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Preface

Interactive Programming in Javés an introduction to computer programming
intended for students in standard CS1 courses (or interested professionals) with no
prior programming experience. It is the first textbook to rethink the traditional
curriculum in light of the current interaction-based computer revolution.
Interactive Programming in Javshifts the foundation on which the teaching of
Computer Science is based, treating computatiorinsaction rather than
calculation thus providing students with a solid grounding in the thought that
underlies modern software practice. Students still learn the basic and necessary
elements of computer programming and the Java language, but the context in
which they learn it is more consistent both with Java's tools and philosophy and
with the prevailing practice from which it arises.

Why Interactive Programming?

Traditionally, introductory programming teaches algorithmic problem-solving. In
this view, a program is a sequence of instructions that describe the steps necessary
to achieve a desired result. The 'pieces' of this program are these steps. They are
combined by sequencing. The program produced is evaluated by means of its end
result. Students trained in this way often have difficulty moving beyond the
notion that there is a single thread of control over which they have complete
control.

In contrast, most programs of interest today are made up of implicitly or explicitly
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concurrent components that interact to provide ongoing services. Buzzwords such
as "client/server" and "event-driven" are part of the descriptive language of this
new generation of programs. Embedded systems and software agents typify their
incarnations. User interface design, distributed programming, and the world-wide
web are logical extensions of a way of thinking that has interaction at its core.

When programming is taught from a traditional perspective, important topics like
these are treated as advanced and inaccessible to the introductory #tudent.
unsurprising that senior software engineers report that today's undergraduates are
ill-equipped to handle the realities of embedded interactive software. Most require
on-the-job retraining to "think concurrently.” Students trained in the traditional
curriculum are often so indoctrinated in the "sequence of steps” mentality that
they can no longer rely on the intuition common to every child coordinating a
group of friends or trying to sneak a cookie behind her parent's back.

Interactive Programming in Javprovides an alternate entry into the computer
science curriculum. It teaches problem decomposition, program design,
construction, and evaluation, beginning with the following premises: A program
is a community of interacting entities. Its "pieces" are these implicitly or
explicitly concurrent entities: user interfaces, databases, network services, etc.
They are combined by virtue of ongoing interactions which are constrained by
interfaces and by protocols. A program is evaluated by its adherence to a set of
invariants, constraints, and service guarantees -- timely response, no memory
leaks, etc.

Because it begins from this alternate notion of what programming is about,
Interactive Programming in Jauvizlls a rather different story from the traditional
introductory programming book. By its end, students are empowered to write and
read code for client-server chat programs, networked video games, web servers,
user interfaces, and remote interaction protocols. They build event-driven
graphical user interfaces and spawn cooperating threads. Each of these programs -
- all of which are beyond the scope of traditionally taught introductory courses --

is a natural extension of the community metaphor for computation.

Many computer science departments are contemplating a change to the Java
programming language for introductory computer science courses. While it is
possible to make this change without transforming the introductory curriculum,
adopting Java without a corresponding curricular change amounts to sweeping
more and more of what is important in today's computational world under the rug.
Java embodies much of modern programming practice. Insisting on traditional
approaches actually makes certain aspects of the language less accessible.
Shifting to a curriculum in which concurrent interacting entities play a central role
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makes far more of modern computation theory, practice, and tools accessible to
today's introductory student.

A more complete argument for rewriting the introductory computer science
curriculum in this way is contained in "What We've Swept Under the Rug:
Radically Rethinking CS1'Gomputer Science Education Journal appear). See
also http://www.ai.mit.edu/projects/cs101/.

Ramifications for Later Curriculum

Interactive Programming in Javiacludes a number of topics not often taught to
introductory students: networks, user interfaces, client/server architecture, and
event-driven programming. At the same time, students will develop a basic
facility for programming and for problem decomposition, the most crucial skills
taught in most existing CS1 courses.

In all respects, this course is still an introductory programming course. Its
thematic lesson concerns a model of computation as interaction, rather than
calculation. But its pragmatic goals include most of the skills that are learned in
standard introductory CS. The fundamental lesson of this course remains how to
take a description of a problem and construct a program whose behavior solves
that problem. It differs from traditional courses in its underlying assumptions, the
kinds of descriptions that can be considered, and the corresponding
conceptualizations that are used to build a program. The computational constructs
and modeling tools have changed; the problem still remains the programming.

As a result, this new CS1 course requires little revision of the rest of the
computational course sequence. Upper level courses can continue as they are, but
are likely to find their task simplified somewhat by the new perspective that
students bring to them.

The remainder of the curriculum which begins with an introduction to
computation on these terms may thus look much like the existing computer
science undergraduate curriculum. Nonetheless, there are subtle but significant
improvements. Several important topics that are currently covered only in
advanced undergraduate or graduate level classes can be introduced earlier in the
curriculum. For example, topics in distributed algorithms and parallel complexity

-- such as the time/processor tradeoff -- can be taught in the first course in
computer science theory if the model of parallel computation is already familiar.
Since modern algorithms increasingly makes use of such approaches, it seems
only natural to expose our undergraduates to the fundamental ideas in these areas.
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Other topics, already present at the undergraduate level, become much easier to
explain when students come equipped with this world view. Much of operating
systems becomes an exploration of different methods for implementing and
ensuring appropriate behavior multiprocessing, rather than focusing on the
concept of parallel execution itself. Students seeing these ideas for the second
time, now in depth, are more likely to appreciate some of the subtleties of the
problem rather than being confused by the many levels at which operating system
code must operate. Synchronization and interprocess communication can be
introduced along with scheduling. Transaction-safety, remote procedure call, and
shared memory models similarly follow smoothly from this approach.

Further, a whole host of issues that now fit into our curriculum poorly, if at all,
now become sensible parts of the model of computation that we teach our
students. For example, the traditional curriculum has a tremendously difficult time
introducing the topic of user interfaces. In many schools, this "special case" is
tacked on to the curriculum as an afterthought (or altogether ignored), largely
because it just doesn't fit. To readers of this book, however, accounting for the
role of the user becomes straightforward. The user is another member of the
community of interacting processes that together constitute our computation. The
programmer's job is to develop an acceptable interface that gives each participant
-- program or person -- an appropriate set of responsibilities and services. Of
course, a human has different skills and needs from a computer program, but this,
too, is a natural part of our larger way of thinking -- and teaching -- about
computational systems.

Teaching computation this way also has the potential to harness our students’
natural instincts. Traditional introductory courses tell their students, "Forget all of
your intuitions about how the world works. This is computation; it is nothing like
the world in which you live." Insteadnteractive Programming in Javeeaches

that computation is very much like the world in which we live. It harnesses our
intuitions about that world---about simultaneity and ordering constraints, about
when it is more useful to partition a task and when it is simpler not to, and about
what information must be available to whom at what time and how to get it there-
--and teaches readers to use that intuition to become better programmers.

A Short History of the Rethinking CS101 Project

This book is a part of a larger project to reshape the ways in which introductory
computer science is taught (and, indeed, the ways in which the field itself is
conceptualized). The Rethinking CS101 Project grew out of work in a variety of
computational fields -- artificial intelligence, robotics, software agents, human-
computer interaction, as well as programming languages -- and their common
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difficulties with the conventional wisdom concerning how computation is
constituted. For example, introductory computer science teaches that a program'’s
job is to calculate some desired result and then to stop. When a robot stops,
however, this is generally a sign that it has broken. (Further, there's not really a
"result” that the robot "calculates"; instead, it is supposed to continually exhibit
appropriate behavior.)

Research Roots

In the early 1990s, the author worked to bring intuitions about computation into
the classroom through the use of simple, inexpensive robotics. The use of robots
enabled a focus on software life cycle, non-repeatability, and pragmatic software
engineering uncommon in traditional introductory classrooms. The curriculum
that developed from this experimentation marked a radical departure from the
traditional single-threaded, sequentialist story.

The use of robotics clearly forced a shift in perspective in the introductory
programming curriculum. In the first half of the decade, this shift was echoed, if
more subtly, in the popular software market through approaches such as event-
driven programming, client-server architectures, and enterprise computing. Those
techniques -- increasingly important to industry -- were still not deemed suitable
for an introductory computing classroom. Nonetheless, they were inescapably
changing the face of the computing sciences. Computing-in-the-raw is no longer
calculate-and-stop. Instead, it is made up of agents and services, communities of
ongoing interacting entities. Yet today's introductory classrooms shed little light
on these now-prevalent industry practices.

Courses taught during this period included MIT freshmen, MIT graduate students,
and international researchers in artificial intelligence. Spin-offs of these efforts
include robotics classes at a variety of universities and colleges as well as the
now-annual Robot-Building Laboratory at the National Conference on Artificial
Intelligence and the establishment of the KISS Institute for Practical Robotics (of
which the author is an Institute Fellow).

With the advent of the world-wide web and the popular adoption of Java, a new
avenue towards teaching these approaches has been opened. The -current
Rethinking CS101 Project has shifted its focus away from physical robots and
towards the underlying principles of interactive computation as illustrated by
purely software systems. (A side effort within the project continues to pursue the
robot hook, both in software simulations and in the interests of capitalizing on the
newly emerging commodity robot market. Although robots are not central to the
curricular shift represented by this project, they are easily integrated into its
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methods and models.)nteractive Programming in Javarepresents the
codification of the underlying approach to computation in a form suitable for
adoption in otherwise-traditional university computer science curricula, thereby
bringing them closer to state-of-the-art practice.

Classroom Experience

The curriculum presented Interactive Programming in Javiaas been taught in

a variety of venues. The first course taught with the current set of materials was
held in the summer of 1996, in a one-week intensive minicourse using the Java
1.0 API and Sun's JDK, the only Java available at the time. Its students were
executives, managers, and a few software engineers enrolled in MIT's Summer
Professional Programs. The majority had no substantial prior programming

experience.

The course was subsequently taught twice in MIT's regular curriculum. Students
were largely first-semester freshmen and others with no prior programming
experience. (The course is also popular among advanced students in non-
computational fields who want a single semester of computational coursework.)
Student feedback has been resoundingly positive. The MIT course has been
adopted by the EECS Department as a regular offering and is listed in the catalog
as subject number 6.030, Introduction to Interactive Programming.

Precursors to this textbook were also used in teaching several other minicourses to
professional audiences. These include the 1997 and 1998 Professional Institutes at
MIT and a tutorial offered at the ACM SIGPLAN's Conference on Object
Oriented Programming Systems, Languages, and Applications (OOPSLA '97).
Students in these courses included software professionals, academics, and
trainers. Generally versed in traditional programming, they attended the
minicourses to learn a new way to think about computation.

Other instructors have used the beta release of the textbook. In the fall of 1998,
the course materials was used at a handful of undergraduate institutions with
student bodies substantially less sophisticated than MIT's, as well as an advanced
class in a secondary school. Serious beta testing began in the fall of 1999, when
over a thousand students at more than a dozen colleges and universities around
the world usednteractive Programming in Javas their primary text. Additional
non-traditional classroom tests are also underway. Ultimately, the textbook is
intended for deployment in mainstream undergraduate classrooms as well as
certain advanced secondary classes, perhaps AP.

The curriculum itself has attracted widespread attention. It has been presented at a
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variety of international meetings and its agenda is documented in a variety of
publications (see enclosures). The Rethinking CS101 Project at MIT has recently
received the donation of a 30-machine teaching laboratory from Microsoft
Research/University Curriculum Programs. A strategic relationship with Sun
Microsystems is also under negotiation, and the National Science Foundation has
selected Rethinking CS101 for an Educational Innovation Award.

How to Use This Book

Interactive Programming in Javes designed for use by students who have no
prior programming experience (typically college freshmen). It ultimately teaches
both the fundamentals of computer programming and the details of the Java
programming language.

The book is divided into five parts. The first briefly overviews the idea of
programs built out of communities of interacting entities. The second part
introduces the mechanics of Java programming, from things, types, and names to
objects and classes. It is essential to the book and is intended to be read in the
order presented. Part three elaborates on these ideas, introducing threads as first-
class citizens of the programming world and exploring inheritance, exception-
handling, and design. Part four emphasizes a variety of issues in the design of an
individual entity. It is not necessary to read this section in any particular order,
and certain chapters can be omitted entirely without serious detriment. Part five
similarly surveys a variety of interrelated topics, in this case concerning the ways
in which communities are coupled together, and its chapters, too, can be taken out
of order or omitted.

The five parts, taken together, constitute a single-semester introductory course in
computer programming. In such a course, some of the supplementary material
(described below) will not be used. For a one-quarter course, part five and
selected earlier chapters should probably be omitted. Alternately, the complete
book can be spread over two quarters or over a full year, augmented as necessary
from the supplementary materials.

Part By Part

Part 1 is brief and introductory, providing an overview of the approach to

computer programming taken. Part 2 begins with the basic syntax and semantics
of programming constructs. At the same time, from the earliest examples, students
are introduced to concurrent, interactive, embedded programs. For example,
interfaces are introduced early as they specify a contract between two parts of a
computer system. By the middle of part 3, students have learned to write what
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might in other contexts be called "stand-alone" programs -- complete programs
including class definitions and a main routine. They have also learned that every
program is a part of a system of interacting entities -- including the user, libraries
and other software, hardware, etc. -- and that no program truly stands alone.

The remainder of the book addresses issues and alternatives that arise in the
design of software communities. Part 4 focuses on ways to extend the basic
entities that students build. The notion of a dispatching control loop provokes an
exploration of procedural abstraction, in which separate routines handle each
possible case. This in turn leads to a de-emphasis of the central control loop and a
shift to event-driven programming, in which individual "handler" procedures take
center stage. In a typical event system, dispatch may be provided implicitly, i.e.,
by underlying hardware or software. A third model -- smart objects that handle
their own behavior -- is also explored. Java's AWT is introduced as both a tool
and an example of an event-based system.

Part 5 addresses the issue of how entities are tied together. A recurring theme --
throughout the book, but emphasized here -- concerns interface design. This refers
both to the Java construct -- a signature specification, introduced in chapter 4 --
and to the more general concept, including human (user) interface design. In
addition to learning how to specify an interface, students learn what the interface
does not specify. In other chapters, students learn about streams, messages, and
shared memory, about connecting to objects in the same name space and to those
running under different processes or on different machines, and about how to
communicate with them. They also learn the basic ideas of safety and liveness,
that shared mutable state can lead to program failures, and some simple
mechanisms for coping with them. They do not, of course, learn to build
arbitrarily complex programs that avoid deadlock under all circumstances. This
topic will be visited later in the computer science curriculum. Instead, they learn

to recognize the general preconditions for the possibility of safety failures and the
kinds of solutions that might be possible. The goal, throughout this course, is to
give students the basic conceptual vocabulary that will allow them to ask the right
guestions as they meet more complex issues later in their education.

Interactive Programming in Javands with an overview of various patterns of
large-scale systems architecture, reviewing tradeoffs among various approaches
and providing a common language for software architects. The last chapter
examines conventional patterns by which complex concurrent and distributed
systems are constructed. The emphasis is on designing and understanding a
variety of interactive communities. This chapter also leads naturally into final
projects. In courses taught using this curriculum and preliminary drafts of the
book, typical final projects have included client/server chat programs and
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networked video games. Not what you would generally expect from first semester
freshmen!

Pedagogical Elements and Supplementary Materials

Although this book is primarily intended for an introduction to computer science
course, it will include enough reference material to stand alone as a self-study
course in Java, without requiring a language supplement. Three kinds of
supplementary materials help provide this support: in-chapter sidebars, between-
chapter interludes, and auxiliary case studies. Reference charts and a glossary are
also included.

To avoid muddying the text with too many language-specific details, sidebars are
used throughout to explain details of Java syntax and semantics. The text
explicates the conceptual development of the ideas; the sidebars are intended to
provide detailed information on technical aspects of the language or the
programming process.

Sidebars come in two flavors. Syntax sidebars explain language-specific details

and pragmatics in the form of a reference manual. Style sidebars explain good
documentation and coding practice. The use of sidebars serves two purposes.
First, it frees the main text of some of the details that confuse rather than elucidate
the presentation of central concepts. Second, the sidebars, together with the
reference charts in Appendix B, form a supplementary desktop reference for

students while they are programming.

The narrative of the book is periodically interrupted for an extended example,
called an interlude. Interludes are adapted from potential programming
assignments. They are presented between chapters, rather than within them, and
can be included or omitted at the instructor's preference. Interludes provide
detailed illustrations for the student to study. They exemplify the themes of the
course in terms of the material studied to that point. They also provide the basis
for exercises allowing students to practice and assess their mastery of relevant
skill sets. Complete code for each interlude is supplied on the textbook's web site.

Also supplementing the book is a set of case studies. These are not included
within the bound text. Instead, they will be made available over the world-wide
web. The case studies provide descriptions of current applications exemplifying
the principles central to the course. For example, one case study is based on an
article in the trade literature on constructing an http server. With only minor
modification, this article is an excellent illustration of the relevant themes of the
course as well as a concrete example of a real-world application that is accessible
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to students in the later chapters.

In addition to the materials described above, the supporting materials include a set

of exercises, lecture notes, programming assignments, and sample quizzes. Some
exercises appear chapter by chapter in the bound book. Other resources are
available through the online supplement.
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Chapter 1 Introduction to Program Design

Chapter Overview
What is a computer program?
What are the parts of a program? How are they put together?
What kinds of questions does a program designer ask?

In this chapter you will learn how a computer can be controlled by a set of
instructions called @rogram. This chapter introduces two different aspects of

computation: single-minded instruction following and coordination among
instruction followers. The programs in this book involve both aspects of
computation.

The first aspect of computation is as step-by-step instruction following, like the
process of making a single sandwich. This kind of computation is a sequence of
instructions that produce some desired result. The question that drives this part is
"What do | do next?" Pieces are put together using "Next,...", "If ... then ... else
.. and "until...". This kind of computation has an end goal that execution of
these instructions will accomplish. The programs in this book use short sequences
of instructions, executed over and over, to create entities that can provide services

©1999 Lynn Andrea Stein. This chapter is excerpted from a drdfitefactive Programming In Java
forthcoming textbook from Morgan Kaufmann Publishers. It is an element of the course materials developed
as a part of Lynn Andrea Stein's Rethinking CS101 Project at the MIT Al Lab and the Department of
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Permission is granted to copy and distribute this material for educational purposes only, provided that the
following credit line is included: "©1999 Lynn Andrea Stein." In addition, if multiple copies are made,
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or respond to requests (e.g., a sandwich-maker).

The second aspect of computation involves coordinating among many of these
instruction-following entities. This is like gathering the sandwich-makers (and
table-waiters and others) together to run a restaurant. This kind of computation is
creating (and managing) a community. The driving questions are "Who are the
members of the community?"”, "How do they interact?", and "What is each one
made of?" The members of the community -- the instruction-following entities --
are glued together through their interactions and communications. Executing this
kind of computation provides an ongoing program such as your car's cruise
control, a web browser, or a library's card catalog.

When you finish this chapter, you will know the basic questions to ask about
every computational system. These questions will allow you to begin to design a
wide variety of computer programs.

1.1 Computers and Programs

Computers provide services. A suitably equipped computer can retrieve a web
page, locate the book whose author you're thinking of, fly an airplane, cook
dinner, or send a message to your friend half way around the world. In order for a
computer to do any one of these things, two things must happen. First, the
computer must be toldowto provide the required services. Second, the computer
must be asked to do so.

The how-to instructions that enable computers to provide services are called
programs. A computer program is simply a set of instructions in a language that
a computer can (be made to) follow. When the computer actually follows the
program instructions, we say that iteégecuting that program. The program is

like the script for a play. It contains instructions for how the play should go. But
the script itself is just a piece of paper: no actors, no costumes, no set, no action.
Executing a program is like performing the play. Now there is something to
watch.

This analogy goes further, too. The same script can be performed multiple times,
just as the same program can be executed again and again. If audience reaction (or
the director's interpretation, or the theater, or the time of day) influences the
performance, two performances of the same script may be quite different.
Similarly, user input, hardware, software, or other environmental circumstances
may make two different executions of the same program quite different from one
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1.2 Thinking like a programmer 1~-3

another. (Think of running the same word processing program on two different
occasions; the experiences are extremely different even though the computer
follows the same general-purpose instructions both times.)

When you sit down at a computer, someone else has already told it how to do a lot
of things. For example, when you press the power switch, it boots up, or gets
started running, in the way that it has been instructed to. Personal computers
typically come with a fairly sophisticated set of startup instructions already
installed. Simply turning on the computer causes the computer to execute this
startup program.Each computer has a program that it runs automatically. The
program that your desktop or laptop PC runs is called its operating system. A disk
drive -- which is really a separate computer plus the electronic equivalent of a
huge filing cabinet -- comes equipped with instructions for how to retrieve
information from (or store information in) that filing cabinet plus how to transmit
that information across the cable that connects the disk drive with your "main"
computer. A microwave oven comes with a computer that follows instructions for
how to tell time and how to turn on its microwave generator for specified periods.
The library's card catalog provides lookup services. Your car's cruise control
accelerates and decelerates to keep you car moving at a steady rate. A web
browser fetches and displays information it retrieves from the hard drives (file
cabinets) of computers scattered around the world (at your request) (with the
assistance of the "web server" programs running on those distant computers as
well as the network (transmission) services provided by a set of intervening
computers.

When you load a new piece of software onto your computer -- a cool new game,
for example -- what you are actually doing is giving your computer a copy of the
program -- the set of instructions that tells it how to do display graphics and make
appropriate sound effects or whatever it is that the particular piece of software
does. Writing down these instructions was the job of the person (or people) who
wrote the software, theprogrammer. Loading the software makes the

instructions (the script) available to your computer. Just having these instructions
lying around doesn't do you much good, though. To actually play the game
(perform the play), you need to do one more thing. You need to run the program.

! Starting a computer is called "booting it up", presumably from the phrase "pulling yourself up by
your bootstraps". The startup program that a computer executes each time that it is turned on is
called the computer's "boot sequence”.

