	 see	 the	 database’s

hostname.	 The	 programmer	 may	 override	 this	 by	 inheriting	 the	 data	 from	 the
original	class	and	altering	the	assigned	value.

The	user	needs	to	access	the	result	of	his/her	search.	Thus,	$searchResult	must	be	a
“public”	variable.

The	Private,	Protected,	and	Public	Methods

	

You	can	use	access	modifiers	on	the	methods	of	an	object.	Here	are	the	rules	that	you	need
to	remember:

	

private	–	You	can	call	a	private	method	inside	any	of	the	class’s	methods.	Invoking
this	kind	of	method	is	impossible	if	you’re	dealing	with	inheriting	classes.

protected	–	Calling	a	“protected	method”	can	be	done	inside	a	method	of	the	class.

public	-	You	can	call	a	“public	method”	anywhere	you	want.

	

Important	Note:	If	you	won’t	specify	an	access	modifier,	PHP	will	tag	your	methods	and
properties	as	“public.”	Because	of	this,	most	of	the	examples	you’ll	see	in	later	chapters
won’t	have	any	access	modifier.

	

The	Static	Properties

	

In	PHP,	you	can	use	classes	to	declare	properties.	All	of	the	instances	of	a	class	have	their
own	copy	of	the	class’s	properties.	However,	you	can	also	assign	static	properties	to	your
classes.	 Unlike	 a	 typical	 property,	 a	 static	 property	 is	 only	 available	 for	 the	 class	 that
contains	it.	Because	of	this,	programmers	refer	to	a	static	property	as	a	“class	property.”
To	define	a	static	property,	use	the	following	syntax:

	

class	YourClass	{

		static	$sampleStaticVariable;

		static	$sampleInitializedStaticVariable	=	1;

}

	

When	 accessing	 a	 static	 property,	 you	 should	 indicate	 its	 name	 as	 well	 as	 the	 class	 it
belongs	to.	Here’s	the	syntax:

	

YourClass:	:$sampleInitializedStaticVariable++;

print	MyClass:	:$sampleInitializedStaticVariable;

	

Your	screen	will	display	“2”	if	you	will	run	the	script	given	above.

	

If	you	want	to	access	a	member	located	inside	a	method	of	the	class,	you	may	specify	the
property	using	the	“self”	prefix.	This	prefix	tells	PHP	that	you	are	referring	to	the	method
the	property	belongs	to.	Check	the	following	syntax:

	

class	YourClass	{

		static	$sampleInitializedStaticVariable	=	1;

	

		function	yourMethod()

		{

print	self:	:$sampleInitializedStaticVariable;

		}

}

	

$object	=	new	yourClass();

$object→	yourMethod();

	

This	example	will	print	“1”	on	your	screen.

The	Static	Methods

	

PHP	allows	you	to	declare	a	method	as	static.	Basically,	a	static	method	is	only	available
for	the	class	that	contains	it.	You	can’t	use	the	$this	variable	while	dealing	with	this	kind
of	method.	Rather,	you	should	use	the	“self”	keyword.	Since	a	static	method	isn’t	linked	to
any	object,	 you	may	 call	 it	without	 generating	 an	 instance	 through	 the	 “name_of_class:
:method()”	 syntax.	 You	 can	 also	 call	 it	 within	 an	 object’s	 instance	 though
“$this→method().	Analyze	the	following	example:

	

class	Printer	{

		static	function	printMessage()

		{

print	“Hi,	how	are	you?”;

self:	:printTabHere();

		}

	

		static	function	printTabHere();

		{

print	“\t”;

		}

}

	

Printer:	:printMessage();

	

This	example	will	print	“Hi,	how	are	you?”	and	a	tab	character	on	your	screen.	Although
this	example	is	a	basic	one,	it	shows	that	you	can	call	a	method	(i.e.	printMessage())	inside
the	 class	 even	 if	 there’s	 no	 instance	 with	 the	 class’s	 name.	 Additionally,	 this	 example
shows	how	you	can	use	a	static	method	to	trigger	another	method.

The	Class	Constants

PHP	users	have	used	global	constants	for	a	long	time	now.	You	can														define	a	global
constant	using	“define()”,	which	you’ve	studied	back	in	the	first	chapter	of	this	book.	The
current	 version	of	PHP	 supports	 enhanced	 encapsulation	 and	 the	 definition	of	 constants
within	classes.	Just	like	a	static	member,	a	class	constant	belongs	to	the	class	itself.	This
kind	of	constant	is	100%	case-sensitive.

	

The	script	given	below	will	show	you	how	to	declare	and	access	a	class	constant:

	

class	ColorEnumeration	{

		const	YELLOW	=	“Yellow”;

		const	ORANGE	=	“Orange”;

		const	PINK	=	“Pink”;

	

		function	showPink()

	

		{

print	self:	:PINK;

	

		}

}

	

print	ColorEnumeration:	:YELLOW;

$object	=	new	ColorEnumeration();

$object→showPink();

	

This	example	demonstrates	the	technique	of	accessing	a	class	constant	both	from	within	a
method	(i.e.	using	“self”)	and	through	the	class’s	name	(i.e.	ColorEnumeration).

	

Keep	 in	 mind	 that	 you	 can’t	 change	 or	 remove	 a	 constant	 once	 you	 have	 defined	 it.
Programmers	 use	 constants	 while	 working	 on	 enumerations	 or	 configuration	 values.	 In
these	situations,	storing	data	permanently	is	a	must.

	

Cloning	an	Object

While	generating	a	new	object,	 the	 resulting	value	serves	as	 the	handle	or	 identification
number	of	an	object.	The	following	code	will	illustrate	this	idea:

	

		class	YourClass	{

public	$sample_variable	=	2;

}

	

$object_1	=	new	YourClass();

$object_2	=	$object_1;

$object_2→sample_variable	=	3;

print	$object_1→sample_variable;

	

Because	$object_1	is	a	handle	of	an	object,	$object_2	will	become	another	handle.	Thus,
if	you	will	change	the	latter,	you	will	change	the	object	these	variables	are	pointing	to.	If
you	will	run	the	script	given	above,	your	screen	will	show	you	“3.”

	

In	some	cases,	you	 really	need	 to	copy	an	object.	How	do	you	accomplish	 this	 task?	 In
PHP,	you	need	to	use	 the	“clone”	construct.	This	pre-installed	opemethodrator	generates
an	instance	of	an	object	automatically.	The	new	instance	will	have	all	of	the	properties	of
the	original	object.	Additionally,	you	may	use	the	_clone()	method	to	perform	changes	on
the	new	object.

	

Important	Note:	Copying	a	 reference	results	 to	another	 reference.	You	won’t	get	an	“in-
depth”	copy	from	that	approach.	That	means	if	you	will	copy	a	reference	that	points	to	a
different	variable,	the	resulting	object	will	also	point	to	that	variable.