2 Some computer games can be run off of removable media, like CD ROMs. In this case, you don't
need to load the program onto the computer, but you do need to make sure that the disk is in the
drive, i.e., that the instructions are available to the computer.

IP1J || Lynn Andrea Stein



1~4 Introduction to Program Design Chapter 1
[

Tomorrow, if you want to play the game again, you only have to run it; you don't
have to start by loading it onto your computer.

1.2 Thinking like a programmer

A computer program -- "how-to" instructions for your computer -- must be
written in a language that the computer can follow. There are many languages
designed for instructing computers. These languages are gatigdamming
languages and they are typically quite different from the kinds of languages in
which people talk to one another. One of the main differences between talking to
a person and programming a computer is the increased level of precision required
to tell a computer how to do things. With people, it is often possible to give very
vague instructions and still get the behavior you want. A computer has no
common sense. You must be very specific with it. Your instructions must be step
by step, in great detail. In some ways, programming a computer can be a lot like
talking to a very young child or a creature from a different planet.

Imagine teaching a Martian how to make a peanut butter and jelly sandwich. You
need to give detailed, step by step instructions:

1. Get a loaf of bread.

Remove two slices of bread and put them on the counter.
Get a jar of peanut butter. Put it on the counter, too.

Get a jar of jelly. Put it next to the peanut butter.

Get a knife.

Open the jar of peanut butter.

Pick up a slice of bread.

© N o g &~ w DN

Using the knife, pick up a glop of peanut butter and spread it on the top of the
slice of bread.

9.

These instructions tell the Martian, in very specific terms, what to do. To follow
the instructions, the Martian simply needs to perform each step, one by one, in the
order given. As long as each of these instructions is one that the Martian knows
how to perform, when the Martian finishes executing this program, the Martian
will have a peanut butter and jelly sandwich.
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If there is an instruction here that the Martian does not understand, that instruction
needs to be rewritten in more detail so that the Martian will be able to execute it.
For example, "pick up a glop of peanut butter" might require further explanation:

1.
a. Insert the knife blade half-way into the jar of peanut butter.

b. Remove the knife from the jar of peanut butter at a slight angle so that
some peanut butter is carried out of the jar by the knife.

C.

An instruction that needs further explanation before the Martian (or computer)
can execute it is one that we chigjh level. We can use high level steps in our
programs only if we can supply additional instructions to explain how to actually
execute these higher level steps.

Although we don't know what instructions Martians are likely to understand, a
programmer knows what kinds of instructions are a part of the particular
programming language in which s/he is developing a computer program. In this
book, we will use a programming language called Java. As you read this book,
you will learn how to think like a programmer and how to write instructions that
computers can understand. You will also learn specifically about the kinds of
instructions that are part of the Java programming language.

As a programmer, you will design sequences of steps much like the peanut butter
and jelly sandwich instructions. The goal of such a sequence is to get something
done, to find an answer or to create something. In order to design a program like
this, you will need to repeatedly answer the question, "What do | do next?" until
you have reached your desired result. In many ways, this approach makes
computers seem much like sophisticated calculators. In fact, this is where
computers got their start: the word "computer” used to refer to people who did
(mathematical) computations, and the original mechanical computers were
designed to perform these computations automatically.

When you are designing a program, you should ask yourself, "What do | do
next?" You don't necessarily have to write out all of the basic steps in one long
sequence. You can group them together in bigger, more abstract, higher level
chunks:

l. Assemble the ingredients.

1. Spread the peanut butter.
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I, Spread the jelly.
V. Put the sandwich together.
V. Clean up.

This is a perfectly good set of instructions. But, as in the case of the Martian who
didn't know how to "pick up a glop of peanut butter", these instructions will
require further elaboration. A programming language such as Java allows you to
make up your own high level steps, like "Assemble the ingredients", and then to
explain how to do this: "1. Get a loaf of bread...." Your program is complete only
when every line is either understandable by the computer or further explained in
terms that are understandable by the computer. When you are done asking
yourself "What do | do next?" you must then ask "How do | do each of these
things?" until every line of your program is something that the computer knows
how to do.

1.3 Programming Primitives, Briefly

What kinds of things to computers know how to do? Most computers don't know
how to make peanut butter and jelly sandwiches. Most computers do know how to
manipulate numbers and also other kinds of information, like words. In the Java
programming language, you will find tools that let you send messages to other
computers on a network or create windows and buttons to communicate with
people using your programs. Other computers may have special kinds of
instructions. A robot control system has instructions that tell the robot when,
where, and how to move. A security system may have an instruction to sound an
alarm. These are the basic instructions out of which programs for each of these
systems can be constructed.

These basic instructions can be combined by sequencing them, as we've already
seen. They can also be grouped into mini-programs and given names, like
"Assemble the ingredients". These names can then be used as new instructions.
When the computer needs to execute one of these new instructions, it simply
looks up the rule for how to do it. (When the Martian needs to assemble the
ingredients, it uses the detailed instructions that begin "1. Get a loaf of bread....")

Instructions can also be combined in other ways. Sometimes, there is a choice to
be made. For example, after spreading a glop of peanut butter on top of the bread
(step 8), the next step in the peanut butter and jelly program might say:
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[ Number is wrong; should continue list above. Same problem above and below.]

1. If the top of the slice of bread is covered in peanut butter, go to step 10.
Otherwise, go back to step 8.

This step contains a choice; the next step might be 8 or it might be 10, depending
on whether the slice of bread is full. The Martian (or computer) executing this
program will have to keep track of which step comes next. This kind of choice
step is called a conditional, and it is a common construct in programming
languages. It is especially useful when the answer to the question "What do | do
next?" depends on something you won't be able to figure out until you're
executing the program.

We might want to go further, replacing steps 8 and 9 with a new kind of step that
says

1. Repeat the following substeps until the top of the slice of bread is
completely covered in peanut butter

a. pick up a glop of peanut butter
b. spread it on the top of the slice of bread.

This step ("repeat until*) is called a loop. It, too, is a common construct in
programming languages. Some loops tell you to keep going until something is
true (like the bread becoming full), while others tell you how many times to do
the steps inside the loop. Some loops even go on forever. For example, a clock is
basically a loop that moves its hand(s) (or changes its display) once a minute.
Loops are especially useful when part of "What do | do next?" is to repeat
(almost) the same thing several times.

Each of the techniques described above -- sequencing steps, conditionals, loops,
and grouping steps into new basic steps (also called procedural abstraction) -- is
an important part of building computer programs. You will learn more about how
to do these things in Part 2 of this book. These are the pieces that a programmer
uses to answer the questions "What do | do next?" and "How do | do each of these
things?" But this is only one part of the programming problem. The second part of
programming is coordinating the activities of many interdependent participants in
a computational community.
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1.4 Ongoing Computational Activity

Some computer programs are very much like peanut butter and jelly sandwich
making instructions. They start with some ingredients and step by step calculate
whatever it is they're designed to create, producing an answer or result before
stopping. The original mechanical computers, which mimicked human computers

performing mathematical calculations, were very much like this. Sometimes, you

would bring your program to a computer operator and then come back the next
day for the result!

Today, most computer programs aren't like this. Instead, computer programs
today are constantliyteracting. They may interact with people, machines, other
computers, or other programs on the same computer. For example, a word
processing program or spreadsheet waits for you to type at it, then rearranges
things on the page or recalculates values as you type. A video game moves things
around on your screen, some in response to you and others by itself. A web
browser responds to your requests, but also talks to computers all across the
network. The cruise control system for your car responds to road conditions,
sensor readings, and your input. A robot control system interacts with the robot
and, through the robot, with the robot's environment, perhaps with no human
input at all.

These computations aren't concerned with solving some pre-specified problem
and then stopping. Most computations of interest these days are things called
servers or agents or even just applications. Most of them have some basic control
loop that responds to requests or other incoming information continually. These
computations are_embedded in an environment and they intesttt that
environment: users, networks or other communication devices, physical devices
(like the car), and other software that runs at the same time.

These programs are not just interacting with the things around them, either. In
fact, each of these programs may itself be composed of many separate pieces that
interact with each other (as well as with the world outside the program).
Coordinating the activity among the many entities that make up your program --
and their interactions with the world around them -- is the second aspect of
computer programming.

This is kind of like taking a group of Martians and organizing them to run a
restaurant. Some of the Martians will take orders from and serve food to the
customers. Other Martians will need to cook food for the customers. Still others
will need to check on supplies, make change, or coordinate other aspects of the
restaurant's operation. Each of these Martians will provide services to and make
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request of other Martians (or to the restaurant's customers or suppliers or other
parts of the environment in which the restaurant is embedded). Coordinating the
interactions among these Martians (and between the Martian restaurant and its
environment) involves different kinds of questions from the instruction-following
"What do | do next?"

Before we turn to the coordination of activity, though, let's look closely for a
moment at one of the Martians who will staff our restaurant. We will see that,
deep down, peanut butter and jelly programming still has an important role to play
in creating computational activity. Keep in mind that this Martian represents just
one of the many things going on in our restaurant.

The instructions that a Martian chef follows might look very much like this:

1. Pick up a new food order.

2. Find the instructions for the dish ordered and follow them.

3. Put the completed dish and the order information on the counter for pickup.
4. Go back to step 1.

Step 2 of this program is the kind of "higher level" step that we described above.
It is not itself complete; instead, it refers to other, more detailed instructions to be
followed. For example, if an order comes in for a peanut butter and jelly
sandwich, the Martian chef will need to use the instructions developed above for
how to make a peanut butter and jelly sandwich. A computer still follows simple
sequenced steps written in a language that it can execute. But while this Martian
is making a peanut butter and jelly sandwich, another Martian is asking the
customer at table 3 whether she would like some more water. Later, the Martian
waiter will come into the kitchen and pick up the sandwich that the Martian chef
just made. And when the Martian chef is done making the peanut butter and jelly
sandwich, the Martian will turn to the next food order, continuing its ongoing
interaction.

The peanut butter and jelly style of program instructions is an important part of
how the Martian chef does its job. But the Martian chef's instructions are not
simply the steps of the peanut butter and jelly program. The basic structure of the
Martian chef program is aimfinite loop -- a loop that goes on forever. This
program accepts requests (in the form of new food orders) and provides services
(in the form of the completed dishes) over and over again. We sometimes call this
kind of loop -- one that provides the main behavior for a participant in the
interactive program community -- itontrol loop. Many program community
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participants take this form, and we will look more closely at control loops in Part
3 of this book. Programs with ongoing central control loops like this are the
members of our interactive computational community.

1.5 Coordinating a Computational Community

At its most basic level, every computer program is made of instructions that are
followed, one by one. But a single computer program may have many instruction-
followers inside it, just as our restaurant is run by many individual Martians.
When you look at the whole program -- like the whole restaurant -- you don't
necessarily see the individual instruction steps. Instead, you see coordinated
activity among a group of interacting entities. The behavior of this community --
providing customers with hot meals -- is not the responsibility of any particular
member of the community. Instead, it is the result of many community members
working together in a coordinated fashion.

Building modern interactive software involves something very much like
organizational design. We call this part of programming "constituting a
community of interacting entities". The programmer's job to figure out how to tell
the computer what to do, and no matter what the specific problem to be solved
may be, there are fundamental questions that each programmer must ask.
Designing a computation which is a community of interacting entities involves
figuring out who the members of this community are, how each one works, and
how they interact. This is like setting the cast of a play, or deciding what the sub-
units of your business will be, as well as how they should interrelate. In planning
the organizational structure of your business (or program), you also have to figure
out how each unit works and what -- and how -- they are supposed to
communicate. These are the big questions of this second aspect of programming.

When you are designing this kind of activity, you ask yourself several questions:
What is the desired behavior of the program?
Who are the entities who interact to produce this behavior?
How does each one work?
How do these entities interact?

In the remainder of this section, we will expand these questions and begin to
explore them in somewhat greater detail. Understanding these questions and their
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ramifications is the theme of this entire book. Coordinating communities is a
special focus of Part 4.

1.5.1 What is the desired behavior of the program?

Before you can design a system to solve your problem, you must know what your
problem is. This involves knowing not only what you want, but how it should
work or fail to work under a variety of different circumstances.

Some questions that you ought to be able to answer about your desired program
include:

What services should your program provide?
What guarantees does your program make about these services?

Under what assumptions (circumstances, conditions) does your program
make these guarantees?

Consider the restaurant of the previous section. What can we say about its
behavior? In answering this question, we consider both the experiences of
individual customers and the ongoing properties that the restaurant must maintain,
such as remaining solvent. A basic specification of the service provided by the
restaurant might be: Each customer is seated at a clean table, the order is taken,
food is served, a bill presented, and payment collected.

There are a number of guarantees we want to make about these services. For
example, customers should not have to wait for an unduly long time. Different
parts of the restaurant must communicate; customers should not be charged for
food that they were not served, etc. Over time, the restaurant should take in at
least enough revenue to cover its operating expense. Supplies should not run out,
nor should they rot.

We will make certain assumptions in order to be able to provide these guarantees.
For example, the "timely service" guarantee will only be possible if the load on
the restaurant is reasonable. We might decide that we will only be able to uphold
this guarantee if the number of people wanting to eat in the restaurant at one time
never exceeds its capacity, and if the rate of arrival of these people doesn't exceed
the rate at which the restaurant can serve th@imese assumptions should be

% How many customers the restaurant can handle is called its bandwidth. How quickly each one
can be served is called its latency. The number of customers per hour that the restaurant can
handle is its throughput. These quantities -- bandwidth, latency, throughput -- are common
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made explicit, and we will also need to say what happens when they are violated.
(In this case, the timely service guarantee won't be upheld, but how slow the
service gets should be related to how overloaded the restaurant is.)

There are other assumptions we do not make about our program, and we can
articulate these as well.. We do not assume that only one customer will be served
at a time. Instead, we expect that multiple tables must be handled (roughly)
simultaneously. It certainly won't do to wait until the first has eaten, paid, and left
before addressing the second. We also permit different interactions with each
table to be handled simultaneously or at least overlapped; food may be cooking
while checks are being written up.

This description is still fairly general, and we can imagine making it more
specific. (For example, are customers constrained to ordering off of a menu?) In
general, the more detail you can give of what your program ought to do, the easier
your task will be in designing and building it.

1.5.2 Who are the members of the community?

This question can't be answered in isolation, because any and every decision you
make aboutvhothe entities are is also at least a partial commitmewhtt they

are anchow they work. So answering this question is in many ways like solving
the whole problem. The trick is to answer this question in fairly high-level,
general terms, then to sit down and try to hash out the answers to all of the what
and how questions. In answering those, you'll almost certainly have to return to
this question and rearrange your answer a few times. This is fine; it's even typical
enough to have a namacremental program design

In the restaurant, an appropriate high level division of labor might have a wait

staff unit (the people who deal directly with the customers), a kitchen staff unit

(the people who cook the food), and a financial unit (who keep track of how much
which things cost, collect money, and buy supplies). At this point, we haven't

committed to whether these are three roles played by a single Martian, three
separate Martians, or even three groups of several Martians each.

1.5.3 What goes inside each one?

To answer this question requires knowing a bit about how each entity will interact
with the other members of its community. This means that answering "what goes

measures of program performance.
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inside" is closely related to "how do they interact." After all, specifying what
interactions each entity needs to support goes a far way towards telling you
whether the "what goes inside" meets the requirements of the community.

Some subsidiary questions to ask about how each of the entities is constituted
include:

What responsibilities does it have?

What guarantees (promises, commitments) does it make? Under what
assumptions?

What resources does it control?
How does it work?
Is it a community, too?

For example, the restaurant's wait staff might be responsible for greeting the
customers in a timely fashion, supplying each one with a menu (a structure that
the program will have to provide and keep updated!), taking the order, delivering
it to the kitchen staff, picking up and serving the cooked meal, obtaining a price
from the accounting entity, and obtaining payment for that amount from the
customer. The wait staff might guarantee to communicate with (most of) the
customers within minutes, provided the total number of customers is limited and
the maximum time spent with each is under a certain amount. It might also
promise to deliver food within some small amount of time after it's done cooking,
provided that the kitchen staff notifies the wait staff in a timely manner. The wait
staff controls menus, knows which food items were ordered by which customers,
and is the only part of the restaurant that deals directly with the customers. And so
on.

When it comes to "How does it work?", there are two kinds of answers. One
answer is that the behavior of the entity is accomplished by a single rule-follower
running an interactive control loop. We saw an example of this when we
considered the Martian chef earlier. In this case, we ask "What does the Martian
do next?" over and over, until we wind up with a well-defined set of instructions
for this Martian to follow.

The other possible answer to the question "How does this entity work?" is that
this entity is itself a community. (The wait staff might be further divided into the
person who takes the order, the person who clears the table, and the person who
serves the wine.) In this case, we need to figure out how to build each of these
entities, asking again "What goes inside each one?" The problem of figuring out
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how to coordinate the activity of a community continues until each community
member is a single (rule-follower) Martian. Then we ask about the instructions
this Martian follows.

1.5.4 How do they interact?

This question concerns coordination and communication among two or more
entities. Some of the questions that you should ask about how these entities
interact include:

* What are the entities' interfaces?
> What promises does each one make?
> What contracts does it fulfill?
- What services does it provide?
e How do they communicate?
> What mechanisms do they use?
- What interaction patterns do they use?
- How do they preserve liveness, i.e., make sure that things keep moving?
* What interaction patterns are possible?
* What happens when something goes wrong?

A protocol is the specification for an interaction between two entities. For
example, a common protocol for the interaction between the wait staff and
kitchen staff of a restaurant involves a slip of paper with the customer's order
written on it. The waiter hangs this piece of paper in the window over the
kitchen's food pickup counter, a place where it will be easy to find when someone
from the kitchen is ready for a new job. When a member of the kitchen staff is
ready to process the order, the piece of paper is removed and used to guide the
food preparation. When the order is ready, it is placed on the food pickup counter
together with the original order slip. This identifies the food with the original
request when the waiter returns to retrieve it. The slip of paper serves as a crucial
reminder of several associated pieces of information: what was ordered, by
whom, and where they are seated.

Protocols can also address temporal issues. For example, the wait staff/kitchen
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staff interaction described in the preceding paragraph needs to happen in real
time, meaning that the protocol itself can't introduce significant delays. There
must also be guarantees made about the frequency with which the wait staff
checks for completed dishes (or the kitchen staff for incoming orders). If
assumptions such as these are built into protocols, they must be documented so
that they are maintained in the behavior of participant entities.

In contrast, the wait staff interacts with the financial unit by obtaining prices for
food and turning over any moneys collected. These interactions could happen in
batch, meaning that it is OK for the wait staff to get the price list at the beginning
of the week or for money to be handed over at the end of the Ty difference
between real time and batch interactions is only one dimension that must be
determined in order to coordinate the activities of the members of your
computational community.

A protocol specifies the interface, or meeting, between various entities in the
community that constitutes your program. Once the interfaces have been
thoroughly fleshed out, each entity can in theory be implemented by a separate
programmer (or team of programmers) provided that it is built to spec, i.e., that it
meets the specifications of the agreed-upon interface.

In practice, the task of implementing an entity to match a given specification often
results in questions about or revision of that interface. Programming is not so neat
a task as students of computer science would often like to believe; there's a cycle
of specification and implementation, debugging and testing, usage and revision,
that characterizes almost all real-world software. The later stages of this process
are sometimes called the software life cycle; but the repeated revision that
characterizes those later stages start before a piece of software is even born.

1.6 The Development Cycle

The sections above concern the design of a computer program. Typically, you will
be given a set of specifications and some components that need to be integrated
into the system you build. Perhaps you will only be asked to build a single entity
or to modify existing entities to facilitate coordination. Regardless of your
particular design problem, you will find it useful to situate your task in the context

“ Batch processing is like the old-fashioned computations in which you handed your program to a
computer operator and came back the next day for your results.
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of these six questions:
What is the behavior of this program?
Who are the entities that combine to produce this behavior?
How do they interact?

What is each one made of? (A community of entities or a single instruction-
following control loop?)

And, when we get down to instruction-followers,
What does it do next?
How does it do each one of these things?

Once you have the answers to all of these questions, you can start to build your
program. Of course, you will already have found that you needed to go back to
earlier parts of the design process to modify or flesh out various decisions. You
may also have shown your completed design to other programmers -- or, perhaps
more importantly, to the users or customers for whom you are creating this
service -- and revised your design specification in response to their feedback.

The implementation phase of the project is no different. In building a program
that is supposed to meet your specification, you will often find that you need to go
back and change that specification. When this happens, you need to be careful to
consider all of the interdependencies that led you to your original design. That is,
the development of software is cyclic, beginning with design but often returning
to it. It will not always be desirable (or even possible) to change your design, but
it is quite common to discover additional assumptions or nuances that must be
percolated through the design during later phases of development.

When you begin to build your program, it is often advisable to implement only a
small piece of your system first. This may mean implementing only some of the
entities, or it may mean implementing all of the entities but only simple, basic
versions of each. In large scale system development, this initial phase is called
prototyping. Even in most of the smaller scale programs that you will encounter in
your early coursework, it is a good idea to utilize this approach of incremental
program development. Part of developing good programming skills involves
learning to consciously and explicitly design a staged development plan in which
smaller simpler programs are constructed and debugged, then gradually expanded
until the desired functionality is obtained.
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Building a simpler version of your system gives you an opportunity to test your
basic approach before you have built up too much complexity. It also means that
your bugs or program errors, will be easier to find. Bugs come in many flavors,
ranging from simple syntactic errors such as spelling mistakes, to programming
errors such as incorrect variable scoping, to conceptual design problems such as
impossible-to-meet but critical guarantees.

Even after you've found the bugs that keep your program from running, you will
need to subject your code to rigorous testing. This means trying out not only the
"normal” expected behavior, but also checking how your program handles
unexpected or anomalous behavior. Think of your program as an opponent you're
trying to trick; see if you can get it to misbehave. This testing -- when done right -
- will lead you to modify your code or even your design.

This repeated cycling through and between the various stages of specification (or
design) development, implementation, and testing is a crucial skill for any good

programmer. Classroom programs are too often written once and tested on
obvious cases. Most of the time and money spent on real-world software is spent
on revision and maintenance rather than on initial development. Acquainting

yourself with this cycle -- and with writing clean, easy-to-read, reusable code --

may be the most important part of becoming a skilled programmer. These issues -
- together with a tour through the development cycle -- are the topic of the next

chapter.

1.7 The Interactive Control Loop

This book focuses on the problem of designing interactive software. At the heart
of our approach is the idea of ameractive control loop. This is a simple
program that repeatedly receives an input -- a new request, a set of sensor
readings, or some other information -- and responds appropriately. In the general
case, the response may involve initiating a series of other activities, so this kind of
program can in principle become almost arbitrarily complex. The basic idea is
rather simple, though.

To conclude this chapter, we present an extremely simple interactive control loop.
This example will be used as a motivator for the development of the next part of
the book. The interactive control loop idea is a theme that runs through this entire
book. In a way, it might be thought of as the "atomic unit" or basic vocabulary
element of this kind of computation.
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Perhaps the simplest interactive control loop igem program. When run, this
program waits for the user to type something. When the user finishes typing, the
program simply repeats back what it has been given. That is, it's a loop that gets
some input, processes that input (in this case trivially), and then spits out its
result.

Although the echo program seems too trivial to be of much use, a minor variant of
it runs in almost every program you type to: it's what makes the characters appear
on the screen. Far more importantly, the basic structure of this program underlies
essentially every interactive computation. And it demonstrates many of the
important properties of an interactive computation:

It is embedded in an environment (in this case involving a user's typing and
a display that the user can see).

It is interactive (with that user, but we could have it talk to another program
or over a network instead).

It is concurrent: other things happen at the same time that the program is
running. (In this case, the user might be typing the next line even while the
echo program is producing its output.)

The idea of an interactive control loop is the root of this approach to
programming. By putting together interactive control loops, you constitute a
community of interacting entities. Interactive control loops are what goes inside;
communication between them is how they interact. In other words, as they say, all
the rest is corollary....

Chapter Summary

» Computers follow special instructions, called a program, which is written in a
special programming language.

« Computation results when a computer has access to these instructions and
executes them.

* Each set of instructions must answer:

- What should the program do next?
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- How should it do it?
» Groups of steps can be combined to make a "higher order" step.
e Steps can involve choices or decisions.
e Steps can be executed over and over again using a loop.

e Most modern programs combine many separate looping instruction-followers
into an interacting community.

* Every computation is embedded in an environment and interacts with the
other (computational and physical) entities around it.

» The programmer's job is to figure out:
- What services (behavior) does my program provide?
- Who are the entities that together provide this behavior?
- How does each one work?
- How do they interact?

* Program construction is a cycle of designing, building, testing, and then
designing again.

Exercises
1. Give step by step instructions for how to tie shoelaces.
2. Select your favorite recipe and give step by step instructions for how to cook it.

3. Give detailed directions for how to get from your classroom to where you live.
Include indications that will tell whether you've gone too far and how to get back
on track.

4. Specify the expected behavior for each of the following interrelated services
provided by a bank account:

1. A deposit.

2. A withdrawal request.
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3. Checking your balance.
Does your specification permit overdrafts?

5. You are at a fruit market. Describe the protocol by which you purchase a piece
of fruit from the fruit seller.

6. Describe the division of responsibility and coordination of activities among the
players on a soccer team.
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Interlude 1 Interlude: A Community of Interacting
Entities

Overview

This interlude provides a whirlwind introduction to most of the basic concepts of
Java programming. It uses a simple community of word games and other String
transformers to illustrate this exploration.

This interlude is not intended to be read as standalone coverage of these ideas.
Instead, it introduces many concepts only briefly, but in context. Each of the
programming concepts presented here is reintroduced in much greater detail in the
chapters of section 2 of this book.

Objectives of this Interlude
1. To increase familiarity with the design process.

2. To understand how to describe a system design in terms of types,
components, and interactions.

©1999 Lynn Andrea Stein. This chapter is excerpted from a drdfitefactive Programming In Java
forthcoming textbook from Morgan Kaufmann Publishers. It is an element of the course materials developed
as a part of Lynn Andrea Stein's Rethinking CS101 Project at the MIT Al Lab and the Department of
Electrical Engineering and Computer Science at the Massachusetts Institute of Technology.

Permission is granted to copy and distribute this material for educational purposes only, provided that the
following credit line is included: "©1999 Lynn Andrea Stein." In addition, if multiple copies are made,
notification of this use must be sent to ipij@ai.mit.edu or ipij@mkp.com.
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3. To discover how design translates into executable code.

4. To be able to read and begin to understand fragments of Java programs.

1.1 Introduction: Word Games

When | was a child, we used to amuse ourselves by speaking to one another in a
special language called Pig Latin. The simplest version of Pig Latin has just one
rule: To turn an English word into a Pig Latin one, you take the first letter off the
word, then add the first letter plus "ay" to the end of the word. So, for example,
"Hello" in Pig Latin is "ello-Hay", and "How have you been?" is "ow-Hay ave-
hay ou-yay een-bay?" There are more sophisticated rules for Pig Latin that deal
with consonant blends and words that begin with vowels, but the basic idea
remains the same. It turns out that there are children's games like Pig Latin in
many, many languages, though each has a slightly different set of rules. Another
such game, popularized by the children's Public Television show Zoom, is Ubby
Dubby, in which you add "ubb" before every vowel (cluster): "Hubbellubbo",
"Hubbow hubbave yubbou bubbeen?"

This interlude explores such word- and phrase- transformations. In fact, we're
going to build a system in which you can have many of these different
transformers, and you can glue them together in almost any order. In this sense,
the transformers will be interconnectable modules like Lego(tm) or Capsela(tm).
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In addition to transformers such as Pig Latin and Ubby Dubby, we'll want
capitalizers ("HELLO"), name droppers ("Lynn says Hello", or "Chris says
Hello", or "Pat says How are you doing?"), even delayers (e.g., that don't produce
"Hello" until after they've already received "How are you doing?") or network-
senders (that can move one of these strings-of-words from one computer to
another). We'll also have some community members that can read information
that a user types to them or display information on a computer screen. And we'll
have transformers that can take listen to two different inputs, producing only one
output, as well as transformers that can produce two outputs from only one input.
(The first of these is a collector; the second is a repeater. The first is good when
you have lots of people trying to talk all at once; the second is a nice way to
circulate (or broadcast) information that needs to get to a lot of people.)

In the system that we're going to explore, we will need a way to create individual
transformer-boxes like the ones described above. We'll also need a way to connect
them together. Finally, the transformer-boxes will need to act by themselves, to
read inputs, do transformations, and produce outputs. The complete system will
be a community of interacting entities, many of which will themselves be
communities. At the most basic level, each of these entities will need to follow
specific instructions. In this interlude, we will explore both the design of the
community and the specific instructions that some of these entities will follow.

1.2 Designing a Community

We need to design
* What behavior does the system provide?
* Who are the members of the community?
* How do they interact?
* What goes inside each one?

We can start at the bottorbhattom-up design or at the toptpp-down design.

Both are legitimate and useful design techniques. However, design in practice
often mixes these techniques. In this case, we're actually going to start in the
middle; in this particular system, that is one of the easiest places to begin thinking
about what we want to produce.
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At the end of the design process, we should be able to sketch out a scenario for
each of the major interactions with our system, including what roles need to be
filled (i.e., the types of things in our system), who fills these roles (i.e., the
individual objects that make up the system), and how they communicate among
themselves (i.e., the flow of control among these objects).

1.2.1 A Uniform Community of Transformers

There are several communities implicit in the system that we're building. Let's

start in the middle, where the system can be understood as a community of
interacting transformers. In this picture, each transformer is an entity. The

interactions in this community are quite simple: Each string transformer reads in a
phrase and writes out a transformed version of it. In this system, we want to be
able to interconnect these transformers in arbitrary ways. This means that the
services each transformer provides will need to be compatible, so that one
transformer can interact with any other transformer using the same connection
mechanism.

Transformer Entity interactions, version 1

* Read a word/phrase (from a connection)
» Write a word/phrase (to a connection)

We will accomplish this generic connection between transformer entities using a
computer analog of the tin can telephones that we built as childFais is a
simple device that allows you to put something in one end and allows someone
else to retrieve it at the other end. The computer analog will be Connection
objects that allow one transformer to write a word or phrase and another
transformer to read it from the connection. The transformers on either end don't
have to know anything about one another; they can simply assume that the
transformers will interact appropriately with the Connection. And the connections
don't have to know much of anything about the transformers, either

Connection Entity interactions

! Take two tin cans with one end removed from each. Punch a whole in the center of the intact end
of each can. With a long piece of string, thread the two cans so that their flat ends face each other.
Tie knots in the ends of the string. Pull the string tight, so that it is stretched between the two cans.
Talk into one can; have someone else listen at the other.
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» Accept a word/phrase written to you
» Supply a word/phrase when requested (read)

Connections provide one particular way of providing interconnections among
objects. In this system, the components are designed so that any outputter can be
connected to any inputter. In other parts of this book, we will see examples of
other kinds of interaction mechanisms. For example, in some systems, the pieces
to be interconnected are not uniform. In others, the particular choices of
interconnections must be made at the time that the system is designed rather than
while the system is running. In part 4 of this book, we will pay particular attention

to the tradeoffs implicit in different interconnection mechanisms.

1.2.2  The User and the System

Before we look at how each transformer (and connector) is built, let's step back
from this community of interacting transformers to ask how it came into
existence. At this level, the members of our community are the user who
constructs the community and the system to be constructed. The user expects the
system to provide a way to create transformer entities and a way to connect them.

System/User interactions

» Create a Transformer (of a specified type)
« Connect two Transformers (in a particular order)
[Picture of Control Panel & tranformers.]

We'll accomplish the first of these by adding another entity to the community: a
user interface containing a control panel that allows the user to specify that a
transformer should be created as well as what type of transformer it should be.
The second interaction, connecting transformers, we will handle by letting the
user specify two transformers (through the user interface) and then asking the
specified transformers to accept a new connection. So allowing the system to
interact with the user creates one additional entity (the user interface) and adds an
interaction to the transformer:

User Interface interactions

» Create a Transformer (of a specified type)

* Create a Connection between two Transformers
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Transformer Entity interactions, version 2

« Accept an input Connectién
» Accept an output Connection
» Read a word/phrase (from a connection)

» Write a word/phrase (to a connection)
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Specifically, the Control Panel will have buttons representing each kind of

2 Maybe more than one.
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transformer available. Clicking on a button will create a new transformer of the
appropriate type. Clicking on first one transformer, then another, will create a
connection between them. This task is actually cooperative: the user interface will
create the connection and it will ask the Transformers to accept it.

1.2.3 What Goes Inside

Condol new
Lser Pan Panel “Taansformer

which,
Click. —— ek,

T

A. Corvol Flow when o WYounsfrvec
creastec]

is
. need
e 1 Connegdion
g Tenstrwerk  TnsfmecZ CortaiTors
Clice. — r@{‘l&(‘
=
chick rrﬁlsl'w
M’m
o.cu{"" -«
Connechon acce F*‘ )
Cz)q . E o .«M \\/

B. Contra) Flows When & connedtor s crrated

In the two subsections immediately above, we've designed transformer-
transformer interactions (via connections) and user-system interactions (via the
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user interface). We've addressed the question of who our community members are
(UI, transformers, connections, and -- stepping back -- the user) and, to a first

approximation, how they interact. In terms of system design, transformers and

connectors represent kinds of things of which there may be many separate
instances. For example, a particular community of transformers may contain five

transformers and four connectors, or eight transformers and three connectors, or
twelve. Each community will contain only a single control panel, though.

The next step in a full design process would be to look inside each of these
entities to discover whether they are, themselves, monolithic or further
decomposable into smaller communities. We will not decompose the user
interface further in this chapter; much of the necessary background for this task
will not be introduced until part 3 of this book. Instead, the remainder of this
interlude will look inside the transformer type to see how these objects are built.

1.3 Building a Transformer

We have seen above the specification of the interactions that a Transformer Entity
will be expected to fulfill. We can turn this interaction specification around to
provide a specification of the behavior that an implementation will need to satisfy:
A Transformer must be able to:

» Accept an input Connection
e Accept an output Connection

* Have its own instruction-follower that acts independently to read its input,
transform that input as appropriate, and write its output.

In fact, this Transformer is itself a community. The connection acceptors are each
entities that are activated only on a connection accept request; their jobs are to
remember the connections that they have been handed. For example, the
acceptinputConnection instructions basically say, "To accept an input connection
(let's call itin ), simply storein away somewhere so that you can use it later."
There's also a little bit of additional code to say what to do if you've already got
an input connection stored away. Output connections -- another part of the
community inside an individual Transformer -- are handled in the same way as
input connections. Also, some kinds of Transformers will have code that needs to
be run when an individual Transformer is created. Finally, the independent
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instruction-follower is an additional ongoing interacting entity. It makes use of the
connections (such as ) that the connection-acceptors have stored. Each

transformer will have its own instruction follower, allowing the transformer to do

its work without any other entity's needing to tell it what to do.

For the moment, we will focus on the heart of the Transformer, the work done by
this independent instruction-follower, especially the transformation it actually
performs. We begin by looking at some specific Transformers and describing the
behavior we expect.

1.3.1  Transformer Examples

The instructions for the behavior of a Capitalizer will say
1. Read the input.
2. Produce a capitalized version of it.
3. Write this as output.

Every individual Capitalizer is the same, and each one does the same thing. You
can tell them apart because they're connected to different parts of the community
and are capitalizing different words, though.

NameDropper is a different kind of Transformer. Each individual NameDropper
has its own name that it likes to drop. So the instructions for a NameDropper will
say

1. Read the input.

2. Produce a new phrase containing your name, the word "says", and the
input.

3. Write this as output..

Variations in Transformer behavior aren't restricted to the transformation itself.
Yet another kind of Transformer is a Repeater. The repeater is different because it
can accept more than one OutputConnection: two, in fact. The instructions for a
Repeater say:

1. Read the input.
2. Write this to one OutputConnection.

3. Write this to the other OutputConnection.
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And, of course, the instructions for a (simple) PigLatin should say
1. Read the input.

2. Produce a new phrase containing all but the first letter, then the first letter,
then the letters "ay".

3. Write this as output.
As you can see, the basic instructions for a Transformer are of the form
1. Read the input.
2. Produce a transformed version of it.
3. Write this as output.

We will begin by looking at the second of these instructions.

1.3.2  Strings

In Java, there is a special kind of object, called a String, that is designed to
represent these words or phrases. In fact, in Java a String can be almost any
sequence of characters typed between two double-quote marks, including spaces
and most of the funny characters on your keyboard. (The double quotes aren't
actually a part of the String itself; they simply indicate where it begins and ends.)
For example, legitimate Java Strings include "Hello" and "this is a String" and
even "&())__ )& %™M". (Strings don't have to make sense.) The Transformers that
we will build are really StringTransformers, since each one takes in a String at a
time and produces a corresponding, potentially new or transformed String as
output.

1.3.2.1 String Concatenation

Once you have a String, there are several things that you can do with it. For
example, you can use two Strings to produce a third (new) String using the String
concatenation operator, +. In Java,

“this is a String" + "%%"$"&&)) mumble blatz"

is for all intents and purposes the same as just typing the single®String

% Note that there is no space between the g at the end of String and the % at the beginning of
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"this is a String%%"$"&&)) mumble blatz"

So, for example, a NameDropper transformer might use + to create a new String
using the input it reads, the name of the particular dropper, and the word "says".
Pig Latin and Ubby Dubby might use +, too, but they'll have to pull apart the
String they read in first.

1.3.2.2  String Methods

Java Strings are actually rather sophisticated objects. Not only can you do things
with them, they can do things with themselves. For example, you can ask the
String "Hello" to give you a new String that has all of the same letters in the same
order, but uses only upper case letters. (This would produce "HELLQO".) The way
that the String does this is calledrethod, and you ask the String to do this by
invoking its method. In this case, the name of the method that each String has is
toUpperCase() . You ask the String to give you its upper-case-equivalent by
putting a. after the String, then its method name:

"Hello".toUpperCase()
yields the same thing aseLLO" .

You can also ask a String for a substring of itself. In a String, each character is
numbered, starting with 0. (That is, the Oth character in "Hello" is the H; the o is
the 4th charactef.)So you can specify the substring that you want You can do

this by supplying the index of the first character of the substring, or by supplying

the indices of the first and last charactefsello".substring(3) is "lo" ;
"Hello".substring(1,3) is "ell" ; and "Hello".substring(0) is still
"Hello"

These and other useful functions are summarized in the sidebar on String
Methods.

%%"S&E,))

* Computer scientists almost always number things from 0. This is apparently an occupational
hazard.
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Selected String Methods

Below are some selected methods that can be invoked on individual
Strings, along with brief explanations and examples of their usage.

* toUpperCase() produces a String just like the String you start with, bt
in which all letters are capitalized. For example,
"MixedCaseString".toUpperCase()
produces
"MIXEDCASESTRING"

[l

* toLowerCase() produces a similar String in which all letters are in
lower case. So
"MixedCaseString".toLowerCase()
produces
"mixedcasestring"

* trim() produces a similar String in which all leading and trailing white
space (spaces, tabs, etc.) has been removed. So
" avery spacey String ".trim()
is just
"a very spacey String"

*  substring( fromindex ) produces a shorter String containing the
same characters that you started with, but beginning at index
fromindex . Bear in mind that the index of the first character of a String
is O.
substring( fromindex , tolndex ) produces the substring that
begins at indexomindex and ends abindex .

"Hello".substring(3) iS"lo"
"Hello".substring(1,3) is"ell" , and
"Hello".substring(0) iS"Hello" again.

* length() returns the number of characters in the String. For example
"Tee hee!".length()
is 8. Since the String is indexed starting at 0, the index of the final
character in the String is the Stringisgth() - 1
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* replace( old, new) requires two charactergd andnew, and
produces a new String in which each occurrenagdofis replaced by
new:® For example,

"Tee hee!".replace('e', *')
produces
TR R

e charAt( pos) requires an index into the String and returns the
character at that index. Recall that Strings are indexed starting at 0.
"Hello".charAt( 2 ) is the same aslello".charAt( 3)

* indexOf(  character ) returns the lowest number that is an index of
character  in the String.

"Hello".indexOf( 'H") is 0 and

"Hello".indexOf( ') is 2. Also,

"Hello".indexOf( 'x") is -1, indicating that 'x' does not appear ir
"Hello".

* lastindexOf( character ) returns the highest number that is an
index ofcharacter  in the String.

"Hello".lastindexOf( 'H") is 0 and
"Hello".lastindexOf( 'x" ) is -1, but
"Hello".lastindexOf( 'I') is 3.

1.3.3 Rules and Methods

Using the String manipulations described in the previous section and sidebar, we
can construct the instructions that a variety of Transformers would use to
transform a String. For example, we might write:

totransform astring ( say,thePhrase ),
return thePhrase.toUpperCase();

This rule describes the transformation rule for an UpperCaser. Note that theString

® A character is, roughly, a single alphanumeric or symbolic character (one keystroke) inside
single quotation marks. For more detail on what exactly constitutes a character, see the chapter on
Java types.
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is intended to stand in for whatever String needs to be transformed. The
transformation rule can't operate unless you give it a String. Within the body of
the transformation rule, a temporary name (in this case, thePhrase) is used to refer
to this supplied String. The formal term for such a piece of supplied information

is anargument, and the formal term for the temporary name that is used to refer
to it is aparameter.

A different transformation rule -- this one for a pedantic Transformer that seems
to think it knows everything -- might say

totransform asString ( say,whatToSay ),
return "Obviously " + whatToSay;

Note that we have chosen a different temporary name to represent the String
argument. The parameter name doesn't matter, we can choose whatever (legal
Java) name we wish.[Footnote: Legal Java names are covered in the sidebar on
Java names in the chapter on Types.] It can be the same name in every
transformer rule, or different in each one. It is only important that we use the
same name in a particular rule both when we're specifying the parameter (in the
first line of the rule) and in the body of the rule.

Q. Can you think of another kind of Transformer and write its rule? Remember, it
should take a String and produce a String.

The rules as we've presented them aren't really Java code, but they are pretty
close. To make them legal Java, we need to add a bit more formality and syntax.
The formal name for a rule in Java isnethod, just like the String methods --
toUpperCase() , substring( index ) , etc. -- above. Somewhere, someone has
provided instructions for how toUpperCase()  so that you can use that method
without worrying how it is done. Here, we are providing the instructions for
transform , SO that someone else can use it.

A definition of UpperCaser's transform method might say:

String transform ( String thePhrase )
{

return thePhrase.toUpperCase();

}

Aside from the syntax (the details of which are covered in chapters 6 and 7), the
one big difference from the rule specification above is that the method definition
begins with the word String to indicate that the method will produce a String
when it is invoked.

Q. Quick quiz: How would you write the pedantic Transformer's transform
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method?

1.3.4 Classes and Instances

What we just described was how to specify a rule. This rule is the rule used by all
Transformers of that particular type. In fact, the rule is really the only thing that
distinguishes Transformers of that type from other Transformers. We can describe
a type of Transformer by wrapping the method definition in a bit of code that says
it's a type. In Java, a type that provides instructions implementing behavior is
called aclass

class UpperCaser extends StringTransformer

{
String transform ( String thePhrase )

{

return thePhrase.toUpperCase();

}
}
This says that UpperCaser is a type (or class) that is very much like the more
general class StringTransformer. Its behavior differs from generic
StringTransformers by using the particular transform rule contained inside the
braces {} that delineate UpperCaser's body.