Polymorphism

According	 to	 some	 people,	 polymorphism	 is	 one	 of	 the	most	 crucial	 aspects	 of	 object-
oriented	programming.	Describing	real-life	situations	has	become	simple	because	you	can
use	 inheritance	 and	 classes	 in	 your	 codes.	 PHP	 codes	 are	 not	 just	 simple	 collections	 of
data	and	functions.	Polymorphism	can	do	a	lot	of	things	for	you.	For	example,	it	can	help
you	complete	projects	by	reusing	codes	or	write	powerful	programs	with	minimal	control
statements.	Analyze	the	following	example:

	

class	Dog	{

		function	arf()

		{

print	“arf”;

		}

}

	

class	Bird	{

		function	tweet()

		{

print	“tweet”;

		}

}

	

function	giveTheSound($object)

{

		if	($object	instanceof	Dog)	{

$object→arf();

		else	if	($object	instanceof	Bird)	{

$object→tweet();

		}	else	{

print	“The	object	is	invalid”;

		}

		print	“\n’;

}

	

giveTheSound	(new	Dog	());

giveTheSound	(new	Bird());

	

If	you	will	run	this	script,	you	will	see	the	following	message	on	your	screen:

	

arf

tweet

	

Let’s	 assume	 that	 you	 need	 to	 extend	 the	 previous	 example	 by	 adding	 more	 animals.
You’ll	med	 to	 create	 an	 “else	 if”	 block	 for	 each	 new	 animal.	 Thus,	 you’ll	make	 a	 new
instance	of	those	animals	and	write	more	statements	to	invoke	their	sounds.

	

Polymorphism	can	simplify	the	task	given	above.	Basically,	this	feature	allows	you	to	pass
the	contents	of	a	class	to	other	classes.	Here,	you	can	pass	the	properties	and	methods	of	a
class	to	the	new	classes	you	want	to	create.

	

At	 this	point,	you	need	 to	create	a	class,	name	 it	 “Animals”,	 and	establish	 relationships
between	 this	 parent	 class	 and	 its	 specific	 objects.	 You	 can	 perform	 this	 inheritance	 by
typing	“extends”	(i.e.	another	PHP	keyword).	Here’s	the	syntax:

	

class	ChildClass	extends	ParentClass	{

		…

}

	

Let’s	use	“inheritance”	to	rewrite	the	code	given	earlier:

	

class	Animals	{

		function	giveSound()

		{

		print	“The	program	must	re-implement	this	method	in		the	inheriting	classes.”;

		}

}

	

class	Dog	extends	Animals	{

		function	giveSound()

		{

print	“arf”;

		}

}

	

class	Bird	extends	Animals	{

		function	giveSound()

		{

print	“tweet”;

		}

}

	

function	rightSound($object)

{

		if	($object	instanceof	Animals)	{

$object→giveSound();

		}	else	{

print	“The	object	is	invalid”;

		}

		print	“\n”

	

rightSound	(new	Dog	());

rightSound	(new	Bird	());

	

You’ll	get	the	following	output:

	

arf

tweet

	

With	 this	 approach,	 you	 don’t	 have	 to	 alter	 “rightSound()”	 regardless	 of	 the	 number	 of
animals	 you	want	 to	 add	 to	 the	 code.	 That’s	 because	 “instanceof	 Animals”	 covers	 any

animal	that	you	might	add.

Chapter	5:	How	to	Handle	Exceptions
	

Programmers	 consider	 exception	 handling	 as	 the	 most	 difficult	 part	 of	 software
development.	In	general,	errors	(e.g.	network	failure,	database	failure,	program	bug,	etc.)
pose	 serious	 problems	 to	 program	 developers.	 For	 instance,	 developers	 need	 to	 make
decisions	 regarding	 the	errors	 that	occurred,	 insert	checks	 to	prevent	 failure,	and	 invoke
the	 right	 function	 to	manage	 it.	Additionally,	 programmers	need	 to	make	 sure	 that	 their
program	will	work	as	normal	after	handling	the	error.

	

Currently,	most	 computer	 languages	 offer	 their	 own	 version	 of	 “try/catch/throw”	 (i.e.	 a
popular	paradigm	for	handling	exceptions).	The	construct	named	“try/catch”	protects	the
code	 it	belongs	 to	and	 informs	the	computer	 language	about	 its	security	 tasks.	Here,	 the
program	 will	 “throw”	 errors	 and	 exceptions	 as	 soon	 as	 they	 are	 detected.	 Then,	 the
language	 (e.g.	PHP)	will	 scan	 its	 execution	 stack	 to	know	whether	 there’s	 a	 “try/catch”
construct	that	can	handle	the	problem.

	

This	 method	 offers	 a	 lot	 of	 advantages.	 For	 example,	 it	 allows	 you	 to	 write	 robust
programs	without	having	to	write	“if”	statements	in	each	of	your	code	blocks.	That	means
you	can	minimize	the	codes	that	you	need	to	write.	With	the	“try/catch/throw”	paradigm,
you	can	just	enclose	code	blocks	with	“try/catch”	constructs	and	manage	errors	once	they
occur.	Moreover,	upon	detecting	an	exception	via	the	“throw”	construct,	you	may	go	back
to	a	part	of	the	code	that	can	handle	and	continue	the	program’s	execution.

	

The	“try/catch”	construct	requires	the	following	syntax:

	

try	{

		…	//	The	code	block	which	might	encounter	exceptions.

}	catch	(ExceptionClass1	$sample_exception)	{

		…	//	The	code	you	want	to	use	to	handle	the	exception/s.

}	catch	(ExceptionClass2	$sample_exception)	{

}

	

You	need	to	place	your	PHP	codes	inside	“try{}.”	As	you	can	see,	this	construct	precedes
a	collection	of	“catch”	clauses,	each	defining	what	exception	it	will	handle	and	what	name
should	be	used	for	identifying	the	errors.

	

When	the	program	throws	an	exception,	the	initial	catch()	statement	will	run	and	PHP	will
compare	the	“instanceof”	of	the	code	and	the	specified	class.	If	this	comparison	results	to
true,	PHP	will	 enter	 the	“catch”	code	block	and	make	 the	exception	available	under	 the
specified	variable	 identifier.	 If	 the	comparison	 results	 to	 false,	however,	PHP	will	check
the	 succeeding	 catch	 statement.	 The	 language’s	 engine	will	 check	 for	 other	 “try/catch”
blocks	if	there’s	no	relevant	catch	statement	in	the	current	construct.

	

Here’s	the	syntax	of	a	“throw”	statement:

	

throw	<name_of_object>;

	

This	language	doesn’t	allow	you	to	throw	basic	data	types	(e.g.	integers).	Actually,	PHP
offers	a	built-in	class	for	exceptions	which	is	named	“Exception.”	All	of	your	exception
classes	should	inherit	from	this	pre-defined	class.	If	you	will	try	to	throw	objects	that	are
not	linked	to	the	“Exception”	class,	your	program	will	get	runtime	errors.

	

The	code	snippet	given	below	will	give	you	more	information	about	the	Exception	class:

	

class	Exception	{

		function	construct	([$theMessage	[,theCode]]);

	

		final	public	getInfo();

		final	public	getCodes();

		final	public	getFiles();

		final	public	getLines();

		final	public	getTraces();

		final	public	getTracesAsStrings();

	

		protected	$messages;

		protected	$codes;

		protected	$files;

		protected	$lines;

}

	

The	following	code	shows	you	how	to	write	a	complete	“try/catch/throw”	block:

	

class	NullHandle	extends	Exception	{

		function	_construct	($sample_message)

		{

parent:	:	construct	($sample_message);

		}

}

	

function	printObjects	($object)

{

		if	($object	==	NULL)	{

throw	new	NullHandle	(“The	program	received	a	NULL	object.”);

		}

		print	$object	.	“\n”;

}

	

class	YourName	{

		function	_construct	($sampleName)

		{

$this→sampleName	=	$sampleName;

		}

	

		function	_toThisString()

		{

return	$this→sampleName;

		}

	

		private	$sampleName;

}

	

try	{

		printTheObject	(new	YourName	(“John”));

		printTheObject	(NULL);

		printTheObject	(new	YourName	(“Mary”));

}	catch	(NullHandle	$sample_exception)	{

	

		print	$sample_exception->getMessages();

		print	“	in	the	file	”	.	$sample_exception->getFiles();

		print	“	on	the	line	”	.	$sample_exception→getLines()	.	“\t”;

}	catch	(Exception	$sample_exception)	{

		//	The	program	won’t	reach	this	part.

}

	

Important	Note:	Follow	these	rules	while	using	exceptions:

	

1.	 Keep	in	mind	that	an	exception	is	an	exception.	You	must	only	utilize	it	to	manage
problems.

2.	 Don’t	use	an	exception	to	control	the	flow	of	your	program.	Doing	so	makes	source
codes	overly	complex.

3.	 The	data	 inside	an	exception	should	be	 limited	 to	 things	 related	 to	 the	error.	This
must	not	involve	any	parameter	(or	extra	information).

	

Chapter	6:	The	Advanced	Concepts	of	Object-Oriented
Programming
	

This	 chapter	 will	 teach	 you	 the	 advanced	 concepts	 and	 capabilities	 of	 object-oriented
programming.	Read	this	material	carefully	if	you	want	to	learn	PHP	in	just	24	hours.

	

The	Overloading	Capabilities	of	OOP

In	the	PHP	language,	C-based	programming	extensions	can	overload	the	entire	syntax	of
object	definitions.	PHP	codes,	on	the	other	hand,	can	only	overload	certain	subsets	of	the
object	syntax.	In	this	part	of	the	book,	you	will	learn	about	the	overloading	features	that
you	can	use	with	PHP:

	

How	to	Overload	Methods	and	Properties

	

This	language	allows	you	to	overload	method	calls	and	property	access.	You	can	achieve
these	things	through	special	methods	that	will	run	if	the	related	method	or	property	doesn’t
exist.	 That	 means	 you	 have	 lots	 of	 flexibility	 in	 terms	 of	 declaring	 your	 own
functionalities	and	stopping	these	actions.

	

Here	are	the	method	prototypes	that	you	can	implement	in	PHP:

	

function	_get	($propertyName)

function	_set	($propertyName,	$sampleValue)

function	_call	($sampleMethod,	$arguments)

	

Let’s	discuss	each	prototype	in	detail:

	

“_get”	 -	 This	method	 takes	 the	 name	 of	 a	 property.	 Use	 this	 prototype	 to	 return
values.

“_set”	-	You	can	pass	the	value	and	name	of	a	property	to	this	method	prototype.

“_call”	 -	With	 this	prototype,	you	can	pass	 the	name	of	a	method	and	an	 indexed
array.

	

The	code	given	below	will	show	you	how	to	use	the	_get	and	_set	functions:

	

class	CoordinateClass	{

		private	$array	=	array	(‘a’	=>	NULL,	‘b’	=>	NULL);

	

		function	_get	($sampleProperty)

		{

if	(array_key_exists	($sampleProperty,	$this→array))	{

return	$this→array	[$sampleProperty];

		}	else	{

print	“The	system	can’t	read	properties	aside	from	a	and	b\n”;

		}

}

	

function	_set	($sampleProperty,	$sampleValue)

{

		if	(array_key_exists	($property,	$this→array))	{

$this→array[$sampleProperty]	=	$sampleValue;

}	else	{

print	“The	system	can’t	write	properties	aside	from	a	and	b\n”;

}

		}

}

	

$object→a	=	10;

print	$object→a;

	

print	“\n”;

	

$object→e	=	20;

print	$object→e;

	

If	you	will	run	this	script,	you	will	get	the	following	output:

	

10

The	system	can’t	read	properties	aside	from	a	and	b

The	system	can’t	write	properties	aside	from	a	and	b

	

Since	 “a”	 exists	 inside	 the	 array	 of	 the	 object,	 the	 get	 and	 set	 method	 handlers	 can
read/write	 the	 right	values.	However,	while	accessing	“e”,	both	 for	writing	and	 reading,
array_key_exists()	will	 give	your	 false.	Thus,	 the	program	will	 reach	 the	 assigned	error

messages.

	

You	can	use	the	_call()	prototype	for	a	wide	range	of	purposes.	In	the	following	example,
you	will	know	how	to	generate	a	delegation	scheme:

	

class	HiClass	{

		function	show($sampleCount)

		{

for	($a	=	0;	$a	<	$sampleCount;	$a++)	{

print	“Hi,	how	are	you?\n”;

}

return	$sampleCount;

		}

}

	

class	HiDelegator	{

		function	_construct()

		{

$this→object	=	new	HiClass();

		}

	

		function	_call	($sampleMethod,	$sampleArguments)													

		{

return	call_user_func_array(array	($this→object	,	$sampleMethod)	,

$sampleArguments;

		}

	

		private	$sampleObject;

}

	

$sampleObject	=	new	HiDelegator();

print	$sampleObject→show(5);

	

If	you	will	run	this	script,	your	screen	will	show	you:

	

Hi,	how	are	you?

Hi,	how	are	you?

Hi,	how	are	you?

Hi,	how	are	you?

Hi,	how	are	you?

5

	

The	 function	 named	 “call_user_func_array()”	 allows	 the	 “_call()”	 prototype	 to	 pass	 the
call	and	arguments	to	HiClass:	:show().	Aside	from	relaying	a	call	to	another	object,	you
may	also	return	values	from	the	_call()	method	prototype.