Pedant is similar:
class Pedant extends StringTransformer

{
String transform ( String whatToSay )

{

return "Obviously " + whatToSay;

}
}

Q. A class that uses your transformer rule should be very much like these. Can
you write it?

These classes are descriptions of what an UpperCaser or a Pedant should do. They
are not UpperCasers or Pedants themselves, though. They're really more like
recipes from which a particular UpperCaser or a particular Pedant can be made.
To make an UpperCaser, you use the special Java construction expnegsion
UpperCaser() . Thisk "cooks up" a particular UpperCaser using the recipe we just
wrote. A Pedant is created similarly, but using a different reaigePedant()
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If we say it again, we can "cook up" another Pedasni:Pedant()

Stepping back, this is exactly what we want the buttons on our control panel to
do. Pressing the button marked Pedantic Transformer should invoke the
expressiomew Pedant() , causing an Pedant to appear on our screen. Pressing it
again should invoke it again, making a second Pedant appear. We can connect
these two together using other user interface functions. Now, if we send the String
"I'm here!" through a Connector to the first Pedant, it should send the String
"Obviously I'm here" to the second Pedant, and the second Pedant should produce
"Obviously Obviously I'm here".

Q. Connecting a Pedant's output to an UpperCaser's input and supplying the
Pedant with "not much" will produce "OBVIOUSLY NOT MUCH". What
happens if you connect an UpperCaser's output to a Pedant's input?

Q. How about Pedant, then Pedant, then UpperCaser, then Pedant? Then
UpperCaser?

1.3.5 Fields and Customized Parts

You can already see from the examples in the previous subsection how one class,
or type, can describe many different instances. For example, phrases passed
through the first Pedant contain at least one "Obviously" at the beginning; phrases
passed through the second Pedant will begin with at least two "Obviously"s. But
to really appreciate the power of multiple distinct instances of a type, we need to
look at a type that has local state associated with each instance. The
NameDropper Transformer type is a good example of this.

The transformation rule for NameDropper is

totransform  astring ( say,thePhrase ),
return MY Name- " says " + thePhrase;

But my namehere isn't a parameter. It isn't a piece of information that is supplied
to the NameDropper each time the NameDropper performs a transformation, the
way thatthePhrase Iis. Insteadmy namas a persistent part of the NameDropper.
And it is a part of the particular NameDropper instance, not a part of the
NameDropper type. After all, each NameDropper drops its own name.

So where does this nhame come from? As each individual NameDropper is
created, it must be supplied with a name. Then, the particular NameDropper
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remembers its own name, and when it comes timeadsform  a String , the
NameDropper uses its own name.

To do this, we need to create a local storage spot that sticks around between
transformations. This is done using a special kind of name that is associated with
the NameDropper instance. Such a name is calfemdda In this case, we'll use a

field calledname, because that's what it will hold. To make it clear in our code
that we're referring to a field, we use a syntax sort-of like sayipgame we

refer to the field usinghis.name . In Javathis is a way of letting an individual
instance say "my own".

So the actual transform method for NameDropper should read:
String transform ( String thePhrase )

return this.name + " says " + thePhrase;

}

This way, if one NameDropper has the name Pat and another has the name Chris,
Pat would transform the String "Hello" into "Pat says Hello" while Chris would
make it "Chris says Hello".

T Cg! Nawme Dogper )
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This method definition needs to be embedded in a class, of course. We also need
to add a bit more machinery to the class to make sure that the name is available
whentransform  needs it. The first change is to actually create a place to put the
name; the second is to write explicit instructions as to how to create a
NameDropper so that it has a name from the very beginning. This second --
constructor -- rule will need to say:

to construct alameDropper with aString ( say,whatTheNameShouldBe

),

assignmy namehe value ofvhatTheNameShouldBe;
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When we translate this into Java using the special syntax for a constructor rule, it
looks like this:

NameDropper( whatMyNameShouldBe )
{

this.name = whatMyNameShouldBe;

}
So the whole NameDropper class reads:
class NameDropper extends StringTransformer

{
String name; // the persistent storage,
// a permanent part of each
NameDropper

NameDropper( whatMyNameShouldBe )
// the creation
rule
this.name = whatMyNameShouldBe;

}

String transform ( String whatToSay )
// the transform
rule

return "Obviously " + whatToSay;

}
}
Now, when we invoke NameDropper's construction method, we give it a
parameter:

new NameDropper( "Pat" ) , for example.

We have actually seen -- or at least alluded to -- a similar situation earlier. When

discussing the other entities that together constitute a Transformer, we said that
the input-connection-acceptor's job was to stick the input connection it receives

somewhere where the rest of the Transformer community can use it. Like

NameDropper, the generic StringTransformer accomplishes this using a field.

Fields, methods, and constructors are the building blocks of Java objects. We will
see each of these things in action in the next several chapters. In chapter 7, on
Classes and Instances, we will go through each of these items in greater detail For
now, it is enough to have a general sense of how things fit together.

IP1J || Lynn Andrea Stein



1.3 Building a Transformer 11~19

1.3.6  Generality of the approach

In writing this code, we have relied on the existence of a generic
StringTransformer class. In that class, we include rules for how to accept an input
connection (using a field to store it away), how to accept an output connection,
and how to create an individual StringTransformer, including creating its own
instruction follower to explicitly invoke the transform method over and over again
on each String read from the stored input connection. The ways in which this
StringTransformer class is put together are much like the ways in which the
examples here are constructed, but the StringTransformer class is about four times
the size of the classes described above. The complete code for StringTransformer
is included in the on-line supplement to this book.

The transformers that we have written here each obey the same general rules and
interfaces. Each defines a transform method that takes a String and returns a
String. The apparent uniformity among StringTransformers makes it possible for
the connection mechanism that we outlined in the previous section to work with
each of them. The differences among StringTransformer behaviors are hidden
inside the transform method that each of them implements. In the course of this
book, we will see many different cases in which hiding behavior behind a
common interface makes a system more general and more powerful. Good design
specifications are crucial; they amount to deciding in advance how entities will
interact.

1.4 Summary

In this chapter, you have been exposed to many of the most basic pieces of Java
programming. None of these has been presented in sufficient detail to achieve
mastery of it. Each of these topics will be revisited, most in the next part of the
book. But the example described above gives a context within which to place the
detail that occupies the next several chapters.

In the next chapter, we will explore the role of types in Java systems and the
relationship between types and names. The final chapter of this section looks at
interfaces, the contracts that one type of object makes with another. In the next
section, we turn to expressions -- such as method invocation, field access,
instance construction, and even String concatenation -- and learn how evaluating
an expression produces a value of a specified type. Expressions are combined to
make statements, the step-by-step instructions of Java code that produce behavior
and flow of control. Classes allow us to implement behavior and to encapsulate
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both instructions and local state -- such as the NameDropper's name -- into
individual objects. And self-animating objects contain their own instruction
followers that execute sequences of instructions over and over, communicating
with other objects and interacting to provide desired behavior on an ongoing
basis.

Suggested Problems

See the text for things marked witl@a Also:

1. Implement LowerCaser.

2. Implement SentenceCaser (1st letter capitalized, rest not).
3. Implement Pig Latin.

4. An improved Pig Latin would leave the first letter in place if it were a vowel,
and add -way instead. This requires understanding basic conditionals and flow of
control. (See Statements.)

5. Ubby Dubby is pretty hard. You may want to look carefully at the chapter on
Dispatch.

6. Combiners and Repeaters involve extending StringTransformer in other ways,
overriding acceptinputConnection or acceptOutputConnection. (See the online
code supplement for StringTransformer source code.)

7. Really challenging problem: extract words, one word at a time, only reading an
input when all words have been used up.
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Chapter 3 Things, Types, and Names

Chapter Overview
* What kinds of Things can computers talk about?
* How do I figure out what they can do (or how they interact)?
* How can | keep track of Things | know about?

This chapter introduces some of the conceptual structure necessary to understand
Java programs. It begins by considering what kinds of things a program can
manipulate. Some things are very simple--like numbers--and others are much
more complex--like radio buttons. Primitive things can't do anything by
themselves, but in later chapters you'll learn how to do things with them. Many
complex things can actually act, either by themselves (e.g. a clock that ticks off
each second) or when you ask them to (e.g. a radio that can play a song on
request). These complex things are called Objects.

The remainder of this chapter introduces two important concepts for
understanding and manipulating things in Java: typing and naming.

Types are ways of looking at things. A type specifies what a thing can do (or what

©1999 Lynn Andrea Stein. This chapter is excerpted from a drdfitefactive Programming In Java
forthcoming textbook from Morgan Kaufmann Publishers. It is an element of the course materials developed
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you can do with a thing). Types are like contracts that tell you what kinds of
interactions you can have with things. Sometimes, the same thing can be viewed
in different ways, i.e., as having multiple types. For example, a person can be
viewed as a police officer or as a mother, depending on the context. (When
making an arrest, she is acting as a police officer; when you ask her for a second
helping of dessert, you are treating her as a mother.) A thing's type describes the
way in which you are regarding that thing. It does not necessarily give the
complete picture of the thing.

Names are ways of referring to things that already exist. A name doesn't bring a
thing into existence, but it is a useful way to get hold of a thing you've seen

before. Every name has an associated type, which tells you what sorts of things
the name can refer to. It also tells you what you can expect of the thing that that
name refers to. In other words, the type describes how you can interact with the
thing that the name names. There are actually two different kinds of names in
Java: primitive (shoebox) names and reference (label) names.

Sidebars in this chapter cover the details of legal Java names, Java primitive
types, and other syntactic and language-reference details.

Objectives of this Chapter

1. To recognize Java types.

2. To distinguish Java primitive from object types.
3. To be able to declare and define variables.
4

. To understand that a declaration permanently associates a type with a
name.

5. To recognize that each shoebox name contains exactly one value at any
time.

6. To understand how a label name can have a referent or have no referent
(i.e., be null).

7. To be able to tell when the values associated with two names are equal.
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3.1 Things

What kinds of things can your programs involve? Almost anything, as it turns out.
But we'll start with some very simple things.

3.1.1  Primitive Things and Literals

Java, like many programming languages, has some built-in facilities for handling
and manipulating simple kinds of information. For example, Java knows about
numbers. If you type in a(n appropriate place in a) Java program, the computer
will "understand" that you are referring to an integer greater than 5 and less than
7.6 is a Javditeral : an expression whose value is directly "understood" literally
by the computer. In addition to integers, Java recognizes literals that approximate
real numbers expressed in decimal notation as well as single textual characters.

This means that all of the following are legitimate things to say in Java:

6
. 42
e 35

e -3598.43101

Details of Java numeric literals -- and of all of the other literals discussed here --
are covered in the sidebar on Java Primitive Types. As we will see in the next
chapter, you can perform all of the usual arithmetic operations with Java's
numbers-

Java can also manipulate letters and otharacters When you type them into
Java, you have to surround each character with a pair of single quotation marks:
a' ,'x , or'%w . Note that this enables Java to tell the difference betedtre
integer between 5 and 7) ared (the character 6, which on my keyboard is a
lower case V). The first is something that you can add or subtract. The second is
not.

One character by itself is not often very useful, so Java can also manipulate
sequences of characters callsttings. Strings are used, for example, to

! Be warned, though, that non-integer values -- real numbers -- are represented only
approximately.
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communicate with the user. Error message, user input (i.e., what you type to a
running Java program), tittes and captions are all examples of Java strings. To
describe a specific string in Java -- for example, the message that your computer
prints to the screen when you boot it up -- you can write it out surrounded by
double quotes:Hi, how are you?" or "#'$%&&*%"$" Or even'2 + 2" . Your
computer doesntinderstandthe string, it just remembers it. (For example, the
computer doesn't know of any particular relationship between the last example
and the numbet -- or the string4" .)

It turns out that it's also useful for many programs to be able to manipulate
conditions, too, so Java has one last kind of primitive value. For example, if we
are making sandwiches, it might be important to represent whether we've run out
of bread. We can talk about what to do when the bread basket is empty:

if the bread basket is empty, buy some more bread....

Conditions like this -- bread-basket emptiness -- are either true or false. We call
this kind of thing aboolean value. Booleans are almost always used in
conditional -- or test -- statements to determine flow of control, i.e., what should
this piece of the program do next? Java recogniges andfalse as boolean
literals: if you type one of them in an appropriate place in your program, Java will
treat it as the corresponding truth value.

There are lots of rules about how these different things work and how they are
used. For many of the detailed rules about the primitive things that we have just
covered, see the sidebar on Java Primitive Types.

3.1.2 Objects

The things described above are very specific kinds of things, and they have very
limited functionality. In the next chapter, we will see what we can do to
manipulate these primitive kinds of things. Most of what goes on in Java, though,
concerns another kind of thing. This kind of thing can include anything you might
want to represent in a computer program. Some examples of these other things
include the radio button that the user just clicked, the window in which your
program is displaying its output, or the url of your home page. These things --
everything else your program can talk about -- are caligects In Java, objects
include everything that is not one of the aforementioned primitive fypes.

2 In fact, in Java, strings are objects and not primitives.
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There are many different kinds of objects, from buttons and windows to
dictionaries and factories. Each kind of object has a type associated with it.
Objects can be asked to do things, and each kind of object -- each object type --
determines what individual objects of that type can do. For example, windows can
close; dictionaries can do lookups. Each particular kind of object provides a
particular set of services or actions that objects of that kind can do. Further, each
individual object of that type can perform these actions. For example, if
myWindow and yourWindow are two different window-type objects, myWindow
can close, and so can yourWindow. But if myWindow closes, that doesn't in
general affect yourWindow.

Some objects can even act on their own without being asked to do anything; they
are "born" or created with the ability to act autonomously. For example, an

Animator may paint a series of pictures rapidly on a screen, so that it looks to a
human observer like the picture is actually moving. The animator may do this

independently, without being asked to change the picture every 1/30th of a
second. Similarly, an alarm clock may keep track of the time and start ringing

when a preset time arises.

As you can see, objects can be much more interesting than the kinds of things
represented by Java primitive types. However, objects are somewhat more
complex than Java primitives. In particular, there are no object liteyals:can't

type an arbitrary object directly into your program the way that you can type 3 or
X' or "Hello!" or false.

Almost everything that you do in Java uses objects, and you will hear much more
about them throughout this book. This chapter concentrates on how you identify
the Things in a program and how names can be used to refer to them. In the next
chapter, we will see in more detail how to use these Things to produce other
Things. Chapter 5 concentrates on combining these pieces into a full-blown
recipe, a single list of instructions that can be followed to accomplish a particular
job. The three chapters following (6-8) look at objects in more detail, describing
how to create and use the objects that are manipulated by these instructions, and
how these instructions themselves can be combined to form objects and entities
that interact in a community.

% Except String literals.
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3.2 Naming Things

With all of these things floating around in our program, it is pretty easy to see that
we'll need some ways to keep track of them. The simplest way Java offers for
keeping track of things is to give them names. This is caks@yninga value to

a name. Giving something a name is sort-of like sticking a label on the thing or
putting the thing in a particular shoebox. (We'll see later that there are actually
two different kinds of name/thing relationships, one more like labels and the other
more like shoeboxes.) We sometimes say that the naooeimngl to that value.
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Java Naming Syntax and Conventions

Java identifiers can contain any alphanumeric characters as well ag| the
symbols$ and _. The first character in a Java identifier cannot be|a
number. So IluckyDuck is a legitimate Java identifier, as s
_Alice_In_Wonderland_ , but24T is not.

Certain names in Java areserved words This means that they have
special meanings and cannot be used as names -- i.e., to refer to ttings,
other than any built-in meaning they may have -- in Java. Reserved wprds
are sometimes also calledywords. These are:
abstract default if private  throw
boolean do implements protected throws

break  double import public  transient
byte else instanceof return  try

case extends int short void
catch final interface static  volatile
char finally long super while
class float native switch

const for new synchronized

continue goto package this

Java is case-sensitive This means thatiouble and Double are two
different words in Java. However, you can insert any amounthite
space-- spaces, tabs, line breaks, etc. -- between two separate piecgs of
Java -- or leave no space at all, provided that you don't run words together.
You can't stick white space into the middle of a piece of Java -- a namg or
number, for example -- though.

Punctuation matters in Java. Pay careful attention to its use. Note, howgver,
that white space -- spaces, tabs, line breaks, etc. rotimatter in Java.
Use white space to make your code more legible and easier to understand.
You will discover that there are certain conventions to the use of white

space -- such as lining up the names in a column, as we did abo\e --
although these tend to vary from one programmer to the next.

To actually assign a value to a name -- to create a binding between that name and
that value -- Java uses the syntax

name= value

For example,
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myFavoriteNumber = 4

This associates the value 4 with the name myFavoriteNumber. 4 may be
associated with more than one name, but only one value may be associated with a
name at any given time. (One thing can be referred to by any number of names at
once -- including no names at all. The same person can be "the person holding my
right hand", "my very best friend", and "Chris Smith". But only one person is "the
person holding my right hand).

Once a particular name refers to a particular thing -gsaying has the value

"Hi, how are you?" -- then we can use the name wherever we would use its
value, with the same effect. The name becomes a stand-in for the thing it refers to.
In the next chapter, we will see that a name is a simple kind of expression. But
before we can assign a value to a name, we need to know whether the name is
allowed to label values of that type.

3.3 Types

Up to now, we've been pretty casual about our things. Java, however, is a strongly
typed language, meaning that it is not at all casual about what kind of thing
something is. Each Java thing comes into the world wigip& i.e., an indication

of what kind of thing it is. Java names, too, are created with types, and a Java
name can only be used to label objects of the appropriate type. Before we can use
a name -- asnyFavoriteNumber , above -- we have tdeclare it to be of a
particular type. Declaring a name means stating that that particular name is to be
used for labeling values (things, objects) of some patrticular type.

3.3.1 Declarations and thetype-of-thing name-of-thingule

Names are declared using tgpe-of-thing name-of-thingule:

int myFavoriteNumber;

char firstLetterOfMyName;

The second word on each line is a name that is being declared. The first word on
each line is the type that the name is being declared to have. In the first line of the
example abovenyFavoriteNumber is being declared to have type . This is a

Java name for an integer. Finally, each declaration ends with a semi-col8o (

* Barring weird interpersonal pileups, of course.
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the first declaration here creates a nam&avoriteNumber , suitable for naming
integers (or, in Java,int S). The second line creates the name
firstLetterOfMyName , Suitable for naming single characters (i.e., things of Java
typechar ).

A name has a certain lifetime, sometimes calleddtspe Within that scope --

over its lifetime -- the name may be bound to many different values, though it can
only be bound to one value at a time. (For exampi&avoriteNumber ~ may
initially be 4, but later change to be 13.) The association between a nhame and a
type persists for the lifetime of the name, howewueyFévoriteNumber  can only

name arint , not astring  Or aboolean .)

3.3.2  Definition = Declaration + Assignment

Declaring a name begins its useful lifetime. At that time, nothing else necessarily
needs to happen -- and frequently, it doesn't. But sometimes it is useful to
associate the name with a value at the time that it is declared. This combination of
a declaration and an assignment is calldéfaition. (Declarations tell you what
type is associated with a name. Assignments tell you what value that name is
bound to. In fact, assignments set the values of names. Definitions combine the
"what kind of thing it can name" and "what value it has" statement types.) For
example:

boolean isHappy = true;

double degreesCelsius = 0.0;

Thread spirit = new Thread(this);
Cat myPet = marigold;

The first and second of these make usebafilean and double constants,
respectively, to assign values to the namgsppy anddegreesCelsius . The
Thread definition actually creates a newread using a constructor with one
argument; much more on this later. The final definition makes the ngme
refer to the sameat currently named bynarigold . This is a case aharigold
standing in for the actualat, that is, the name being used in place of the thing it
refers to. After the assignment completegpet is bound to the actualkat, not to

the name. Ifmarigold later refers to some otheat -- say bothcats undergo
name changes myPet Will still refer to thecat originally known asnarigold
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3.3.3  Primitive Types

A type tells Java something about how it should represent and manipulate the
information internally. All of the Java types discussed above excaphave
built-in type names. These type names are a part of the Java language. For

example, characters -- such'as, '3 , ' , or'# -- have typechar . The
second line of the first example above shows the Java type for a character --
-- and declares théitstLetterOfMyName is a name that can be used to refer to a

character. Each Java type also has associated representational properties. All of
the Java primitive type names, along with their properties, are described in the
sidebar on Java Primitive Types.
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Java Primitive Types

Each Java primitive type has its own built-in name. For exarmplejs a
name for a type-of-thing corresponding to an integer value. There |are
actually four Java names for integers, depending on how much spac¢ the
computer uses to store them. in uses 3its, or binary digts. It can
represent a number between -2147483648 and 2147483647 -- fiota -2
23! - 1 -- which is big enough for most purposes. An integral number (i.e|, a
number without a decimal point) appearing literally in a Java program yill
be interpreted as am .

If you need a larger range of numbers, you can use the Javériype

which can hold values between ®2nd 2° - 1. You can't just type in a
value like80951151051778 , though. Literals intended to be interpreted éls
long end with the character(orl): 80951151051778L . There are also two
smaller integer types: the 16-Bitort and the 8-bitoyte . There are no
short or byte literals. For most purposes, tire is probably the Java
integral type of choice.

Real valued numbers are represented uBosging point notation. There
are two versions of real numbers, again corresponding to the amourjt of
space that the computer uses to store them. Gieetis, short for floating
point; the other isiouble , for double precision floating point. Both are
only approximations to real numbers, and double is a better approximation
than float. Neither is precise enough for certain scientific calculations| A
float is 32 bits, from positive or negative 3*%& +/-1.4€": adouble is

64 bits, from 1.8€° to 4.96%* The double type gives more precise
representations of numbers (as well as a larger range), and so is ore
appropriate for scientific calculations. However, since errors are magnified

when calculations are performed, computations with large numbers| of

calculations mean that unless you are careful, the imprecision inhereit in
these approximations will lead to large accumulated efrors.