	

How	to	Overload	the	Syntax	of	Array	Access

	

Often,	programmers	have	value	or	key	mappings	(also	known	as	“lookup	dictionaries”)	in
their	program	framework.	This	is	the	reason	why	PHP	offers	associative	arrays.	Basically,
associative	 arrays	map	 string	 and	 integer	values	 to	other	PHP-supported	values.	You’ve
learned	about	it	 in	a	previous	chapter.	To	help	you	remember	this	concept,	here’s	a	code
snippet	that	uses	an	array	to	search	for	a	user’s	SSN:

	

print	“Mike’s	SSN	is	“	.	$sampleMap	[“Mike”];

	

Associative	arrays	become	extremely	useful	if	the	user	has	all	of	the	information	needed.
However,	if	you	are	dealing	with	millions	of	database	entries,	loading	the	whole	database
to	the	$sampleMap	associative	array	to	search	for	a	single	user	is	impractical.	Here,	you
should	 create	 a	 new	 method	 that	 can	 search	 for	 the	 person’s	 SSN	 through	 a	 database
invocation.	You	can	use	this	approach	to	rewrite	the	code	snippet	given	above.	The	new
code	will	look	like	this:

	

print	“Mike’s	SSN	is	“	.	$database→LocateSSN	(“Mike”);

	

This	 approach	works	 perfectly.	However,	many	 programmers	 opt	 to	 use	 the	 associative
syntax	when	accessing	value/key	dictionaries.	Because	of	this,	PHP	allow	you	to	overload
objects	so	they	behave	like	typical	arrays.	You	can	use	the	syntax	of	associative	arrays,	but
actually,	 PHP	 will	 call	 a	 method	 you	 wrote,	 which	 will	 run	 the	 appropriate	 database
invocation	and	retrieve	the	needed	data.

	

The	method	you	want	 to	use	 for	 accessing	value/key	dictionaries	 is	 up	 to	you.	 In	 some
cases,	 it	 is	 better	 to	 utilize	 the	 overloading	 capability	 of	 PHP	 than	 to	 invoke	 methods
through	verbose	codes.	In	the	end,	the	method	that	you	should	use	depends	on	your	needs
and	preferences.

The	Iterators

You	can	use	the	foreach()	loop	to	iterate	an	object’s	properties.	Here’s	an	example:

	

class	YourClass	{

		public	$personName	=	“Mike”;

		public	$personSex	=	“male”;

}

	

$object	=	new	YourClass();

	

foreach	($object	as	$sampleKey	=>	$sampleValue)	{

	

		print	“object	[$sampleKey]	=	$sampleValue\n”;

}

	

This	script	prints	the	following	message:

	

object	[sampleName]	=	Mike

object	[sampleSex]	=	male

	

While	 writing	 object-oriented	 scripts,	 however,	 your	 class	 might	 not	 represent	 a	 basic
array	 like	 the	 one	 given	 above.	Your	 code	might	 contain	 complex	 information,	 such	 as
configuration	files	or	database	queries.

	

The	PHP	 language	 lets	you	overload	 the	 foreach()	 iteration’s	behavior	 inside	your	code.
That	means	you	can	use	foreach()	statements	according	to	the	needs	of	your	program.

	

The	Design	Patterns

You’ll	 encounter	 certain	 problems	while	 designing	 your	 programs.	 Expert	 programmers
have	addressed	and	solved	some	of	these	problems,	known	as	“design	patterns.”	Basically,
design	patterns	provide	programmers	with	a	common	approach	to	program	design.	You’ve
probably	heard	application	developers	say,	“This	project	 requires	 the	singleton	scheme.”
In	this	part	of	the	book,	you’ll	learn	about	the	most	important	design	patterns.	Read	this
material	carefully	–	it	will	help	you	learn	PHP	in	just	24	hours.

	

The	Strategy	Pattern

	

Programmers	use	this	pattern	when	they	need	an	algorithm	that	can	be	interchanged	with
different	 variants.	 For	 instance,	 if	 your	 code	 generates	 an	 image,	 you	 might	 want	 to
generate	GIF	files	now	and	JPEG	ones	later.

	

Often,	programmers	implement	this	pattern	by	declaring	a	base	class	using	an	algorithm-
based	 method.	 The	 program	 will	 implement	 this	 method	 by	 inheriting	 one	 or	 more
concrete	classes.	Somewhere	inside	the	code,	the	programmer	will	decide	which	concrete
strategy	must	be	used.	PHP	will	substantiate	that	strategy	and	use	it	wherever	appropriate.

	

The	example	given	below	shows	how	download	servers	can	choose	a	file	selection	scheme
based	on	the	web	browser	that	accesses	them.	While	generating	the	HTML	containing	the
download	 buttons,	 it	 will	 generate	 links	 to	 .zip	 or	 .tar.gz	 files	 based	 on	 the	 OS	 (i.e.
operating	system)	 identification	of	 the	web	browser.	To	keep	 things	simple,	assume	 that
when	 “Win32”	 exists	 in	 $_server[“HTTPS_USER_AGENT”],	 you	 are	 working	 with	 a
Windows	computer	and	need	to	generate	.zip	download	links;	otherwise,	you’re	working
with	a	computer	system	that	needs	.tar.gz	links.

	

This	 example	 involves	 two	 different	 strategies:	 .zip	 and	 .tar.gz.	 Analyze	 the	 following
code:	it	will	show	you	how	to	write	effective	strategy	patterns:

	

abstract	class	FileSelectionStrategy	{

		abstract	function	generateLink	($nameOfFile);

}

	

class	ZipStrategy	extends	FileSelectionStrategy	{

		function	generateLink	($nameOfFile)

		{

return	“https://downloads.samplesite.com/$nameOfFile.zip”;

		}

}

	

class	TarGzStrategy	extends	FileSelectionStrategy	{

		function	generateLink	($nameOfFile)

		{

return	“https://downloads.samplesite.com/$nameOfFile.tar.gz”;

		}

}

	

if	(strstr($_SERVER	[“HTTPS_USER_AGENT”],	“Win32”))	{

		$selectionObject	=	new	ZipStrategy();

}	else	{

		$selectionObject	=	new	TarGzStrategy();

}

	

$mark_filename	=	$selectionObject→generateLink	(“Marketing101”);

$sales_filename	=	$selectionObject→generateLink	(“Sales101”);

	

print	<<<EOF

<h1>These	free	eBooks	will	help	you	become	a	better	entrepreneur</h1>

An	eBook	that	focuses	on	marketing

An	excellent	resource	for	sales-related	concerns

EOF;

	

If	you	will	access	this	script	using	a	Windows	machine,	you’ll	get	the	following	output:

	

<h1>These	free	eBooks	will	help	you	become	a	better	entrepreneur</h1>

https://downloads.samplesite.com/$nameOfFile.zip
https://downloads.samplesite.com/$nameOfFile.tar.gz

An	eBook	that	focuses	on
marketing<a>

An	excellent	resource	for	sales-
related	concerns

	

https://downloads.samplesite.com/Marketing101.zip
https://downloads.samplesite.com/Sales101.zip

6.3.2	The	Singleton	Pattern

	

This	is	one	of	the	most	popular	patterns	in	software	design.	Programmers	often	encounter
situations	 where	 they	 have	 objects	 that	 handle	 certain	 centralized	 operations	 in	 the
program	 (e.g.	 logger	 objects).	 In	 these	 situations,	 programmers	 prefer	 to	 keep	 things
simple	by	creating	a	program-wide	instance	that	can	be	accessed	by	any	part	of	the	source
code.	Particularly,	when	dealing	with	logger	objects,	you	need	each	part	of	the	application
to	access	that	instance,	and	allow	the	logging	mechanism/s	manage	log	messages	based	on
log	level	configuration.	The	singleton	design	pattern	is	your	best	bet	when	facing	this	kind
of	situation.

	

You	 can	 convert	 your	 classes	 into	 singleton	 classes	 by	 implementing	 “getInstance()”.
Basically,	“getInstance()”	is	a	static	method	that	returns	the	lone	instance	of	a	class.	If	you
will	invoke	this	method	for	the	first	time,	it	will	generate	an	instance,	save	that	in	a	static
variable,	and	return	 that	 instance	 to	you.	Subsequent	calls	 to	 the	“getInstance()”	method
returns	the	handle	of	the	instance	created	before.	Analyze	the	following	example:

	

class	SampleLogger	{

		static	function	getInstance()

		{

if	(self:	:$sampleInstance	==	NULL)	{

self:	:$sampleInstance	=	new	SampleLogger();

}

return	self:	:$sampleInstance;

		}

	

		private	function	_construct	()

		{

		}

	

		private	function	_clone	()

		{

	

		}

	

		function	Log	($sampleString)

		{

//	This	code	takes	care	of	log-related	processes.

		}

	

		static	private	$sampleInstance	=	NULL;

}

	

sampleLogger:	:getInstance	()	→Log	(“Check”);

	

The	important	part	of	this	code	is	“sampleLogger:	:getInstance	()”.	This	part	allows	you	to
access	the	“logger”	from	any	part	of	your	code.

	

For	 this	 application,”clone”	 and	 “constructor”	 are	 tagged	 as	 private	 methods.	 This
approach	 makes	 sure	 that	 the	 programmer	 won’t	 create	 another	 instance	 of	 the
sampleLogger	 class	mistakenly.	 Simply	 put,	 “getInstance()”	 serves	 as	 the	 only	way	 for
you	to	access	an	instance	of	the	class.

The	Factory	Pattern

	

In	object-oriented	programming,	polymorphism	and	base	class	utilization	play	 important
roles.	Base	classes	contain	subclasses,	which	sometimes	require	 the	creation	of	concrete
instances.	In	PHP,	programmers	use	a	design	pattern	called	“factory”	to	create	the	needed
subclasses.	 Factory	 classes	 have	 a	method	 that	 takes	 an	 input.	 Depending	 on	 the	 input
provided,	these	classes	will	decide	what	kind	of	instance	to	generate	(often	a	subclass).

	

Let’s	assume	 that	your	website	allows	different	 types	of	users	 to	sign	 in.	Some	of	 these
people	 are	 visitors,	 some	 are	 customers,	 and	 some	 are	 administrators.	 In	 this	 situation,
most	programmers	will	create	a	base	class	and	three	subclasses.	You	may	name	the	base
class	 as	 “Users.”	 Then,	 you	 may	 name	 the	 subclasses	 as	 “Visitors,”	 “Customers”	 and
“Admins.”	The	base	class	and	all	of	 its	 subclasses	will	contain	methods	 that	can	collect
data	 regarding	 the	 user	 (e.g.	 the	 user’s	 personal	 preferences	 and	 the	 online	 resources
he/she	can	access).

	

You	can	create	a	robust	website	by	using	the	“Users”	base	class	whenever	you	can.	This
way,	you	can	generalize	your	source	code	and	simplify	the	addition	of	new	user	types.

The	Observer	Pattern

	

Programs	created	using	PHP	manipulate	 information.	 In	most	 cases,	modifications	done
on	a	piece	of	 information	 influence	different	sections	of	 the	program’s	source	code.	For
instance,	if	a	customer	from	Asia	visits	the	U.S.	section	of	eBay,	exchange	rates	will	affect
the	prices	that	he/she	will	see	on	his	screen.

	

Let’s	assume	that	each	programming	object	represents	one	eBay	product.	The	objects	used
in	 the	code	come	straight	 from	eBay’s	database.	The	exchange	 rates,	on	 the	other	hand,
will	 likely	 come	 from	 an	 external	 data	 source	 and	 are	 not	 saved	 in	 the	 database.	 Each
object	 contains	 “display()”,	 a	 method	 that	 returns	 the	 HTML	 content	 related	 to	 the
product.

	

The	 “observer”	 design	 pattern	 allows	 objects	 to	 sign	 up	 for	 specific	 information	 and/or
events.	 When	 the	 information	 gets	 changed	 or	 an	 event	 happens,	 PHP	 will	 notify	 the
registered	objects.	With	 this	approach,	you	can	 tag	a	product	 item	as	an	observer	of	 the
exchange	rate.	Additionally,	you	may	update	the	registered	programming	objects	about	the
exchange	 rates	prior	 to	printing	out	 item	 lists.	That	means	each	object	 can	update	 itself
and	include	the	new	information	in	its	display()	method.

	

Often,	 PHP	 users	 implement	 observer	 patterns	 through	 an	 interface	 known	 as	 the
“observer.”	Classes	that	need	to	act	as	observers	should	implement	this	interface.

	

An	“observable”	object	 often	has	 a	method	named	“register,”	which	 lets	 the	 “observer”
(i.e.	the	interface)	to	sign	up	automatically.

Chapter	7:	Using	PHP	to	Create	an	Application
	

People	use	PHP	to	build	websites.	This	computer	language	allows	programmers	to	make
dynamic	web	applications.	A	dynamic	application	collects	data	from	users	through	HTML
forms.	The	data	obtained	from	users	and	saved	in	the	website	is	confidential,	which	makes
security	a	 serious	concern.	The	PHP	 language	has	 features	 that	 allow	you	 to	obtain	and
store	data	securely.	PHP	has	everything	you	need:	you	 just	need	 to	develop	applications
using	the	features	offered	by	this	language.	In	this	chapter,	you’ll	learn	how	to	use	PHP	in
building	dynamic	web	applications.

	

PHP	and	HTML

You	don’t	have	to	embed	PHP	codes	into	HTML	files.	You	can	always	produce	PHP	files
that	don’t	contain	any	HTML	element.	When	creating	web	applications,	however,	you	will
likely	 combine	 these	 languages	 in	 a	 single	 file.	 Computer	 experts	 say	 that	 PHP	 was
created	for	websites,	to	be	used	as	a	template	for	HTML	documents.	Once	you	add	PHP
into	a	file,	that	file	will	get	“.php”	or	“.php5”as	its	extension.

	

The	code	given	below	shows	how	you	can	combine	PHP	and	HTML:

	

<html>

<head><title>First	Sample</title></head>

<body>

<?php

		//	This	code	has	a	data-based	“if”	statement.

		if	(date(‘md’	==	‘1225’))	{

echo	‘Merry	Christmas	‘

‘and	Happy	New	Year’;

		}	else	{

echo	‘Hi,	how	are	you?’;

		}

?>

</body>

</html>

	

In	this	example,	the	“<?php”	part	signifies	the	start	of	the	embedded	PHP	code.	The	“?>”
part,	on	the	other	hand,	indicates	the	end	of	the	PHP	code.	You	probably	noticed	that	this
example	sends	the	output	through	“echo.”	This	approach	is	acceptable	if	you	are	dealing
with	 simple	 codes	 such	 as	 the	 one	 given	 above.	 However,	 if	 you	 are	 using	 “echo”	 on
strings	that	have	single/double	quotes,	your	code	will	be	extremely	complicated.