The default floating point literal is interpreted asoable ; a literal to be
treated as 8oat must end withf or F. (A double literal optionally ends
with d orD.)

You can express both integral and real number literals with or withotft a

® These issues are studied by the field of mathematics known as numerical analysis.
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leading -. Real and rational numbers can be written using decimal notalion,
as in the text, or in scientific notation (e Q87E-65 o0r3.e4 ).

The Java character type is callethr . Java characters are represented
using an encoding callednicode which is an extension of thascii
encoding. Ascii encodes English alphanumeric characters as well as ¢ther
characters used by American computers using 8 binary digits. Unicode|is a
16-bit representation that allows encoding of most of the world's alphaklets.
Character literals are enclosed in single quotation marks:

Characters that cannot easily be typed can be specified usimayacter
escape a backslash followed by a special character or number indicailing

the desired character. For example, the horizontal tab character cap be
specified\t ; newline is\n' '; the single quote character\is , double
quote is\" , and backslash &' . Characters can also be specified by
using their unicode numeric equivalent prefixed with\thescape.

The true-or-false type is callasholean . There are exactly twboolean
literals,true andfalse

The names of Java primitive types are entirely lower case.

The double-quoted-sequence-of-characters type is caidlied . String
doesn't actually belong in this list because, unlike the other type listed flere,
String IS not a primitive type. Note that its name begins with an upper case
letter. String does have a literal representation, though. (String is the pnly
non-primitive Java type to have a literal representatiorsyiAg literal is

enclosed in double quotation markezhat a String!" It may contain

any character permitted in a character literal, including the charafter
escapes described above. Thend "Hello, world\n" ends with a
newline.

The names of Java primitive types are reserved words in Java. This means
that they have special meanings and cannot be used to name other thigs in
Java. (See the sidebar on Java Names.)

3.3.4  Object Types

Java also comes with certain predefined object types, such as String and Button. If
you are using the c¢s101 course libraries, you'll also have access to object types
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such as AnimateObject and DefaultFrame. And, in the rest of this book, you will
be learning to define object types--and create instances of those types--to do what
you want. These types -- whether a part of the Java language or of your own
definition -- are all kinds of objects. Note that, by convention, the name of each
object type -- each class -- starts with a capital letter. The names of the primitive
types start with lower case letters, as do (most) names and methods.

Object types may includglingonStarship (if you're building a space battle
adventure game)lllustratedBook (if you're building an electronic library
system), oIPigLatinTranslator (if you're building a networked chat program).
Each of these object types may describe many different individual objects -- the
three KlingonStarship s visible on your screen, the five hundred and seven
lllustratedBook s in the children's library, or the particular

PigLatinTranslator that your particular chat program is using. (These
individual objects are sometimes called instances of their types. For example, the
KlingonStarship that you just destroyed is a differeRrtingonStarship

instance from the one that is getting ready to fire its phasers at you. We'll explore
this idea in greater detail in chapter 7.)

Each individual object comes ready-made with certain properties and behavior.
An lllustratedBook has an author and an illustrator, for example. A
PigLatinTranslator may be able to translate a word that we supply it into Pig
Latin. We ask objects to do things (including telling us about themselves) using
specific services that these objects provide. Often, these services are accessed by
giving the name of the object we're asking followed by a dot (or period), followed
by the request we're making of the object. SaeifittiePrince is the name of

an lllustratedBook , theLittlePrince.getAuthor() would be a request for

the name of the author of the book: "Maurice de Saint Exupery”. Similarly, if
myTranslator is a PigLatinTranslator )
myTranslator.processString("Hello") might be a request tayTranslator

to produce the Pig-Latin-ified version of "Hello", which is "ello-Hay". These
requests are the most basic form of interaction among the entities in our
community.

One particularly useful object is Console. Console is an object that can print a
String to theJava console a standard place where someone running a Java
program can look for information. Console can also readIn a String that the user
types to the Java console.
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3.4 Types of Names

In Java, every name has a type. This type is associated with the name when the
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name is declared’he type associated with a particular name never chandes.
turns out that there are two rather different kinds of names in Java. In this section,
we will look at each in turn and see what it means for a name to be declared to be
of a particular type.

n iso
Figure 2. Shoeboxames.

34.1 Shoebox Names

Names, in Java, come in two flavors. The first kind of name is rather like a
shoebox Declaring the name to be of that type creates a space in the computer
just the right shape and size to hold the appropriate thing.

For example,
int i

associates with storage appropriate for a 32-bit integer. In fact, the declaration
of a shoebox-type name not only sets up an appropriately sized shoebox, it also
fills that shoebox with an appropriate value. If -- as in this declaration-oho

value is specified, the shoebox contains the default value for the type -- in this
case,0. There is no such thing as an empty shoeb®ou must give a name a
value before you can uséit.

Assigning a value to such a name replaces the value stored in the shoebox with a
new copy of the appropriate valu€here is no sharing between shoeboxes.
Instead, there are multiple copies of, say, the inEBry shoebox always
contains exactly one thingWWhen a new value is assigned to a shoebox, any value
previously stored in that shoebox is discarded. So, for example,

i=3;

® Some special kinds of names get values by default. We will mention these values as the names
are introduced.
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makes the -shoebox hold 3; the initially stored in the -shoebox is discarded.
The declaration-plus-assignment definition
intj =i,

creates another int-sized shoehboxin this case -- because this is a definition, not
simply a declaration 4- starts out containing a copy of the value that happens to
be in i when the definition is executed. That is, this definition makes a copy of the
value currently in -- 3 -- and creates a new shoebox, cajledo hold it. Once

this is done, there is no special relationship betwesmd; .

'4“'
L S

moXxe OL'COP\roP 3 B -

In particular, if we now change the value of
i =4
-- which sets the value ofto 4 --j is unchanged,; it still holds 3.

At any point in timeeach shoebox contains exactly one thingy shoebox cannot
be empty. A shoebox also cannot contain more than one thing. If you put a new
thing into a shoebox, the thing that was previously there is no longer there.

Strictly speaking, the kinds of things that go into shoeboxes are things that are the
same exactly when they look the same. For example, two "different" copies of the
(int-sized) number 3 are, for all intents and purposes, the same.

This might make more sense if contrasted with two things that "look"” the same,
but aren't. Consider, for example, identical twins. Although they may look exactly

" Note, however, that this does not extend to 3 and 3.0 and 3.0f, each of which is a different thing.
This is because each of these has a different type.

IP1J || Lynn Andrea Stein



3.4 Types of Names 3~17

the same, they are still two different people. If one gets a haircut, the other's hair
doesn't automatically get shorter. If one takes a bath, the other doesn't get clean. 3,
on the other hand, has no internal structure that can be changed (the way that one
twin's hair can be cut). If you change 3, you don't have 3 any more.

Notice, though, that although 3 is 3 is 3 (i.e., there aren't "different” 3s the way
that there are different twins), there may be different shoeboxes that CONTAIN 3.
If myBox and yourBox are both int-sized shoeboxes, each containing 3, changing
the number in myBox doesn't automatically change the number in yourBox. So
after

int myBox = 3;

int yourBox = 3;

myBox = 5;
yourBox Will still contain 3. Each shoebox is separate and (unless we find some
way to actively connect it to another) independent.

The only thing that remains to say about shoebox-type names is how to recognize
one. The rule is quite simpl&ll names with primitive type are shoebox-type
names.

A more formal term for shoebox typesvslue type

myHouse

myFile

Figure 4. Label names.

342 Label Names

We have seen that names associated with primitive types are shoebox-type names.
Names associated with all other types -- including all Object types latsgkor
referencenames. (This includesring names.)

Label-type names are names that can be stuck onto (appropriately typed) objects.
When a label-type name is declared, a new label suitable for affixing on things
with that type is created. For example, a building name might be a cornerstone
label, a person’'s name might go on a badge, and a dog's name might belong on a
collar. You can't label a person with a cornerstone or pin a badge on a dog, at least
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not without raising an error. Unlike cornerstones or dog tags, though, labeling a
Java object doesn't actually change that object. It just gives you a convenient way
to identify (or grab hold of) the object.

In Java terms, if we declare

RadioButton myButton;

this creates a labehyButton , thatcan bestuck onto things of typradioButton

Note that isnot currently so stuck, though. At the momengButton is a label

that isn't stuck to anything. (Cornerstones and badges and dog tags don't come
with buildings and people and dogs attached, either. Having a label is different
from having something to label with itLabels don't (necessarily) come into the
world attached to anythingThe value of a label not currently stuck onto anything

is the special non-valuaill . (That is,null  doesn't point, or refer, to anything.)

So the declaration above is (in most cases) the same as defining

RadioButton myButton = null;

“The volwr of & mm/wsmo/c

label (5 pull.

Figure 5. A label name that's not yet stuck on anything.

Of course, we can attach a label to something, though we need to have that
something first. We'll return to the question of where things come from in a few
chapters. For the moment, let's suppose that we have a particular object with type
RadioButton , and we stick thenyButton label onto it. (NownyButton 's value is

no longemull .)

After we givemyButton a value -- stick it onto a particul®adioButton  -- we
can check to see whether it's pressed:
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myButton.isSelected()

(This is an expression that returns a boolean value; see the discussion of
expressions in the next chapter.)

If we now declare

RadioButton yourButton = myButton;

a new label is created. This new label is attached tsdh®e object currently
labeled bymyButton . Assignments of label-type names do not create new (copies
of) objects.In this case, we have two labels stuck onto exactly the same object,
and we say that the namesgButton andyourButton  share a reference This

just like saying that "the morning star" and "the evening star" both refer to the
same heavenly body.

Figure 6. Multiple labels can refer to the same object.

BecausenyButton andyourButton —are two names of the same object, we know
that

myButton.isSelected()
and
yourButton.isSelected()

will be the same: either the button that both names label is pressed, or it isn't. But
we can separate the two labels -- say
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myButton = someOtherButton
-- and now the values of
myButton.isSelected()
and

yourButton.isSelected()

would differ (unless, of coursepmeOtherButton  referred to the same thing as
yourButton ). Note that moving thenyButton label to a new object doesn't have
any effect on the yourButton label.

Note also that the labeled object is not in any way aware of the label. The actual
radioButton doesn't know whether it has one label attached to it, or many, or
none. A label provides access to the object it is labeling, but not the other way
around.

All non-primitive types work like labels.

Chapter Summary
» Literals are Things you can type directly to Java.
« Java has several primitive types:
» char is the type for single keystrokes (letters, numbers, etc.)

* int is the standard type for integers. Other integer types include
byte , short , andiong .

* double is the standard type for real numbeist is another real
type.

* boolean is a type with only two valuesye andfalse

» All other Java types are object types.

e string is the type for arbitrary texstring is not a primitive type, but
Java does havaring literals.
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Names can be used as placeholders for values. Every name is born
(declared) with a particular type, and can only label Things having that

type.

Primitive types have shoebox names. A shoebox name always has an
associated value. Two shoeboxes cannot share a single value; each has its
own copy.

Object types have label names. Two label names can label the same
object. A label that is not currently stuck on anything is associated with
the non-valuewll

Exerc

ises

1. Assume that the following declarations apply:

inti;

char c;
boolean b;

For each item below, give the type of the item.

1. 42

. -7.343
"o
. b

. false

2

3

4

5. "An expression in double-quotes"
6

7

8. "false"

9
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2. For each of the following definitions, fill in a type that would make the
assignment legdl.
a=3;
b = true;
c=3.5;
d = "true",
e="6"
f = null;
g=0;
h="3};
i="n,
j="\n"

3.a. Assume that the following statements are executed, in order.

inta=5,b=7,c=3,d=0;
a=b;
c=d;
a=d;

What is the value of c? Of a? Of b? Of d?

b. Assume that the following statements are executed, in order.

inta=5,b=7,c=3,d=0;
a=b;
b=c;

What is the value of a? Of b? Of c?

c. Assume that the following statements are executed, in order.
chara='a',b="b,c="'c, d="d;
a=b;
c=a,
a=d;

What is the value of a? Of b? Of ¢c? Of d?

d. Assume thainyObject iS a name bound to an object (i.eyObject is not
null ). After the following statements are executed in order,

Object a = myObiject;

Object b = null;

Objectc = a;

8 There are several answers to some of these, but in each case only one "most obvious" type. It is
this "most obvious" type that we are after.
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a=b;

which of a, b, ¢, or myObiject is null? (The answer may be none, one, or more than
one.)

e. Assume again thatyObject is a name bound to an object (i.@yObject is
notnull ). After the following statements are executed in order,

Object d = myObiject;
d = null;

is either one or both of d, myObject null?

f. Assume one more time thatyObject is a name bound to an object (i.e.,
myObject iS notnull ). After the following statements are executed in order,

Object e = myObiject;
myObject = null;

Now which of e, myObject (or neither, or both) is null?

4. Which of the following could legitimately be used as a name in Java?

3PO
R2D2
c3po
luke
jabba_the_hut
PrincessLeia
Han Solo
obi-wan
foo
int
Double
character
string
goto
elsif
fi

5. Assume that the following declarations have been made:
inti=3;
int j;
charc="?"
chard ="n"
boolean b;
String s = "A literal”;
String s2;
Object o;
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Complete the following table:

Name shoebox or label? Value (or null?)

s2

(o]

6. Assume that there is an already-defined object type a@adtedand thatoday

is an already-definedate name with a value representing today's date. Declare a
new nameyesterday , and give it the value currently referred tottgay . (This
would be useful, e.g., if it were midnight and we might soon want to update the
value referred to byday .)
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Chapter Overview
* How do programs (and people) know what to expect?

e How do | describe a part or property of an entity to other
community members?

This chapter introduces the idea of interfaces as partial program specifications. An
interface lets community members know what they can expect of one another and
what they can call on each other to do; in other words, interfaces specify "how
they interact”. In this way, an interface describes a contract between the provider
of some behavior and its user. For example, the post office promises to deliver
your letter to its intended recipient if you give it to them in the appropriate form.
This promise (together with its requirements for a properly addressed and
stamped envelope, etc.) constitutes a part of the post office's interface.

In this chapter, you will learn how to read and write Java interfaces. These allow
you to use code designed by others -- in the same way that you can drop off an
appropriately addressed letter at the post office -- and to tell others how to use the
services that you provide. You will also learn about things that an interface
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doesn'ttell you. For example, when you drop a letter off at the post office, you
don't necessarily know whether it's going by truck or by train to its destination.
You may not know when it is going to arrive. This chapter concludes with a
discussion of what isn't specified by an interface and how good documentation
can make some of these other assumptions explicit.

This chapter is supplemented by a reference chart on the syntax and semantics of
Java interfaces.

Objectives of this Chapter
1. To learn how to recognize and read Java method signatures.

2. To understand how an interface specifies a contract between two entities
while separating the user from the implementation.

4.1 Interfaces are Contracts

Programs are communities of interacting entities. How does one entity know what
kinds of services another entity provides? How do programmers know what kinds
of behavior they can expect from objects and entities that they haven't built? A
key to understanding these questions is the notion of interface.

An interface is a contract that one object or entity makes with another. Interfaces
represent agreements betweenithplementor (or builder) of an object and its
users In many ways, these are like legal contracts: they specify some required
behavior, but not necessarily how that behavior will be carried out. They also
leave open what other things the parties to the contract may be doing.

An excellent example of a standardized interface is an electrical outlet. In the
United States, there is a particular standard for the shape, size, and electrical
properties of wall outlets. This means that you can take almost any US appliance
and plug it in to almost any US wall outlet and rest assured that your appliance
will run. The power company doesn't need to know what you're plugging in --

there are no special toaster outlets, distinct from food processor outlets, for
example -- and you don't need to know whether the power company produced this
electricity through a hydroelectric plant or a wind farm. The outlet provides a
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standard interface, with a particular contract, and as long as you live within the
parameters of that contract, the two sides of the interface can remain relatively
independent.

Of course, there are places where this contract breaks down. US appliances don't
generally work in European outlets, for example. There are several standard
electrical outlet interfaces throughout the world. It isn't clear that one of them is
particularly better than another, but it is unquestionably true that you can't use one
side of the US outlet interface (e.g., a US appliance) with the other side of the
European interface (a 220V outlet). If you want to mix and match disparate
interfaces, you will need a special adapter component. The same is true for
software.
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There are also, even in the US, certain appliances that can't use standard wall
outlets. For example, an electric oven draws too much current, and so needs a
special kind of wall outlet. The physical connector -- the plug -- is different on
this appliance, to indicate that it fits a different interface. You can't plug an
electric oven in to a standard US wall outlet. This is because its needs don't meet
the (sometimes implicit) constraints of standard (15 or 25 amp) US circuits.
Sometimes this happens in software, too -- you need a different interface because
the standard one doesn't provide precisely the functionality that you need.

4.1.1 Generalized Interfaces and Java Interfaces

The dictionary defines interface as "the common region of contact between two
independent systems.”" In Computer Science, we use interface to mean the
boundary between two (or more) things. In general, when you are constructing a
community of interacting entities, interface refers to the "face" that one of these

IP1J || Lynn Andrea Stein



4~4 Specifying Behavior: Interfaces Chapter 4
|

entities shows another: what services it provides, what information it expects. One
entity may, of course, have many interfaces, showing different "faces" to different
community members.

Interface is a piece of the answer to the question of how things interact.

User interfacerefers to the part of a computer program that the person using the
computer actually interacts with. For examplegyraphical user interface (GUI)

is one that uses a certain interaction style, e.g., typically contains buttons and
menus and windows and icons. (Before GUIs, computer interfaces typically used
text, one line at a time, the way that some chat programs work now.) A good user
interface takes into account the properties of the program as well as those of
human users. Not surprisingly, humans and computers have different skill sets.
Like user interfaces, every interface should be designed bearing in mind the needs
of the entities on both sides. We will learn more about graphical user interfaces in
particular in Parts 3 and 4 of this book.

This Computer Science use of the word interface is one sense in which we will
use the term in this book. In Java, there is a second, related but much more limited
use of the word interface. A Java interface refers to a particular formal
specification of objects’ behavior. The keywandrface  is used to specify the
formal declaration of a particular kind of contract guaranteeing this behavior. (For
example, there might be an interface defining clock-like behavior.) The Java
language defines the rules for setting out that contract, including what can and
can't be specified by it. A particular Java interface is a particular promise.

In this book, when we use the term "Java interface" or the code keyword
interface , we are referring to this formal declaration. When we use the term
"generalized interface", we are referring to the more general computer science
notion of interfaces. A Java interface is one way to (partially) specify a
generalized interface. There may be things that are part of the general promise --
such as how long a particular request might take to answer -- that can't be
specified in a Java interface.

This chapter deals specifically with Java interfaces. The ideas of generalized
interfaces permeate all parts of this book; the generalized notion of an interface is
central to interactive program design. We will explicitly revisit this issue --
generalized interface design -- in the chapters on Protocols and Communication in
Part 4 of the book.

4.1.2 A Java Interface Example

Consider, for example, a counter such as appears on the bottom of many web
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pages, recording the number of visitors. Most such counting objects have a very
simple interface. If you have a counting object, you expect to be able to increment
it -- add one to the number that the counting object keeps track of -- or to be able
to read -- or get -- its current value. This is true pretty much no matter how the
counting object actually works or what other behavior it might provide. In fact, by
this description, a stopwatch might be a special kind of counting object that
automatically increments itself. So we might say that increment and getValue
form a useful interface contract specifying what a (minimal sort of a) counting
object might be. In Java, we write this as:

interface Counting // gives the name of the interface

{
void increment(); // describes the increment contract
int getValue(); // describes the get value contract

}
We will see below how to read this interface declaration.

Once you and | agree on an interface for a counting object, | can build one and
you can use it without your needing to know all of the details of how I built it.
You can rely on the fact that you will be able to ask my counting object for its
current value usingetvalue() . Your code, which uses my counting object,
doesn't need to know whether increment adds one point (for a soccer goal) or six
(for a touchdown in American football). It doesn't need to know whether |
represent the current value internally in decimal or binary or number of
touchdowns, field goals, etc.
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Your code should work even if | exchange my original counting object for one
that can be reset before each game or each time | rewrite my web page, since your
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code depends only on being able to increment and read the value of my counting
object. In turn, | can go off and build a counting object using whichever internal
representations | wish to provide, so long as | meet the contract's commitments
(increment()  andgetvalue() ).

Of course, you may want to know more about my counting object than what the
increment/getValue interface tells you. Some of this information may be
contained in the documentation fosunting . (This counting object's value will
always be non-negative.) Other information may be contained in the
documentation for my particular implementation. (My BasicCounter Counting
object implementation is guaranteed to increase; its value cannot decrease.) If you
want to know whether my clock provides additional services, though, you may
need to use an interface that specifies this additional behavior (e.g., a Resetable
interface). We will discuss the kinds of information conveyed by an interface, and
that which should be included in interface documentation, later in this chapter.

4.2 Method Signatures

In the StringTransformer interlude and briefly in the discussion of objects, we
have seen methods, behavior that objects provide. These methods are essentially
rules for how to accomplish particular behaviors. In an interface, we focus on the
specifications for these rules and not on the instructions for how to achieve them.
That is, an interface is a collection of rule specifications. Any object that
implements that interface must satisfy those specifications, though there are
virtually no limits on how it might do that.

The formal name for a rule specifications isnathod signature For example,

the Counting interface specifies two rules increment and getvalue -- that

every counting object must provide. The body of the interface declaration is these
two method signatures, or rule specifications. A method signature describes what
things that rule expects (or needs to know about) and what the rule will return. It
also needs a name, so that you can refer to and invoke the rule (of course). In the
chapter on Exceptions, we will see that there is one other kind of thing that can be
a part of a rule specification.