	

This	example	will	result	to	an	error	if	the	echoed	text	is	a	link	(e.g.).
That’s	 because	 the	 quotes	 in	 the	 echoed	 text	 will	 be	 in	 conflict	 with	 the	 quotes	 that
encloses	the	string.	In	this	kind	of	situation,	you	may	end	the	PHP	part	before	processing
the	 text’s	output.	Then,	start	 it	again	before	 the	code	 that	 terminates	 the	“if”	statements.
Here’s	an	example:

	

<html>

<head><title>Second	Sample</title></head>

<body>

<?php

		//	This	code	contains	a	date-based	“if”	statement.

		if	(date(‘md’	==	‘1225’))	{

echo	‘Merry	Christmas	and	‘	.

‘Happy	New	Year!’;

		}	else	{

echo	‘Hi,	how	are	you?’;

		}

?>

</body>

</html>

	

This	style	of	writing	codes	is	confusing.	It	violates	an	important	programming	principle:
“Don’t	mix	content	and	logic.”	The	embedding	style	given	below	uses	a	variable	to	store
the	string	and	echoes	that	variable:

	

<?php

		//	This	code	contains	a	date-based	“if”	statement.

		if	(date	(‘md’	==	‘1225’))	{

$message	=	‘Merry	Christmas	and	Happy	New	Year!”;

		}	else	{

$message	=			‘Hi,	how	are	you?’;

		}

?>

<html>

<head><title>Third	Sample</title></head>

<body>

<?php	echo	$message;	?>

</body>

</html>

	

Users’	Input

After	 learning	how	to	 include	PHP	in	an	HTML	file,	you	should	know	how	to	set	user-
specified	 actions.	 For	 example,	 an	 online	 bookstore	 requires	 a	 registration	 and	 login
system.	Obviously,	 users	 need	 to	 perform	 an	 action	 (e.g.	 enter	 login	 credentials)	 to	 get
“inside”	the	online	shop.	This	type	of	system	needs	HTML-based	forms	and	a	storage	to
keep	the	collected	data	in.

	

For	this	example,	you	need	several	things	from	each	user	during	the	registration	process.
These	are:	name,	password	and	email	address.	Analyze	the	following	HTML	code:

	

<html>

<head><title>Sign	up</title></head>

<body>

		<h1>Register	Here</h1>

		<form	method=”get”	action=”signup.php”>

<table>

<tr><td>Email	Address:</td>

<td><input	type=‘text’	name=‘email	address’/>	</td></tr>

<tr><td>Name:</td>

<td><input	type=‘text’	name=‘first_last_name’/></td></tr>

<tr><td>Desired	Password:</td>

<td><input	type=‘password’	name=‘desiredpassword’/></td></tr>

<tr>

<td	colspan	=‘3’>

<input	type=‘submit’	name=‘signup’	value=‘Sign	up’/>

</td>

</tr>

</table>

		</form>

</body>

</html>

	

How	to	Handle	User	Input	Safely

	

Don’t	 trust	anyone,	particularly	 the	people	who	use	your	website.	People	do	unexpected
stuff,	 whether	 by	 accident	 or	 on	 purpose.	 That	 means	 they	 might	 discover	 bugs	 or
vulnerabilities	in	your	website.	This	part	of	the	book	will	discuss	the	problems	that	might
happen	 to	your	 site.	Then,	 it	will	 discuss	 the	 techniques	 that	 you	 can	use	 to	 solve	 such
problems.

	

Common	Errors

	

Programmers	make	mistakes	 sometimes.	 If	 you	will	 subscribe	 to	 security-related	 email
lists,	you	will	discover	new	weaknesses	of	PHP	programs	each	week.	Let’s	discuss	some
of	the	most	popular	errors	related	to	PHP:

	

Global	 Variables	 –	 In	 some	 cases,	 program	 developers	 fail	 to	 initialize	 global
variables	 correctly.	You	 can	 prevent	 this	mistake	 by	 setting	 the	 ‘register_globals’
directive	to	“off.”	However,	this	problem	can	still	occur	so	you	need	to	be	careful.
Users	 whose	 register_globals	 are	 on	 might	 abuse	 your	 website	 application.	 For
example,	customers	might	gain	admin-level	access	to	your	system	just	by	running
arbitrary	codes	on	your	site.

	

Cross-Site	Scripting	–	A	hacker	might	use	“cross-site	 scripting”	 to	 run	client-side
languages	 (e.g.	 JavaScript)	 to	 steal	 cookies	 and	 confidential	 information.	 This
scripting	 technique	 is	 easy	 and	 simple.	 The	 hacker	 just	 needs	 to	 enter	 raw
information	into	the	website’s	HTML.

	

SQL	 Injection	 –	 This	 method	 requires	 the	 hacker	 to	 insert	 malicious	 codes	 into
his/her	database	queries.

	

Securing	Your	Scripts

	

If	 you	want	 to	 secure	 your	PHP	 scripts,	 never	 trust	 your	website	 users.	This	 statement,
although	harsh,	is	the	best	advice	that	you	can	get	regarding	security.	Aside	from	hacking
your	website,	 users	might	 perform	 strange	 things	 accidentally.	As	 the	 programmer,	 you
must	 ensure	 that	 hacking	 attacks	 and	 user	mistakes	won’t	 cause	 significant	 damage	 on
your	web	 application.	The	 following	 list	 shows	 the	 best	 techniques	 that	 you	 can	 use	 in
protecting	your	website:

	

Validate	Inputs	–	You	can	protect	your	website	by	validating	all	of	the	inputs	sent
by	your	users.	That	means	you	will	check	the	data	of	your	users’	“get,”	“post”	and
cookies.

	

The	first	thing	you	need	to	do	is	turn	off	the	“register_globals”	section	of	php.ini.
Then,	 set	 the	 highest	 possible	 value	 on	 the	 part	 named	 “error_level”.	 Basically,
“register_globals”	 stops	 the	 tagging	of	 the	 request	 information	 (e.g.	 session,	post,
get,	 etc.)	 as	 a	 global	 variable	 in	 your	 PHP	 script.	 The	 “error_level”	 part,	 on	 the
other	hand,	will	allow	notifications	for	variables	that	were	not	initialized.

	

The	methods	that	you’ll	use	depend	on	the	types	of	input	you’re	dealing	with.	For
example,	if	the	parameters	contained	in	the	“GET”	method	should	be	integers,	you
may	 force	 these	 parameters	 to	 have	 that	 data	 type.	With	 this	 technique,	 all	 non-
integer	values	will	become	“0.”