Unlike the method itself, a method signature does NOT need a body. The body is
the part of the method (or rule) that contains the instructions specifying how to do
the behavior, and that is not a part of the interface/promise. The rule specification
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is only that part of the promise that users of the object need to know: what request
to make, what things to give the rule, and what to expect back. The rule body --
how to do the rule -- is only needed by the rule implementor, not by the rule user.

In the particular case of the counting interface, there are two rules that every
counting object must implemeniticrement and getvalue . So theCounting
Java interface would need to specify these two method signatures. Each method
signature has three parts: name, parameter specification, and return type.

For each of the elements below, we describe both the obligations of the designer
of the interface and the ways in which the interface is used by another entity.

4.2.1 Name

When you are building an interface, a rule can have any name that you want to
give it. It is a good idea to give it a name that will help you (and the users of your
code) remember what it does. Remember the syntax of Java names --
alphanumeric and a few symbolic characters -- and that rule/method names should
start with a lower case letter.

When you are using an interface, the name of the rule is whatever name the
interface says it is. Hopefully, the name was chosen well so that it is easy to
remember and to figure out what that rule does.

4.2.2 Parameters and Parameter Types

These are the things that your rule needs to be able to work. (For example, the
StringTransformer'sansform  rule needs to know whatring to transform.) A
parameter is a temporary name associated with a value supplied when the
method is called, i.e., when the rule that it represents is invoked. During the
execution of the rule, the parameter name can be used to refers to the supplied
value.

When you are designing an interface, you will need to specify a type and a name
for each parameter. (The type-of-thing name-of-thing rule (from the Chapter on
Things, Types, and Names) strikes again.) The type can be any legal Java type

! There is actually one other part of some method signaturebrtives clause. Every method
signature must have a name, parameter list, and return type, but some methods do not have a
throws clause. Théhrows clause will be introduced in the chapter on Exceptions. In addition,
certain modifiers -- such abstract , explained below -- may be included in a method
signature.
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(including both primitive and object types); the name can be any Java-legal name
that you choose to give the parameter. It is advisable that you give your
parameters names that make it easy for the users and implementors of your rule to
figure out what role the particular parameter plays in the rule. Our convention is
to use names that begin with a lower-case letter for parameters.

The list of parameters is separated by commyge-of-thing name-of-thing, type-
of-thing name-of-thingand so on until the lasgpe-of-thing name-of-thinghich

doesn't have a comma after it. The whole list is enclosed in parentheses. You can
list your parameters in any order. Of course, some orders will naturally make
more sense than others, and although the choice is arbitrary, once chosen the
order is fixed. This means that users and implementors of the method will need to
follow the order declared in the interface.

The getvalue andincrement rules ofCounting don't have any parameters, i.e.,
they don't need any information to begin operation. Their parameter lists are
empty: () StringTransformer'sansform  rule needs one parameterstaing

We can call thatstring anything we want to. For exampleansform 's
parameter list might beString whatToTransform )

A more complexalarmedCounting  interface might be mostly like o@ounting
interface but in addition havesatAlarm method that takes two parameters, one
anint indicating the value at which the alarm should go off and the other a
string that should be printed out when the alarm is supposed to be sounded.

setAlarm( int whatValue, String alarmMessage )

When you are using a method, you need to pass the method aasgtiokents

that match the parameter list. That is, between the parentheses after the name of
the method you're invoking, you need to have an expression whose type matches
the type of the first parameter, followed by a comma, followed by an expression
whose type matches the type of the second parameter, and so on, until you run out

of parametersincrement() , transform( "a string to transform" ) , or
setAlarm( 1000, "capacity exceeded" )

4.2.3 Return Type

The rule also needs to specify what its users can expect to get back. In many
cases, the rule returns a value. The return type is then the type of the value
returned. In some cases, the rule does not return a valtemént is an
example of such a rule: it changes the value stored inside the counting object, but
doesn't give anything back to the entity that invoked it.) The return type of such a
rule is a special Java keywondiid . The only purpose foroid is as the return
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type of rules that don't return a value. The Counting interfas@'sment
method presumably doesn't return anything, so its return type woutthbeThe
return type of thgetvalue method is presumabliy .

When you use a method, you may or may not want to do something with the
value returned. The return type of the method signature tells you what type of
thing you can expect to get back, e.g., so that you can declare an appropriate name
to store the result:

int counterValue = myCounting.getValue();
where myCounting iS something that implements tlm®unting interface, i.e.,
satisfies thecounting contract (and therefore has am -returning getvalue

method). After this statemenipuntervalue IS a name that refers to whatever
int myCounting 'SgetValue method returned.

4.2.4  Putting It All Together. Abstract Method Declaration
Syntax

Now you know about all of the components of a method signature. All you need
to know is how to put them together. The type-of-thing name-of-thing rule comes
into play here as well. The type of a method is its return type, so a method
specification is:

returnType ruleName ( paramTypel paramNamel, ... paramTypeN
paramNameN ),

For example,
int getValue();
or
void increment();
Note that these declarations end with a semi-cojgn This means that the
method signature is being used here as a specification -- a contract. It doesn't say

anything about how the method -- sagrement -- ought to work. That is, it
doesn't even have a space for the rule body, just the rule specification.

This form -- method signature followed by a semi-colon -- is calledbatract
method. There is even a Java keyword -- abstract -- to describe such methods. It
is OK, if sometimes redundant, to say

abstract void increment();

instead of the form given above. This is different from the use of a method
signature together with its body to define behavior (i.e., in a class declaration).
We will see how to use method signatures in the declaration of classes in the next
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chapter.

Since interfaces always specify only method signatures, interface method
declarations are alwagsstract . If you don't say so explicitly, Java will still act

like the wordabstract is there. However, if your method definition does not end
with a semi-colon, your Java interface will not compile.

4.2.5 What a Signature Doesn't Say

The properties of a method that are documented by its signature are its name, its
parameters, and its return typ€hat leaves a whole lot open.

For example, for each parameter:
* What is that parameter intended to represent?
« What if any relationships are expected to exist among the parameters?
» Are there any restrictions on the legal values for a particular parameter?

» Wil the object represented by a particular parameter be modified during
the execution of the method?

For the return type:

 What is the relationship of the returned object to the parameters (or to
anything else)?

« What may you do with the object returned? What may you not do?
Other questions not included in the method signature:

* What preconditions must be satisfied before you invoke this method?

» What expectations should you have after the method returns?

* How long can the method be expected to take?

* What other timing properties might be important?

* What else can or cannot happen while this method is executing?

2 In addition, method signatures may include visibility and other modifiers and any exceptions that
the method may throw.
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Not all of these questions are relevant to every method. For example, the precise
amount of time taken by the counting objegts/alue method is probably not
important; it is important that it return reasonably quickly, so that the value
returned will reflect the state at the time that the request was made. However, it is
important to recognize that these and other questions are not answered by your
method signatures alone, so you must be careful to document your assumptions
using Java comments.

Style Sidebar

Method Documentation

Documentation for a method should always include the following items:

Why would you want to use this method? What does it do? When if it

appropriate (or not appropriate) to use this method? Are there olher
methods that should be used instead (or in addition)? Are there any (ther
"hidden assumptions” made by this method?

What does each parameter represent? Is it information supplied by| the
caller to the method? Is it modified during the execution of the methgd?
What additional assumptions does the method make about these
parameters?

What does the return value of the method represent? How is it related tf the
method's arguments or other Things in the environment? What additipnal
assumptions may be made about this return value?

What else might be affected by the execution of this method? Is something
printed out? Is another (non-parameter) value modified when it is rfin?
These non-parameter non-return effects are csitbdeffects

In addition, if there are other assumptions made by the method -- such as
how long it can take to run or what else can (or cannot) happen at the $ame
time -- these should be included in the method's documentation.

Java provides additional support for some of these items in its javadoc
utilities. See the appendix on javadoc for details.
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4.3 Interface Declaration

Now that we know all about Java method signatures, it is very easy to declare a
Java interface. A Java interface is simply a collection of method signatures.

4.3.1 Syntax

A Java interface is typically declared in its very own file. The file and the
interfaces generally have the same name, except that the file nhame ends with
java . (For example, th€ounting interface would be declared in a file called
COunting.java )

Like most other declarations, an interface followsttte-of-thing name-of-thing
rule. Thetype-of-thingis, in this caseinterface . The name is whatever name
you're giving the interface, if you're declaring it:

interface Counting
Now comes arinterface body. an open-brace followed by a set of method
signatures followed by a close-brace. Note that it doesn't matter in which order
the two methods are declared; the two possible orders are equivalent. The whole
thing (including thenterface Counting part) looks like this:

interface Counting
abstract void increment();

abstract int getValue();

}
That's all there is to it.

Q. In this definition ofCounting , the wordabstract appears twice. In the
previous definition, above, it doesn't appear at all. Explain.

In fact, that was so easy, let's try another interface. This cdsble , and it
is a very simple interface. (Good interfaces often a&esgtable has a single
method:

interface Resetable

{

}
This interface is fine, but it could do with a little bit of documentation. After all,

abstract void reset();
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there are many things that an interfdoesn'tspecify.

Q. Can you identify some things that should be includedrégetable 's
documentation?

For the precise specification of what may be included in an interface definition, in
what order, and under what circumstances, see the Java Chart on Interfaces.

4.3.2 Method Footprints and Unique Names

It might seem that each method in an interface would have a unique name.
However, it turns out that this isn't the case -- at least, not exactly. Instead of a
unique name, each method in an interface (or class) definition must have a unique
footprint. The method's footprint consists of its napias its ordered list of
parameter types. Only the ordered list of parameter types counts; the return type
of the method, and the names given to the parameters, are not relevant to its
footprint.

For example, aeset() rule with no parameters (an empty parameter (ist)

has a different footprint frommaset( int newValue ) rule (with the parameter
list (inty ), and both are different fromeset( String resetMessage )

(parameter liststring) ). Only the parameter type matters, though, not the
parameter nameseset( String resetMessage ) is the same asgeset(

String whatToSay )

As long as two methods have different footprints, they can share the same name.
This is very common and even has its own naowerloading. Overloading
allows an object to have two (or more) similar methods that do slightly different
things. For example, there are two very similar mathematical rounding methods.
One has the signature

int round( float f );
while the other has the signature
long round( double d);

TheMath object has both of these methods, and if you piassround afloat |,

you get back aimt , while if you pass it @ouble , you get back #&ng . This is

very convenient -- in both cases, a floating point number is converted to an
integer, but in either case the more appropriate size is used.

An alternate kind of overloading might happen if our hypothetical
AlarmedCounting  interface had, in addition to its

void setAlarm( int whatValue, String alarmMessage )
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method, a second method that just allowed you to specify the alarm message,
without changing the value for which it was set:

void setAlarm( String alarmMessage )

If you calledyourAlarm.setAlarm( 1000, "Capacity reached" ) , you'd set

the alarm message to trigger at 1000, printing the message "Capacity reached".
yourAlarm.setAlarm( "Oops, all full" ) might then be used when to
change the warning to be issued whenathenedCounting  reaches capacity.

Overloading method names is the choice of the interface builder. The interface
user simply makes use of the interface as it is given.

4.3.3 Interfaces are Types: Behavior Promises

Now that we have these interfaces, what good do they do? Interfadesdsref
Things:they are Java types.

In Java, every interface name is automatically a type name. That is, when you are
declaring a (label) name, you can declare it suitable for labeling things that
implement a specific interface. In the next chapter, we will see how to declare
Java classes and how to indicate what interface(s) the class implements.

So, for example, the declared typengtounting , above, wagounting :
Counting myCounting;

In this examplemyCounting is declared to be of typeounting , i.e., something
that satisfies th€ounting contract (interface) that we declared in the preceding
sections. For example, we might have an interface calledk that includes a
getScoreCounter() method that returns@ounting:

interface Game

{

abstract Counting getScoreCounter();
// maybe some other method signatures....
}

If theWorldCupFinal  is aGamg then we might say
Counting myCounting = theWorldCupFinal.getScoreCounter();

In this case, we don't know anything more about the typg©unting ; we just
know that it is acounting . Often, as users of other people's code, interfaces are
the only types we need to know about.
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4.3.4 Interfaces are Not Implementations

We have seen that an interface can be used as the type of an object. You can use
names associated with that type to label the object. You can pass objects
satisfying that interface to methods whose parameter types are that interface type,
and you can return objects satisfying that interface from a method whose return
type is that interface. Theounting in the previous paragraph was an example of

the power of interfaces.

However, there are certain things that you cannot do with an interface.

Of course, when we're manipulating thadunting object, we don't know
anything about how it works inside. We don't know, for example, whether it has a
touchdown part and a field goal part, or is represented in decimal or in binary, or
is likely to keep going up while we're thinking about it (since players might keep
scoring). To figure this out, we'd need to know more than just the interface -- the
contract -- that it satisfies; we'd need to know how it is implemented.

Interfaces are about contracts, promises. They don't, for example, tell you how to
create objects that satisfy those promises. In the next several chapters, we'll learn
about building implementations that satisfy these promises and about creating
brand new objects that meet these specifications. To do that will require
additional machinery beyond the contract/promise of an interface.
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Style Sidebar

Interface Documentation

An interface should be properly documented, typically using a multi-line|or
javadoc comment immediately preceding its declaration.

Documentation for an interface should include the following information:

What kind of thing does this interface represent? Why would you wani to
use an object of this kind? What could it do for you? What could you|do
with it?

What kinds of assumptions or conditions does this kind of object need t¢ do
its job? Are there any special objects that it might need to have around pr to
work with?

What services does this kind of object provide, and how do you use them?
These questions are typically answered by the individual methods, blt a
brief overview of what methods the interface provides is always useful. It is

may also be useful for the interface to document which method(s) to juse
when, especially when multiple similar methods exist.

The interface's documentation should make it easy for a potential us¢r to
find the method(s) s/he wants. It should also make it possible for some¢one
seeking to implement this interface to determine whether s/he has mef the
intent as well as the formal specification of the interface. If | am building a

stopwatch, do | want to subscribe to dieck interface?

Remember that an interface declaration is largely avbat, not how. It
specifies contracts and promises, not mechanism.

Java provides additional support for some of these items in its javadoc
utilities. See the appendix on javadoc for details.
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Chapter Summary
* Aninterface is a contract that a particular kind of object promises to keep.
« Java interfaces are Java types.

» Every (public) interface must be declared in a Java file with the same
name as the interface.

« Java interfaces contain method signatures.

A method signature specifies a method's name, parameter types, and
return type. It does not say anything about how the method actually works.

* A method signature is also calledastract method.

* One interface may have multiple methods with the same name, as long as
they have different ordered lists of parameter types. Method name plus
ordered parameter type list is called the method's footprint.

* An interface does not contain enough information to create a new object,
though it can be used as a type for an existing object (that implements the
interface's promises).

* Many important properties of a method specification or interface are not
specified by the method or interface declaration. Good documentation
describes these additional assumptions.

Exercises

1. StringTransformer has a transform method. Declare an interface, Transformer,
that contains this single method specification, so that StringTransformer might be
an implementation of this interface.

2. A Clock is an object that needs a method to read the timegaye ) and
one to set the time (sagtTime ). Assuming that you have a type Time already,
write the interface for a Clock.
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3. Extend the interface of Clock (from the previous exercise) to include a
setAlarm method (that should specify the Time at which the alarm should go off.

4. Extend the Clock interface further so that there is a second setAlarm method
that takes a Time and a boolean specifying whether the alarm should be turned on.

5. Write the interface AlarmedCounting.

6. Consider the following interface:
interface Game

{
/* returns the Counting that keeps track of the team’s
score */
abstract Counting getScoreCounter;

/* returns the Counting that keeps track of how many
fouls */
/* each player has committed */
abstract Counting getFoulCounter( int playerNumber );

/* returns the counting that keeps track of how much
time */
/* has passed in the period so far */
abstract AlarmedCounting getTimeCounter();

/* returns the length of a period */

abstract int getPeriodLength();
}

Assume thatheworldCup is a particulagameg according to this interface.

a. Write a type declaration for the nameworldCup . Don't worry about
where its value comes from.

b. Write a type declaration suitable for holding the result of
theWorldCup.getTimeCounter()

c. Write an expression that returns the object that counts player 5's fouls.
d. Write an expression that returns the current scotieforldCup.

e. Write a method invocation that sets up theWorldCup (and its internal
representation) so that it will print "Period over!" when the elapsed time
reaches the length of the period.
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Chapter 5 Expressions: Doing Things With Things

Chapter Overview
* How do | use the Things | have to get new (or other) Things?

This chapter and the next introduce the mechanics of executable code, the
building blocks for individual sequences of instruction-following. The previous
chapter's Things each come with a Type, which specifies how that Thing can
interact. An expression is a piece of code that can be evaluated to yield a value
and a type

Simple expressions include literals -- Things that java literally understands as you
write them -- and names, which stand in for the Things they refer to. More
complex expressions are formed by combining other Things according to their
types, or promised interactions.

To understand a complex expression, you must understand its parts (a basic form
of "what goes inside") and how they are combined (a basic "how they interact").
Sometimes, you have to understand this without knowing all of the details of
what's inside.

Sidebars in this chapter cover details of various Java operators, including casts

©1999 Lynn Andrea Stein. This chapter is excerpted from a drdfitefactive Programming In Java
forthcoming textbook from Morgan Kaufmann Publishers. It is an element of the course materials developed
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and coercion rules. In addition, supplementary reference charts are provided
outlining the syntax and semantics of Java expressions.

Objectives of this Chapter

1. To understand that an expression is a piece of java code with a type and a
value.

2. To become familiar with the rules of evaluation for basic Java expressions.

3. To learn how to understand complex expressions as combinations of
simpler expressions.

4. To be able to evaluate both simple and complex expressions.

5.1 Simple Expressions

An expression is the simplest piece of Java code. An expression is a Thing, so it
has both a value and a type. An instruction-follower--an execution of Java code--
evaluates an expression to obtain its value, which will always be of the
expression's type. There are many kinds of expressions, and each has its own rules
of evaluation that determine what it means for an instruction-follower to evaluate
that expression. Legitimate Java expressions inctude , "Hi, there" , and
this.out.writeOutput( this.in.readinput() ) . The last of these is an
expression whose evaluation involves inter-object (and inter-entity)
communication.

5.1.1 Literals
The very simplest Java expression iditaral: an expression whose value is
interpreted literally, such &% or 32e-65 Or "How about that?" . Java literals

include the various kinds of numbers, characters, Strings, and booleans. For a
more complete enumeration of literal expressions and rules regardingythiaix
(i.e., how you write them), see the sidebar on Java Primitive Types,.above

Every expression has a value and a type, obtained by evaluating the expression.
The value of a literal is itprima facievalue, i.e., what it appears to be. The type

of an expression is the type of its value. Integer literals are always ofntype
unless an explicit type suffix (I, s, or b) is included in the literal. Non-integral
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numeric literals are always of tygeuble unless explicitly specified to be of type
float (using the f suffix).

51.2 Names

Names are also Java expressions. A name is only a legitimate expression once it
has been declared, i.e., within its scOpEhe value of that name is the value
currently associated with it -- i.e., stored in the shoebox if it is a shoebox name, or
labeled by it if it is a label name. The type of a name expression is always the type
associated with that name at the time of its definftion.

For example, if we are within the scope of a declaration that says
int myFavoriteNumber = 4;

and nothing has occurred to change the value associated with (stored in the
shoebox calledhyFavoriteNumber , then the value of the expression
myFavoriteNumber

is 4 and its type is int. That is, the int 4 is the result of evaluating
myFavoriteNumber

5.2 Method Invocation

Method invocation is the primary way in which one object asks another to do
something. It is the primary basis for inter-entity communication and interaction,
because it is the main way in which objects talk to one another.

We have seen in previous chapters that objects are able to perform certain
services. These service requests are catlethods and asking an object to do

! Strictly speaking, the area of text within which a name is legal is callscoipe The scope of a
variable -- a name with no special properties beyond being a name -- begins at its declaration and
extends to the end of the enclosing block. (See blocks, below.) Later, we will see three other kinds
of names: classes, fields and parameters. Class names have scope throughout a program or
package; they may be used anywhere. Field names have scope anywhere in their enclosing class,
including textually prior to their declaration. Parameter names have scope throughout their method
bodies only.

2 Note that the type of a name expression is the declared type of the name rather than the type of

the value associated with the name. That is, even where there is disagreement between the
declared type of a name and its value, the type of a name expression is always its declared type.
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something is callechethod invocation In Java, a method invocation involves:

* An expression whose value is the object to whom the request is directed,
followed by

e A period (or "dot"), followed by
» The name of the method to be invoked, followed by

» Parentheses, within which any information needed by the method request
must be supplied.

An example method invocation might be

"a test string".toUpperCase()

This example consists of a String literal expressioa tést string" ) and a
request to that object to perform itsUpperCase() method. A String's
toUpperCase() ~ method doesn't require any additional information, so the
parentheses are empty. (They can't be omitted, though!) The value of a String's
toUpperCase() method is a new String that resembles the old one, but contains
no lower case letters. So the value of this expression is the same as the value of
the literal expressiom TEST STRING" .

Another example of method invocation is

Console.printin( "Hello" )

This asks the object named by the name expresziosvle to print the line
supplied to it. It requires that a String -- the line to be printed -- be supplied inside
the parentheses. This is "necessary information” is calledrgument to the
method.

What is the value of this method invocation expressionisole.printin(

"Hello") is a method invocation whose primary use, like that of assignment, is
for its side effect, not its value. We use this method to make something appear on
the user's screen. Good style dictates that we wouldn't use this expression inside
any other expression. It turns out that many methods have no real return values, so
(as we saw in the previous chapter) there's a special Java type for use on just such
occasions. This type is calledid . It is only used for method return types, and it
means that the method doesn't return anything.

The evaluation rule for a method invocation expression is as follows:

1. Evaluate the object expression to determine whose method is to be
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invoked.
2. Evaluate any argument subexpressions.

3. Evaluate the method invocation by asking the object to perform the
method using the information provided as arguments.