	

7.3.2.2	HMAC	Security	–	Hackers	usually	tamper	with	the	variables	within	a	URL
(e.g.	for	page	redirects	or	links	that	forward	parameters	to	the	connected	script).	As
the	programmer,	you	need	 to	prevent	hackers	 from	 implementing	 their	evil	plans.
You	can	use	hashes	to	protect	your	website.	Today,	HMAC	is	the	ideal	solution	for
your	hashing	needs.

	

Programmers	 consider	 HMAC	 as	 an	 excellent	 validation	 algorithm.	 You	 should
choose	this	over	“home-brewed”	algorithms.	With	HMAC,	your	text	will	undergo	a
two-step	encryption	procedure.

	

Sessions

In	PHP,	 sessions	 allow	a	program	 to	 store	data	 for	 the	 active	 “session”	 (i.e.	 one	person
who	uses	the	program).	Each	session	has	an	ID	–	you	can	use	that	piece	of	information	to
identify	 the	 sessions	 in	 your	 PHP	 applications.	 This	 language	 generates	 session	 IDs	 by
collecting	 the	IP	address	of	 the	remote	user,	 the	 time,	and	some	additional	 random	data.
Then,	it	will	encrypt	the	collected	data	using	the	MD5	algorithm.	You	can	pass	this	ID	to	a
cookie	or	add	it	to	the	URLs	that	the	user	will	use	for	site	navigation.

	

To	keep	your	web	application	secure,	you	should	require	users	to	enable	their	cookies	than
pass	 session	 IDs	 using	URLs.	As	 you	 know,	 information	 sent	 through	URLs	might	 get
saved	in	the	server’s	records	or	get	discovered	by	hackers	who	monitor	the	site’s	traffic.

File	Uploads

PHP	has	a	file	upload	functionality	that	you	can	use	to	upload	different	types	of	materials
(e.g.	 images).	Since	 the	web	browser	should	do	more	 things	 than	 just	 transmit	“POSTs”
with	relevant	 information,	you	must	utilize	a	special	 form	for	uploading	files.	Here’s	an
example:

	

This	 code	 has	 an	 attribute	 named	 “enctype.”	The	 “enctype”	 attribute	 informs	 the	 user’s
web	 browser	 to	 transmit	 a	 different	 kind	 of	 request.	 The	 request	 needed	 here	 doesn’t
contain	 “field=var&field2=var2.”	 Rather,	 the	 request’s	 syntax	 resembles	 a	 text-based
email,	with	all	of	its	parts	serving	as	form	fields.

How	to	Handle	Uploaded	Files

	

The	array	named	“$_FILES”	hold	a	set	of	data	regarding	each	uploaded	file.	The	handler
code	 can	 use	 a	 file’s	 name	 to	 access	 data	 about	 that	 file.	 The	 variable	 called
$_FILES[‘book_image’]	holds	the	following	data	for	each	uploaded	file:

	

name	–	This	is	the	file’s	name	when	it	was	still	in	the	uploader’s	local	machine.

type	–	This	indicates	the	file’s	MIME	(i.e.	Multipurpose	Internet	Mail	Extensions)
type.	A	JPG	image	can	have	image/pjpeg	or	image/jpeg	as	its	MIME	type.	All	non-
text	files	have	their	own	MIME	type.

tmp_name	–	This	data	serves	as	the	file’s	temporary	name	inside	the	file	system	of
the	web	server.	The	PHP	language	will	delete	this	data	after	completing	the	upload
request.	That	means	you	should	do	something	about	the	file’s	tmp_name	within	the
code	that	takes	care	of	the	user’s	request	(i.e.	either	transfer	or	delete	it).

error	–	This	number	represents	the	type	of	error	that	occurred	(if	any).	You’ll	learn
more	about	errors	later.

size	-		This	part	shows	the	total	size	of	the	file.

	

Sometimes,	users	experience	errors	while	uploading	a	file.	Most	of	these	errors	are	linked
to	 the	 uploaded	 file’s	 size.	 In	 PHP,	 error	 codes	 have	 a	matching	 constant.	Here	 are	 the
errors	that	you	might	encounter	while	using	this	language:

	

Error
Code

Name	of	Constant Definition

0 UPLOAD_ERR_OK This	 error
code	 states
that	 the
upload
process	 was
successful.
The	 system
didn’t
encounter	any
error.

1 UPLOAD_ERR_INI_SIZE This	 code
means	the	file
you	 want	 to
upload
exceeds	 the
maximum	file

size	 specified
in	php.ini.

2 UPLOAD_ERR_FORM_SIZE The	 file	 you
are	 working
on	 exceeds
the	maximum
file	 size	 set
for	 the
system.	 You
can’t	 rely	 on
this	 code
since	 users
can	 fake	 the
size	 of	 their
files.

3 UPLOAD_ERR_PARTIAL The	 process
was
unsuccessful.
The	 file
received	 by
the	 server	 is
incomplete.

4 UPLOAD_ERR_NO_FILE This	 error
code	 states
that	 the	 user
didn’t	 upload
any	file.

	

Architecture

At	this	point,	you	should	know	how	to	organize	the	scripts	in	your	applications.	This	book
will	 focus	 on	 the	 most	 popular	 methods	 of	 organizing	 PHP	 codes.	 Read	 this	 material
carefully:	it	will	help	you	master	the	basics	of	PHP	in	just	24	hours.

	

The	One	Script	Approach

	

With	this	approach,	you	will	use	a	single	script														to	handle	the	requests	of	all		the
pages	in	the	website.	Programmers	usually	use	the	index.php	script	to	implement	this	kind
of	architecture.	Here,	you	can	add	URL	parameters	(e.g.	?page=register)	to	pass	different
types	of	content.	You	shouldn’t	save	all	of	your	codes	inside	index.php.	It	would	be	best	if
you	will	use	the	index.php	script	to	save	the	most	important	parts	of	your	code.

	

One	Script	for	Each	Function

	

Programmers	 consider	 this	 as	 one	 of	 their	 best	 options	 when	 it	 comes	 to	 program
architecture.	 	With	this	approach,	you	won’t	use	a	primary	script	(like	the	one	discussed
above).	 Rather,	 you	 will	 store	 your	 functions	 inside	 different	 scripts	 and	 access	 them
through	their	URL.

	

If	 you	 will	 use	 this	 approach,	 you	 won’t	 have	 to	 maintain	 a	 huge	 script.	 The	 main
disadvantage	of	this	approach,	meanwhile,	is	that	you	need	to	write	the	basic	codes	inside
each	script.

	

Keep	Layout	and	Logic	Separated

	

Regardless	of	the	approach	you’re	using,	you	should	always	separate	the	layout	from	your
logic.	PHP	offers	a	lot	of	techniques	to	attain	this.	For	example,	you	may	use	a	templating
engine.

Chapter	8:	Databases	and	the	PHP	Language
	

Almost	all	PHP	books	deal	with	databases.	Thus,	the	final	chapter	of	this	eBook	will	teach
you	 important	 things	 regarding	databases.	You	need	 to	 read	 this	material	carefully	since
you	will	surely	use	databases	for	your	PHP	applications.