4. The value of the expression is the value returned by the method
invocation. The type of the method invocation expression is the declared
return type of the method invoked.

In order for step 3 to work, the object must know how to perform the method, i.e.,

it must have instructions that can be followed in order to produce the return value
needed in step 4. We have already seen how an interface can describe an object's
commitment to provide such behavior. We will see in the next chapters how this
may be accomplished in detail.

From the perspective of the method invoker, however, the transition from step 3
to step 4 happens by magic (or by the good graces of the object whose method is
invoked). The object offers the service of providing a particular method requiring
certain arguments and returning a value of a particular type. For example, if we
look at the documentation (or code) for String, we will see that it has a
toUpperCase() method that requires no arguments and returns something of type
String. The printin method of Console requires a String as an argument, and
printin's return type is void. We will learn more about the methods that objects
provide the chapters on Classes and Objects and Designing with Objects.

5.3 Combining Expressions

Since expressions are things -- with types and values -- expressions can be
combined to build more complicated expressions. For example, the expression
"serendipitous".toUpperCase() has the typestring and the same value as

the literal"SERENDIPITOUS". That is, you can use it anywhere that you could use
the expressionsERENDIPITOUS". So, for example, you could get an adverbial
form of this adjective by usingserendipitous".toUpperCase() + "LY" ,
producing " SERENDIPITOULY", or extract the word "REND" using
"serendipitous”.toUpperCase().substring(2,5)

In general, since every expression has a type, you can use the expression
wherever a value of that type would be appropriate. The exception to this rule
about reuse of expressions is that some expressionsm@stant -- their value is
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fixed -- while other expressions are not. Some contexts require a constant
expression. In these cases, you cannot use a non-constant expression of the same
type. (For example, to"+"get"+"her" is a constant expression, but
str+"ether" is (in general) not, even éfr happens to have the valueg" .%)

There are a few places where Java requires a constant value. These will be noted
when they arise.

The evaluation rule for a compound expression is essentially the same as the
evaluation rules for the expressions that make it up: Evaluate the subexpressions
that make up this expression, then combine the values of these subexpressions
according to the evaluation rule for this expression. For example, when we
evaluate "serendipitous".toUpperCase() , we are actually evaluating the
simpler (literal) expression'serendipitous" , then evaluating the method
invocation expression involvingserendipitous" 'S toUpperCase()  method.
Similarly, str + "ether" evaluates the (name) expressson and the (literal)
expression“ether’ , and then combine these values using the rules for +
expressions, detailed below. In this case, and"ether"  are subexpressions of

str + "ether" . There are two additional details: 1) Evaluating the
subexpressions may itself involve several evaluations, depending on how complex
these expressions are and 2) it may not always be clear which operation should be
performed first.

Method invocation, like other expressions, can be used to form increasingly
complex expressions. For example, we can combine two method invocations we
used above to cause the valuerofEST STRING" to appear on the user's screen:

Console.printin( "a test string".toUpperCase() )

In this case, the value of ti@pperCase() invocation is used as an argument to
printin. We can also cascade other kinds of expressions, such as

"This is " + "a test string".toUpperCase()
or

Console.readIn().toUpperCase()

% The expressiostr+"ether" would be constant #tr were declarefinal , though. Names
declared to béinal  cannot be assigned new values.
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5.4 Assignments and Side-Effecting Expressions

Another kind of operator imssignment We have already seen some simple
assignments -- including some that were mixed with declarations and buried
inside definitions. An assignment is actually a kind of expression. Its first operand
-- the expression on tHeft-hand side -- must be a name or another expression
that can refer to a shoebox or a label. In this context, and in this contgxthe

name expression refers to the shoebox or labet,to the particular value
currently associated with the name.

Like all expressions, every assignment has a type and returns a value. The type of
an assignment is the type of its left-hand side. The value of an assignment
expression is the value assigned to the left-hand side. For example, the type of the
expression

myNumber = 4563129

isint , because the type @$63129 isint , and the value ig563129 for the same
reason.

Note that we must have declan@gNumber before we get to this expression; and
that this expression is legitimate rifyNumber has typeint , long , float , or

double . Note, also, that ifnyNumber were already declared, we wouldn't want to
declare it again. Every time that you declare a name, it creates a brand new
shoebox or label with that name.

Although assignments are expressions in Java, they are not generally used for the
resulting value. Instead, an assignment statement is generally used because it will
cause the shoebox or label on its left-hand side to be associated with a new value.
This effect is not a part of the value of the expression; instead, it happens "on the
side” and is called aide effect Assignment statements are among the most
common expressions used for their side effects, but we will see several other
expressions with important side effects in the remainder of this chapter.
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Style Sidebar

Don't Embed Side-Effecting Expressions

When you use a side-effecting expression, it is best if this expression ig| not
a subexpression of any other expression. So, for example, while
assignments--as expressiogast be used inside other expressions, it s
generally considered bad style to do so. Embedding side-effecling

expressions inside other expressions can make the logic of your code |very
difficult to follow. Side effects are also important and often difficult tp
catch. By highlighting the side effecting expression by making it the

outermost expression, you are increasing the likelihood that it will be r¢ad
and understood.

14

5.5 Other Expressions that Use Objects

We have already seen method invocation, perhaps the most common object
expression. In this section, we cover three additional expressions that use objects:
field access, instance creation, and type membership. Each of these kinds of
expressions will be discussed further when we explore how objects are actually
created, beginning in the chapter on Classes and Objects.

5.5.1 Fields

In addition to methods, objects sometimes have fields: data members that behave
as names. That is, fields are either shoeboxes or labels. Like methods, fields are
also accessed using the dot syntax, but without following parentheses. A field
access expression is essentially a name expression, though a more complex one
than the simple names described above. The value of a field access expression is,
as for a simple name, the value associated with the shoebox or label. So, for
example,Math.PI is adouble shoebox, belonging to an object calleeth,
containing a value approximating a real number whose most significant digits are
3.14159 .

We can use field invocations in compound expressions, too. If myWindow is a
Window with a getSize() method that returns a Dimension,
myWindow.getSize().height first asks myWindow to perform itgetSize()

method, resulting in a particular Dimension object, then asks the Dimension
object for its height field. This compound expression is the same as first creating a
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name for the Dimension and assigning it the result of the method invocation:
Dimension mySize = myWindow.getSize();
and then asking the newly named Dimension mySize for its height field.

Because field access expressions are actually name expressions, they also have
special behavior in the specific context of the target of an assignment statement.
That is, you can assign to a field access expression just as you would to a simple
name, and the field access expression behaves like the shoebox or label to which
it refers. For example, if height is ant shoebox owned bynySize , the
expression

mySize.height = mySize.height / 2

halves the value contained in theight shoebox omySize , which might shrink
mySize vertically by half.

55.2 Instance Creation

A second object-related expression isiibe expression, used with a class name

to create a new object. The details of this expression type are covered in the
chapter on Classes and Objects; for now it is enough to recognizenidw A
expression has three parts: the keywosd, the class name, and a (possibly
empty) list of arguments, enclosed in parentheses. This description of how to
write an expression is called ggntax, and we can abbreviate it as:

new ClassName ( argumentList )

The words in italics --ClassName and argumentList  -- are placeholders to
indicate that you need to supply the details. The rest of the expressenand
the parentheses -- are to be taken literally. For example,

new File ( "myData" )

creates a newile object with external (outside of Java) nam@ata. Like all
other expressions, this one has a typelassNname, the kind of object created, in
this caserile -- and a value -- the new object created. h&e expression is
typically used inside an assignment or method invocation.

The rules of evaluation for creation expressions are similar to the rules of
evaluation for method invocation. The return value is always a new instance of
the type (or class) whose instance creation expression is invoked (in this case,
File). The return type is always the type whose instance creation is invoked.
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Instance creation is a side effecting expression (since it creates a new object).

5.5.3 Type Membership

There is one last operator that is useable only with objects. This is an operator
calledinstanceof , which checks whether an object has (or can have) a certain
type. It takes two operands:

anObjectExpression instanceof ObjectTypeName

The first operand, which precedes the keywaistanceof , can be any
expression whose value is of any object (non-primitive) type. The second
operand, which follows the keywonetanceof , must be the name of an object
type. As we shall see in the next few chapters, this name may be the name of any
class or any interface.

The instanceof operator is used to determine whether it is appropriate to treat its
first operand according to the rules of the type named by its second operand. (For
example, is it appropriate to cast the object to this type?) The value of an

instanceof expression is a boolean, true if it is appropriate to treat the object

according to this type, false otherwise. So, for example,

"a String" instanceof String

has the value true (becauaestring" is a (literal) instance of the tyseing ),
while

new Object() instanceof String

has the value false (because the new Object created by the instance creation
expressiomew Object() IS not a String.

5.6 Complex Expressions on Primitive Types: Operations

Perhaps the most common kind of expression on primitive types is made up of
two expressions combined with aperator. Java operators are described in the
sidebar on Java Operators. They include most of the common arithmetic operators
as well as facilities for comparisons, logical operations, and other useful
functions. Of special note are + for String concatenation and unary - for negation.

Each operation takes arguments of specified types and produces a result with a
particular value and type. For examplex iéndy are both of typént , SO isx +
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y. The+ operator can be used to combine any two numeric types. The two things
combined with the operator are called tdperands In the expression+y , +is

the operator and andy are the operands. Some operators take two operands.
These are calledinary operations. Other operators take only one operand; these
are the unary operations. One operator 2 -- takes three operands.
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Java Operators

Java operators include

+ - * /| & N % << >> >>>

+= = *= [= |: &= N= U= <<= >>=>>>=
< > <=>= == I=1 && “ ++ -

= 72

The operators in the first row are, respectively, addition, subtractipn,
multiplication, division, bitwise or, bitwise and, bitwise negation, modult|s,
left-shift, sign-extended right-shift, and zero-extended right-shift. Additipn
is also used for String concatenation when at least one of its arguments is a
String. Subtraction can also be used as unary (one-argument) negation.

The operators in the second row combine their correlate in the first witt| an
assignment operation. Thus+= 2 is the same as = x + 2 ; the
difference is that the left-hand side of the combined operator is evaluifited
only once. The value of an operator assignment expression is the new yalue
of the left-hand side; the type is the type of the left-hand side. All
assignment expressions modify the name that is their left-hand side.

The third row above begins with six comparisons, each of which returr|s a
boolean. The final comparison is not-equal. These are followed by log|cal
negation, logical conjunction (and), and logical disjunction (or). Each|of
these takes boolean arguments, one in the case of negation, two in the| case
of conjunction and disjunction, and returns a boolean.

The final operators in the third row are autoincrement and autodecrern|ent.
These can be used as either prefix or postfix operators. Both ++x and [x++
modify x, leaving it incremented. However, ++x returns the incremented
value of x, while x++ returns the unincremented value. Theperator
works similarly.

The final two operators are simple assignment (which works like |he
compound assignments, above) and the ternary (three-operand) exprejssion
conditional.

5.6.1  Arithmetic Operation Expressions

The operator is an example of a kind of operator calledasithmetic operator.
The rules for evaluation of the binary arithmetic operators +, -, *, /, and % are
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simple: compute the appropriate mathematical function (addition, subtraction,
multiplication, division, and modulus, respectively), preserving the types of the
operands. As explained in the sidebar on Java Oper&ipespp typehas type

type for all of the basic arithmetic operations on most of the primitive type: For
these arithmetic operators, if the types of the two operands are the same, the result
-- the value of the complete expression -- will generally also be of that type. For
example, evaluating + 7 yields theint 10;2.0*5.6  evaluates to produce

11.2, and -- perhaps surprisinglys-+2 evaluates to 2, not 2.5 (or 2.0).

Sometimes, an operator needs to treat one of its operands as though it were of a
different type. For example, if you try to add (adouble ) and3 (anint ), Java

will automatically treat thent 3 as though it were the equivalent doutd®, .

This way, Java can add the two numbers using rules for adding two numbers of
the same type. This kind of treating numbers -- or other things -- as though they
had different type is callecbercion Coercion does not actually change the thing,

it simply provides a different version (with a different type). For shoebox types,
this version is essentially a copy. For label types, it is another "view" of the same
object. Coercion is described more fully in the sidebar on Coercion and Casting.

Other arithmetic operators work in much the same way+.as\dditional
information on arithmetic expressions is summarized in the sidebar below. Note
in particular that (the division operator) obeys the satyyge op types typerule.

This means that/2 has typent (and the value). If you want a more precise
answer -- 3.5 -- you can make sure that at least one operand is a floating point
number:7.0/2  has typalouble , as doeg /2.0 .

In addition to thebinary (two-argument) arithmetic operators described above,
Java includes anary minus operator that takes one argument and negates it. So
5 is an integer, while 5 is an arithmetic expression that has valueand type

int . (Subtle, no?)
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Arithmetic Expressions

Arithmetic expressions include the binary operators for additign (
subtraction {), multiplication (*), division (/), and the modulus or
remainder operation%. In addition, there are two unary arithmetic
operators# and- .

Arithmetic operations work only with values of type , long , float , or
double . When a (unary or binary) arithmetic expression is invoked witt| a
value of typeshort , byte , orchar , Java automatically widens that operan
to int (or to a wider type if the other operand so requires). For further
details on widening, see the sidebar on Coercion and Casting.

=N

When the operands of a binary arithmetic expression are of the same [ype,
the complete expression also has that type, except that no binary arithrpetic
expression has typshort , byte , or char . This is because operands of
these types are automatically widened.

When the operands are of different types, Java will automatically widens
one to the other.

The values of the expressions involving the binary operators*, and/
are the sum, difference, product, and quotient of their (possibly wider|ed)
operands, respectively.

The value ofx % y is the (appropriately widened) remainder whers
divided byy.

The value of a unary expression is the additive inverse of its (possibly
widened) operand; a unary expression has the value of its (possibl
widened) operand.

~

5.6.2  Explicit Cast Expressions

If the numbers you wish to divide -- or otherwise combine -- are not literals, you
can still change their types using explicit cast expression(as described in the
sidebar on Coercion and Casting). Like coercion, this gives you a view of the
thing cast as a different type. It is accomplished by putting the name of the type
that you wish the thing to have in parentheses before the (expression representing
the) thing. For example, ihyint is anint -sized shoebox holding the valge
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(long) myint is a view of3 as along and (double) mylint is an expression
with the same type and value as the literal expressionThroughout thismyint
itself remains amnt -sized shoebox holding the valae

Evaluating a cast expression yields the value of the cast operand (in this case,
myint ), but with the type of the explicit cast (in this caseg ). A cast
expression does not alter its operand in any way; it simply yields a new view of an
existing value with a different type. Some casts are straightforward and
appropriate; some risk losing information; and most are simply not allowed. For
example, in Java you cannot castiran to boolean . Casts are also allowed from

one object type to another under certain circumstances. See the sidebar on
Coercion and Casting for further details.
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Coercion and Casting

Sometimes things don't have the types we might wish. Coercion is |the
process of viewing a thing as though it had a different type. Coercion cloes
not change the thing itself; it merely provides a different view.

Java only makes certain automatic -- implicit -- coercions. For examjp
Java knows how to makste into short , short intoint ,int intolong ,
long into float , andfloat into double . This works because each typ¢
spans at least the magnitude range of the ones appearing before it in the list.
(A few of these coercions-- such lasg tofloat -- may lose precision.)
These coercions -- which are, in general, information-preserving -- jare
called widening. We will see in the chapter on Objects and Classes that
there are also widening coercions on reference types.

€,

Coercions in the opposite direction are caltedrowing. Java does not
generally perform narrowing coercions automatically. For example, Java
cannot automatically convert an arbitrady to ashort , because that

might contain too much information to fit intaseort . The number 60000
is a perfectly legitimate value for am , but not for ashort . There is no
mapping fromint s to short s that accurately captures the magnitucle
information in each possiblet . A coercion of this kind -- such ag to
short -- which may not preserve all of the information in the origini
object, is calledossy*

Sometimes, you need to change the type of an object when Java will njt do
so automatically. This is accomplished by means ofeaplicit cast
expression The syntax of a cast expression is

( type-name ) expression to be cast

For example, imyint is a name of typat with value7 (e.g.,int myint
=7; ), then

(long) myint

* There is one instance in which Java performs a narrowing but non-lossy coercion automatically.
This is in the case of a sufficiently smiali constant assigned to a harrower integer type. This
allows literals-- which would otherwise have type int -- to be assigned to names with byte and
short type:short smallNumber = 32;
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is an expression with typeng and valuer. (Note thaimyint still has type
int . Casting, like implicit coercion, does not actually modify the casteg.)
Explicit coercion allows both widening and narrowing coercions: you cgn
cast annt tolong , as in the example above, orstwrt -- a cast that may
lose information. Certain casts may be illegal and will cause (compile-| or
run-time) errors or exceptions.

5.6.3 Comparator Expressions

Not all operators are arithmetic. There is a set of boolean-yielding operators,
sometimes calledomparators, that operate on numeric types. These inckide

<=, ==, etc. (See the sidebar on Java Operators for a complete list.) These take two
numbers, coerce appropriately, and then return a boolean indicating whether the
relationship holds of the two numbers in the order specified. For exaenple,

3.0 istrue , but5 <= 3 is false . Beware:== tests for equality= is the
assignment operator (see below) .

Equality testing -- the operators == and != -- are not restricted to numeric types.
For any type, these operators combine two expressions of the same type, returning
true only of both operands are the same. When are two operands the same? For
primitive types, values are the same whenever they "look" the same, i.e., when
their values are indistinguishable. For object types, values are the same exactly
when the two expressions refer to teme objectlt is not sufficient for two
objects to look alike (as in the case of identical twins); they must actually be the
same object, so that modifications to one will necessarily be reflected in the other.
(This is like giving one twin an haircut as we did in the chapter on Things, Types,
and Names.)

Evaluating one of these expressions is much like evaluating an arithmetic
expression. The values of the operands are compared using a rule specific to the
operator -- such as > or <= -- and the resulting boolean value is the value of the
expression.

5.6.4  Logical Operator Expressions

Another set of operators combines booleans directly. These inctdde
(conjunction, or "and") and| (disjunction, or "or"). For example, the
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expressiortrue || false is true . While this is not very interesting by itself,
these boolean operators can be used with names (didyipen , of course) or in
complex expressions to great effect. For exammpiey || snowy might be a
reasonable way to express bad weather; it will (presumably) have thervalue
exactly when it is precipitating. There is also a unary boolean negation operator:
! . The Java fragment

I(rainy || snowy || overcast)

might be a good expression for sunshine.

The rule for evaluating negation is simply to invert the boolean value of its
operand. The rules for evaluating conjunction and disjunction are a bit more
complex. First, the left operand is evaluated. If the value of the expression can be
determined at this point (i.e., if the first operand to a conjunction is false or the
first operand of a disjunction is true), evaluation terminates with this value.
Otherwise, the second operand is evaluated and the resulting value computed. The
type of each of these expressions is boolean.

These odd-seeming rules are actually quite useful. You can exploit them to insert
tests. For example, you might want to compute whether (x / y) > z, but it might be
the case that y is 0. By testing whether (y ==0) || ((x/y) >z ), you can eliminate
the potential divide-by-zero error. (If y is 0, the first operand to the disjunction -- (
y == 0) -- will be true, so evaluation will stop and the value of the whole will be
true. (A comparable formula can be written to return false if either yisOor (x/y

)>z)

5.7 Parenthetical Expressions and Precedence

A parenthetical expression is simply an expression wrapped in a pair of
parentheses. The value of a parenthetical expression is the value of its content
expression, i.e., the value of the expression between the ( and the ). The type of a
parenthetical expression is the same as the type of the expression between the
parentheses. Parenthetical expressions are extremely useful when combining
expressions. For example, in the previous section, we mentioned that

"I have " + x + 3 + " monkeys"

might yield 63 monkeys. We could fix this by rewriting the expression as

"l have " + (X + 3) + " monkeys"
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This isolates + 3 as a separate expression, making the x++r3  behave like
addition, not String concatenation.

Note that, in giving the evaluation rules for expressions, white space doesn't
matter -x>=2+3  isidentical tox>=2 +3 -- but punctuation does. For
example,2+3*2 doesn't have the same valuesas -- 2+3*2 is 8. We can use
parentheses to fix this, thoug{z+3)*2 is 10 again. In this case, parentheses
change the order of evaluation of subexpressions (or, equivalently, how the
expression is divided into subexpressions.) In the cage3ed , if you evaluate

the + first, then the *, you get2 , while if you evaluate the * first, you get6.

How do you know which way an expression will be evaluated? In these situations,
where one order of operation would produce a different answer from another, we
fall back on the rules of precedence of expression evaluation. In Java, just as in
traditional mathematics, * and / take precedence over + an@+3's0o really is 8.
(Another way of saying this is that the * is more powerful than the +, so the *
grabs the 3 and combines it with the 2 before the + has a chance to do anything.
This is what we mean when we say that * has higher precedence than +: it claims
its operands first.)

A full listing of the order of precedence in Java is included in the sidebar on Java
Operator Precedence. Parentheses have higher precedence than anything else, so it
is always a good idea to use parentheses liberally to punctuate your expressions.
This makes it far easier for someone to read your code as well.
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Other Assignment Operators

Compound Assignment

Java has several variants on the simple assignment statement. If we [have
already declaretbtal as arint , we can say:

total = 6

or

total = total + 1

(The second uses the fact thal + 1 is an expression with typet
and value one greater thamal to form an assignment expression whosle
second operand is an arithmetic expression.) This last expression -- ac/ding
to a name -- is pretty common, and so it has a convenient shorthand:

total += 1

The += operator is one of a class @dmpound assignment operatorslt
works by computing the value of its first operand, then adding its secpnd

operand to that value and assigning the result to the name representgd by
the first operand. In other words, the expression above is exactly the same
as sayingotal = total + 1 . This kind of compound assignment can be
used with any number -- or other appropriate expression -- as the setond
operand, of course. There are also other compound assignment operatprs in
Java, including=, *=, /=, and%= Like the + operator, ther= operator

works for both numeric addition anskring concatenation. Like their
longhand forms -- the simple assignment equivalents -- these expresgions
have type and value of their left-hand side (after the assignment).