	

This	chapter	will	 focus	on	MySQL,	one	of	 the	 leading	database	management	systems	in
the	world.

	

MySQL	–	The	Basics

PHP	 and	 MySQL	 form	 a	 great	 team:	 they	 serve	 as	 the	 main	 tools	 for	 application
developers.	 Since	 you	 are	 studying	 PHP,	 you	 will	 encounter	 (and	 use)	 MySQL	 on	 a
regular	 basis.	 This	 is	 the	 main	 reason	 why	 this	 book	 will	 focus	 on	 this	 database
management	system.

	

In	 the	 following	 pages,	 you	 will	 learn	 about	 “mslqi”	 (i.e.	 MySQL	 Improved).	 This
extension	of	MySQL	comes	with	the	latest	versions	of	PHP.

	

More	Information	about	MySQL

	

The	Pros

	

It	 is	 popular	 –	 MySQL	 possesses	 the	 largest	 market	 share	 in	 the	 database
management	industry.	Almost	all	hosting	service	providers	offer	access	to	MySQL.
Additionally,	you	can	easily	find	reading	materials	about	MySQL.	That	means	you
can	get	and	learn	this	database	management	system	quickly	and	easily.

It	 is	 intuitive	–	Once	you	have	established	your	MySQL	database,	managing	your
data	 becomes	 a	 straightforward	 process.	 An	 administrator	 should	 configure	 the
initial	access	to	a	database.	Thus,	if	you	will	share	your	database	with	other	people,
you	need	to	give	them	access	to	MySQL	first.

It	is	free	–	This	database	management	system	is	open-source.	That	means	you	can
use	it	without	shelling	out	any	money.

	

The	Con

	

You	might	 need	 to	 purchase	 a	 license	 –	You	 should	 buy	 a	 commercial	 license	 if
you’re	planning	to	bundle	MySQL	with	any	closed-source	software.													

	

Database	Queries

MySQL	supports	 two	kinds	of	 queries:	 (1)	 buffered	queries	 and	 (2)	 unbuffered	queries.
Let’s	discuss	these	queries	in	detail:

	

Buffered	Queries

	

A	buffered	query	 retrieves	 the	 result	 and	 stores	 it	 in	 the	client-side	machine.	 If	 the	user
will	 run	 subsequent	 queries,	 his/her	 requests	 will	 go	 through	 the	 memory	 of	 his	 local
machine	first.

	

The	main	advantage	of	a	buffered	query	is	that	you	can	search	inside	it.	That	means	you
can	control	the	row	pointer	inside	the	result	set	according	to	your	needs	(considering	that
the	 information	 is	 stored	 in	 the	 local	 machine).	 Its	 primary	 disadvantage,	 on	 the	 other
hand,	is	that	the	results	require	extra	memory.

	

Unbuffered	Queries

	

An	unbuffered	query	doesn’t	allow	you	to	move	its	row	pointer.	Thus,	you	have	to	follow
the	 exact	 sequence	 of	 the	 search	 results.	 The	 advantage	 offered	 by	 this	 query	 is	 that	 it
doesn’t	require	excessive	storage	space.	You	may	collect	and	process	data	rows	once	your
MySQL	server	begins	to	return	them.	While	using	the	result	of	an	unbuffered	query,	you
should	 get	 all	 of	 the	 rows	 using	 “mysqli_fetch_row”	 or	 free	 them	 using
“mysqli_free_result”.	Your	 server	won’t	 respond	 to	your	 requests	until	you	 issue	one	of
these	commands.

	

The	kind	of	query	 that	 you	 should	use	depends	on	your	 situation.	An	unbuffered	query
allows	you	to	save	lots	of	computer	memory	when	working	with	a	huge	result	set.	If	you
don’t	need	to	sort	the	search	results,	you	will	be	able	to	see	the	initial	row	of	the	results
through	PHP	 even	 if	MySQL	 is	 still	 running	 the	 query.	A	 buffered	 query	 is	 convenient
since	it	offers	a	powerful	search	functionality.	It	can	boost	your	productivity	significantly.
Since	 individual	 queries	 will	 get	 completed	 quickly,	 mysql	 will	 immediately	 drain	 the
results	and	store	them	in	the	local	machine	rather	than	running	the	search	while	working
on	the	PHP	codes.

	

After	using	MySQL	and	analyzing	your	results,	you	will	know	which	type	of	query	you
should	use.

	

Important	Note:	You	need	to	be	careful	when	running	an	unbuffered	query.	Keep	in	mind
that	the	server	will	 ignore	your	requests	until	you	fetch	or	free	the	current	results.	Thus,
you	 need	 to	 issue	 either	 mysqli_fetch_row	 or	 mysqli_free_result	 before	 sending	 any
command	to	the	server.

Conclusion
	
I	hope	this	book	was	able	to	help	you	to	learn	the	basics	of	the	PHP	scripting	language	in
just	24	hours.	The	codes,	instructions,	and	explanations	you’ve	read	in	this	book	prepared
you	 in	using	PHP	for	your	own	websites	and	applications.	 If	you	will	apply	 the	 lessons
you’ve	studied	in	this	book,	you	will	become	a	skilled	PHP	user	in	no	time.

The	 next	 step	 is	 to	 read	more	 books	 about	 PHP	 and	 continue	writing	 your	 own	 codes.
Keep	in	mind	that	programming	is	a	complex	activity.	You	need	to	gain	knowledge	from
different	sources	in	order	to	be	a	good	programmer.	By	reading	more	books	and	practicing
your	skills,	you	will	be	able	to	boost	your	programming	abilities	greatly.

I	wish	you	the	best	of	luck!

Robert	Dwight

	Introduction
	Chapter 1: PHP – The Basics
	HTML Embedding
	Comments
	Variables
	The Data Types
	Constants
	Operators

	Chapter 2: The Control Structures
	Conditional Structures
	The Loop Structures
	The Code Inclusion Structures

	Chapter 3: The Functions of PHP
	The User-Defined Functions
	The Scope of a Function
	The “By Value” Method of Returning a Value
	The “By Reference” Method of Returning a Value
	How to Declare a Function Parameter
	The Static Variables

	Chapter 4: Object-Oriented Programming
	Objects – The Basics
	Class Declarations
	Creating Class Instances
	The Destructor Functions
	How to Use “$this”
	The Class Constants
	Cloning an Object
	Polymorphism

	Chapter 5: How to Handle Exceptions
	Chapter 6: The Advanced Concepts of Object-Oriented Programming
	The Overloading Capabilities of OOP
	The Iterators
	The Design Patterns

	Chapter 7: Using PHP to Create an Application
	PHP and HTML
	Users' Input
	How to Handle User Input Safely
	Sessions
	File Uploads
	Architecture

	Chapter 8: Databases and the PHP Language
	MySQL – The Basics
	More Information about MySQL
	Database Queries

	Conclusion