Autolncrement and AutoDecrement

There is another family of side-effecting operators that are related| to
assignment. These operators amoincrement andautodecrement The
postfix autoincrement expression

total++

is similar tototal = total + 1 (ortotal +=1 ), but it has the value of
total beforethe assignment. Trgrefix autoincrement expression

++total
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also adds one twmtal , but has the value aétal after the assignment.
(Remembers+var first increments, then produces a value;++ produces
the value first.) The two (prefix and postfix) autodecrement operators wprk
similarly.

Chapter Summary
» Every expression has both a type and a value.
» Simple expressions include literals and names.
» Aliteral has its apparent type and value.
* A name has its declared type and assigned value.

» Operator expressions combine or produce modifications of simpler
expressions.

» Arithmetic operators compute mathematical functions; the type of
an arithmetic operation expression is typically the wider of its
operand types.

» Logical operators compute binary logical functions; the type of a
logical operation expressionbsolean .

» Explicit cast expressions have the type of the cast operation and
the same value as the cast operand.

 None of the above expressions actually modifies any of its
operands. However, autoincrement, autodecrement, and the shift
operatorgio modify their operands.

» Assignment expressions are generally used for their effects -- modifying
the value associated with a (shoebox or label) name -- but, as expressions,
also have type and value. The value of an assignment expression is the
value assigned; the type is the type of the value assigned.

» Several kinds of expressions operate on objects:

* A method invocation expression has the type and value returned by
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the method. Methods may be side-effecting.

» A field access expression is like an ordinary name expression: its
type is the field's declared type and its value is the field's current
assigned value, except in the context of assignment expressions.

* A constructor expression's value is a brand new object whose type
is the type with which the constructor expression is invoked.

Exercises

1. In Java, every expression has a type. Assume that the following declarations
apply:

inti, j, c;
double d;
short s;
long I;
float f;
boolean b;

For each expression below, if it is syntactically legal Java, indicate itsrigpéq
value). If it is not syntactically valid, indicate why.

1.6

2. 24L
. +35
. 3.5f

. 2e-16

3
4
5
6. -25b
7
8. i+3
9

. i+3.0

10.i+s
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11.1+d
12.f+s
13.i/0
14.4*3.2
15.i=0
16.i==
17.b=0
18.b ==
19.¢
20."An expression in double-quotes"
21."An expression in double-quotes” + "another one"
22."6" +3
23.1b

24.i

25.b || true
26.i+=s
27.s+=i
28.i+=f
29.1=i=s
30.i=1+=s
31.1++
32.(long) s
33.s

34. (short) |
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35.1
2. Give examples of three expressions with side effects.

3. What is the value of each of the following expressions? Which ones produce
errors in evaluation? You may wish to consult the chart on operator precedence.
Assume that i is an already-defined name fonanand that b is aoolean .

1. 20+35*7
. ("top " + "to " + "bottom" ).toUpperCase()

. "the answeris"+6*7

2

3

4. 4+6+"is"+10
5. i>0&&i<100
6. b=i<0

7. 1(i==0)&& 100/ i

4. Give examples of each of the following:

1. An expression whose type is int and whose value is more than a
previously defined int, x.

2. An expression whose type is boolean and whose value is true when
X is between 5 and 15.

3. An expression whose type is double and whose value is half of x's,
where X is the aforementioned int.

4. An expression whose type is long and whose value is the
remainder when x is divided by 7.

5. An expression whose type is boolean and whose value is the
opposite of a previously defined boolean, b.

6. An expression whose type is boolean and whose value is true
exactly when the int x is evenly divisible by 5.

7. An expression whose type is String and whose value is read from
the user's keyboard.
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Chapter 6 Statements and Rules

Chapter Summary
* How do I tell the computer how to do something?

This chapter introducestatements the simplest forms of complete executable
instructions. Statements are fragments of Java code that have neither value nor
type; instead, they have effects. Statements can be are combined to form rules, or
services that one object can provide to another. Statements and rules form the
backbone of the peanut-butter and jelly model of programming.

Statements can be built out of expressions. However, unlike expressions, which
have both type and value, statements are used for their effect -- to get something
done. Examples of this are asking a thing to do something or assigning a name to
keep track of a value. In addition to declarations, assignments, and method
invocation, this chapter introduces simple control flow statements. More
advanced statement types are introduced later in the book.

The chapter ends with a discussion of methods, the rules implementing behavior.
Method invocation provides the basis for virtually all inter-object interaction.

This chapter is supplemented by a reference chart on the syntax and semantics of

©1999 Lynn Andrea Stein. This chapter is excerpted from a drdfitefactive Programming In Java
forthcoming textbook from Morgan Kaufmann Publishers. It is an element of the course materials developed
as a part of Lynn Andrea Stein's Rethinking CS101 Project at the MIT Al Lab and the Department of
Electrical Engineering and Computer Science at the Massachusetts Institute of Technology.

Permission is granted to copy and distribute this material for educational purposes only, provided that the
following credit line is included: "©1999 Lynn Andrea Stein." In addition, if multiple copies are made,
notification of this use must be sent to ipij@ai.mit.edu or ipij@mkp.com.
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java statements.

Objectives of this Chapter

1. To appreciate the difference between evaluating an expression and
executing a statement.

2. To be able to read and understand basic statements including assignments,
method invocations, declarations, blocks, conditionals, and loops.

3. To learn how to combine statements to construct rules that implement
method behavior.

6.1 Statements and Instruction-Followers

In the first chapter of this book, we saw that computations are made of
communities of interacting entities. Each of these entities may be a community of
smaller entities, until eventually an entity can be subdivided no more. At that
point, an entity is a simple instruction-follower that provides behavior -- often in
the form of ongoing services -- to the other members of its community. This
chapter is about how those instructions work. Towards the end of the chapter, we
will begin to see how instructions can be combined to form special sequences that
articulate how service requests can be fulfilled.

In the previous chapter, we saw how to create Java expressions. An expression is
a piece of Java code with a value and a type. The process of producing the value
from an expression is called evaluating that expression. The purpose of evaluating
an expression is generally to produce its value.

In contrast, statements are all about their side effects. A statement is a piece of
executable Java code without either a type or a value. That is, a statement does
something (changes something, produces some visible behavior, etc.). It has an
effect. It does not have a value. A statemeskiecuted(producing an effect), not
evaluated (producing a value).

In order to evaluate an expression, you must evaluate its subexpressions, then use
the evaluation rule for that kind of expression to produce an appropriate value of
an appropriate type. If you understand the evaluation rules for each type of
expression, you understand how expressions work.
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Understanding how to execute a statement is similar. A statement is not defined
by a type and a value (it doesn't have either!), but beffectsand bywhat
happens nextThat is, statements do things; they change the values associated
with names. And statements can also cause you to skip around in the instructions
that you are following. This is calleitbw of control: what instruction to follow

next. Some of these control flow statements involve conditibriss(raining, do

this) or loops (keep doing thisntil the light changes color). And many statements
involve either subexpressions--which must be evaluated--or substatements--which
must be executed in order to execute the superstatement.

6.2 Simple Statements

Perhaps the simplest kind of statement is one built directly out of an expression,
such as

this.who = name;

or
Console.printin( "Hello" );

Note the trailing semicolon following the ends of these expressions. It is this
semicolon that converts these expressions into statements.

What kinds of expressions can be used to form statements? Only side-effecting
expressions. Many expressions are useful solely because of the value that they
compute. But a statement doesn't have a value; it has effects on state and control
flow. So an expression whose primary purpose is the value it produces doesn't
make a very good basis for a statement on its ‘olurfact, it is not legal in Java

to make an expression-semicolon statement out of a non-side-effecting
expression. (For example, x + 3; is not a legal statement.)

However, some expressions do more than just produce values when they are
evaluated. For example, an expression %ike3 has the value (and the type

int , assuming that is anint ). It also (and more importantly) has the effect of
storing the value 3 in the shoebox namedThis effect (of evaluating the
expression) is called @&ide effect All assignment expressions (including
compound assignments) are side effecting. Autoincrement and autodecrement are
also side-effecting expressions. Method invocation expressions are also side-

! These expressions may find use in other, more complex statements, though.
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effecting, although not every method invocation actually has a side effect.
Instance creations rew expressions -- are also side-effecting.

So, for example, a simple assignment statement can be made by adding a
semicolon to the end of the assignment expressiah

X=3;

The semicolon turns this into a statement. It no longer has a value or a type; it just
does its work.

To execute an expression-semicolon statement, simply evaluate the expression.
Of course, this expression may have complicated subexpressions that must be
evaluated according to the rules described in the previous chapter. Since the
expression is a side-effecting one, something will happen -- an effect will be
produced -- during the evaluation.

After executing a side-effecting-expression-plus-semicolon statement, execution
proceeds at the following statement.

6.3 Declarations and Definitions

We have also already seen declarations in Chapter 3. A declaration creates a new
name that can be used to store (in the case of primitive types) or label (in the case
of reference types) a value. A declaration followstipe-of-thing name-of-thing
rule: It consists of a Java type followed by a Java name, then a semicolon. For
example,

inti;

Object thing;
A declaration (or definition) statement creates a kind of name calledah
variable.

You can actually declare multiple names of a single type with one declaration

statement. The syntax for this tige-of-thing name-of-thing1 , name-of-
thing2 , and so on, with commas between the names and a semicolon at the end:
inti, j, k;

Object thingOne, thingTwo;

The same type is associated to each of the comma-separated names, so the
declarations above are identical to

inti;

IP1J || Lynn Andrea Stein



6.3 Declarations and Definitions 6~5

int j;
int k;
and
Object thingOne; Object thingTwo;

respectively.

Style Sidebar

Formatting Declaration Statements

Remember that Java doesn't care how much white space you leave bejween
things, so there is no difference in meaning between putting the mult|ple
declarations on one line or many. It is definitely easier to read on multiple
lines, though, so the convention is to put each declaration on its own ling.

When one declaration statement is used to declare many names, yoyi can
put the names on one line or on several. It's good style to indent all of the

names on subsequent lines of a single declaration so that they line up|with
the first name declared:

Object thingWithALongName,
anotherThingWithALongName;

This way, it's easy to see thaibtherThingWithALongName IS involved in
the same declaration statementhagwithALongName

Although it is technically correct to mix declarations and definitions of| a
single type using the comma-separated multiple declaration notation, thjs is
not good style. It is too easy to miss a definition among the declaratigns;
mixing the two makes your code unnecessarily harder to read.

A declaration makes it legal to use the name to hold/label appropriately typed
values. But the declaration, by itself, doesn't explicitly assign a value to the name.
In fact, for the most generic kind of name--a local variable--it is illegal to use a

name without first assigning it a val@i&ou can assign this value directly in the

2 Itis, however, legal to assign a label-name local variable the special nomuklugAssigning
null to a name means that the name doesn't refer to anything. Not assigning forces the computer
to guess. The rule is that you just can't leave the computer to guess.
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declaration (making it a definition), or you can assign it before the first time that
you try to use the name's associated value.

A variant on a declaration statement is a definition. A definition is a declaration
statement with= expr between thename-of-thing and the semicolon (or
comma). This statement declares the name, but it also assigns it the wadare. of
For example:

int i=2;

String who = "Pat";

double pi =3.14159,

ninetyDegrees = pi / 2;

Note that the final statement here assigns the value 1.570795 to the name
ninetyDegrees . First 3.14159 is put into the shoebox nanmped Next, the
expressionpi / 2 is evaluated: its value is the value inside pheshoebox
divided by 2. Finally, this value is assigned to (stored in) the (newly created)
shoebox nameaginetyDegrees

It is legal to mix declarations and definitions in a single statement -- assigning
initial values to only some of the names -- but this can make your code hard to
read. It is usually better to use multiple statements in this case.

Executing a declaration statement creates a shoebox or label associated with the
name declared. Executing a definition is the same as declaring a name, plus
immediately afterwards executing an assignment statement. Note that this
assignment is an expression and may have subexpressions, causing a significant
amount of evaluation before execution is complete.

After executing a declaration or definition statement, execution proceeds at the
immediately following statement.

6.4 Sequence Statements

You can also make a bigger statement out of a collection of statements. You do
this by enclosing them ibraces
{
inti=3;
Console.printin( "iis " +1i);
intj=i+1;
j=i+5;
}
This statement-made-of-statements iBlack, and it mostly serves to organize
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your code. Some other statements -- such as if, described below -- are often used
together with blocks.

Any statement can be used at any point inside a block. In particular, declarations
and definitions may appear anywhere in a block. This is useful as it allows you to
declare a name immediately before you need it. Doing so makes it easier to read
your code as the reader is less likely to have forgotten what you mean by that
name.

Blocks also have implications for scoping of names: a variable has scope (its
name can be used) from the point in the code where it is declared until the end of
the first enclosing block.So if we declare a name at the top of the block, it has
scope for the whole block, asdoes in the example above. Buis not declared

until after the call to println, so the definition of and the call to printin are
outside ofj 's scope:

{ _

inti=3; |
Console.printin( "i_is" +i); |
intj=i+1; | scope of j | scope of i
j=i+5; I |
} X X

This means, for example, that it would be illegal tojusei 's definition:
{

inti=j - // illegal use of j outside its scope!
Console.printin( "iis " +1i);

intj=i+1;

j=i+5;

}

Beware: The scope of a local variable only persists until the end of the enclosing
block. This means that a local variable must be declared at the same level as (or at
a level enclosing) each of its uses.

{

{
// A variable declared here...
String name;

// ...is invisible here, making this reference
Rame = "Pat",
/ illegal!

¥ Remember, not all names are variables. We will learn more about parameters and fields in
subsequent chapters. Type names have scope everywhere that they are visible.
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}
// ...and so on.

The rules for executing a block statement are: execute each substatement in turn,
from the top (beginning) of the block to the bottom (end) of the block.

After a block, execution continues at the next statement.

Style Sidebar

Formatting Blocks

The open brace of a block should generally appear on its own line. If|the
block is part of a compound statement (such as an if), its opening brace] can
appear as the last character on a line. However, studies have found |code
using this convention harder for programmers to scan than code in which
the open brace appears alone on a line.

Text within a block should always be indented (typically by two or folr
characters). This makes the left-hand margin of code in a block line up. [The
text -- but not the braces -- of an interior block is indented further; the

original indent is resumed when the interior block is closed, i.e., after [the
closing brace.

The closing brace of a block should always begin its own line. If the
closing brace completes the statement, as in a simple block, it shpuld
appear alone on that line.

// Some statements...

{
// Statements in a block
// all line up.

// Interior block statements
// are indented further.
}
// Close brace exits the block
// and restores eatrlier indent.

}

// ...and so on.
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6.5 Flow of Control

So far, we have seen declarations, definitions, and a few executable statements
made out of side-effecting expressions such as method invocation and
assignment. You can write some interesting programs using only these constructs,
but typical programs involve more complex structures. One of the most important
features is the ability to control which code is executed when. This is called flow
of control. These statements have execution rules that do not always cause the
next statement to be executed in turn. Instead, a statement may be executed more
than once or not at all.

6.5.1  Simple Conditionals

One of the simplest forms of control flow is conditional execution. Conditional
execution refers to a situation in which a block of code may or may not be
executed, depending on the value of an expression. It is analogous to a set of
instructions that says

Step 1. If your gizmo is not already assembled, you must assemble it
before going on to step 2. To assemble your gizmo, first....

Step 2. Now that your gizmo is fully assembled, ...

In Java, conditional execution is most often and most generally embodied in the
if statement. For example:

if ( theLight.isOn() )
{

theRoom.isLit = true;

}

Let's dissect this statement. It begins with the java keyword if. After the if is a
boolean expression thatustbe enclosed in parentheses. The closing parentheses
are followed by a block stateméhtThis block is sometimes called the if
statement'sbody or the consequent the boolean expression is called the if
statement'sest or condition.

Execution of the if statement proceeds as follows. First, the boolean condition
expression is evaluated. If the value of this expression is true, the if's body block
is executed. If the value of the boolean condition expression is false, the if's body

* There are other kinds of statements that can appear in place of this block, but in this book we will
restrict ourselves to the cases in which the if body is a block.
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block is skipped.
In either case, execution proceeds at the next statement following the if's body.

The if statement, as defined, is very useful when you want to do something or
skip it. But often you want to do one of two things. We can express this using two
if statements with inverse conditions:

if ( theLight.isOn() )

theRoom.isLit = true;

}
if (! (theLight.isOn() ) )
{

theRoom.isLit = false;

}

This is poor code in three ways. The first is that it invokes the same method --
theLight.isOn() -- twice, but the code would not work as we want if the value
returned were different in the two invocations. (Imagine that the light were off the
first time you asked and on the second time. The valte®bom.isLit  would

never get set!)

We could fix this problem by temporarily assigning this value to a boolean name,
and then testing the name twice:

boolean itlsLight = theLight.isOn();
if (itlsLight)

theRoom.isLit = true;

}
if (!itlsLight)
theRoom.isLit = false;

}

But this makes a second problem with the code even more apparent. This code is
testing a boolean expressiothe(ight.isOn() or itisLight , depending on
which version) in order to set another boolean expression. It would be cleaner just
to write

theRoom.isLit = theLight.isOn();

This statement is equivalent to the whole previous example (usingnt ),
and much easier to read. For more on this stylistic point, see the sidebar on Using
Booleans.
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Of course, we can write other code that's not subject to these two problems. For
example, we could use this idea to write code to compute absolute value of a
givenint , x.

int absValue;

if (x>0)

absValue = x;

}

if (x<0)
{

absValue = - x;

}
if (x==0)

absValue = 0;

}

This code has neither of the previous problems -- x doesn't change, so we can test
it repeatedly, and the value assigned is an int, not a boolean, so we can't write the
shorter assignment statement. But this code doesn't make it clear that these are
really three cases of the same test. There is a form of an if statement that allows us
to make this clearer. It uses the Java keyword else to denote a situation in which
we know that these conditions are mutually exclusive, i.e., at most one of them
can hold.

So, for example, we could rewrite our light-tester (verbosely) as:
boolean itlsLight = theLight.isOn();

if (itisLight)

theRoom.isLit = true;

}

else

{

theRoom.isLit = false;

}

This still isn't as nice as the one-line version, but it gives us the opportunity to
illustrate control flow in an if/else statement. To execute an if/else statement:

1. Evaluate the boolean condition expression.

2. If the value of the condition is true, execute the if body block, then skip to
the end of the entire if/else statement (i.e., to step 4).
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3. Else (the value of the condition statement is false, so) execute the else
body block. An else body is sometimes calleciernative.

4. Execution continues at the following statement.

Since there might be more than two mutually exclusive conditions -- as in the
absolute value code -- else is allowed to have its own condition. An else with a
condition is like an if, except that you only execute that part of the statement if all
previous conditions in this if/felse statement have been false. An else with no
condition is always executed if no previous condition in this if/else statement has
been true.

if(x>0)

{

absValue = x;

elseif (x<0)

{

absValue = - x;

}

else

{

absValue = 0;

}

Note that this is all one statement, not three as in the previous version. Exactly
one of the assignment statements will be executed, no matter what the value of x
at the beginning of the if statement.

Even now, this is not the most elegant absolute value code we could write; for
example, the final case is redundant and could be folded into the first case using
>= instead of>. It does, however, illustrate the syntax of cascatled We will

return to examine if statements, and other conditionals, in the chapter on
Dispatch.
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Style Sidebar

Using Booleans

There are only twoolean valuestrue andfalse . There can be lots of
boolean labels, but each label is attached to either orfalse ; there is
nothing else. This means that testing whetheébdean is the same as
true --

(boolval == true)

-- is redundant. You can just useolval , since it's eithetrue oOf false
Similarly, you don't need to use &n statement to testi@olean if you're
generating @aoolean Vvalue. For example,
if (boolVal) {

return true;

}else{
return false;

}

is also redundant: juséturn boolval; . The same thing applies if you're
assigning to a variable insteadrefurn ing: otherBoolVal = boolVal;
(or otherBoolVal = ! boolVal; if you want to reverse its sense).

6.5.2  Simple Loops

Another flow-of-control construct ishile . While takes a condition and a block,

just like the simple form of . Execution of a while statement first evaluates its
boolean condition expression. If the condition is true, the while body block is
executed. When execution of each statement in the body is complete, the while's
condition is checked again. Again, if the condition is true, the body is executed.
This continues until the evaluation of the condition expression yields false; at this
point, execution continues at the next stateraéiet the while body.

There are several uses of a while loop. One is to continually test something until it
becomes true:

inti=1;

while (i< 100)
{

Console.printin("I'mupto " +1i);
i=i+1;
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}
This loop prints the numbers from 1 to 99. (Why doesn't it print 1007?)

Another use is for a loop that keeps going essentially forever. (It will stop when
something stops the program, but not before:

while ( true )

{

}

This loop continually passes whatever input it gets to its output. Since the value of
true doesn't change, this loop won't end until something nasty happens to it.
Writing loops like this one -- that go on essentially forever -- is much easier than
writing loops like the counting loop, above, because in the counting loop you
have to keep track of what's true each time you go around the loop. For example,
the value of i when you exit the loop above will always bermpeethan the last

value printed.

myQutput.writeOutput( mylnput.readinput() );

Here's an even more tricky one:
while (x < 25)

X=X+3;
X=X-2;
}
If x's value is 20 when we reach the beginning of ldag, what will its value be
when we exit? Remember that the test expression is only checked at the beginning
of each pass through the loop, not in the middle.

There is another looping construct in Java, called do/while statement or just a do
loop. It is much like the while loop, except that the loop body is always executed
once before the condition is tested:

inti=1;

do
{
Console.printin("'mup to " +1i);
i=i+1;
} while (i< 100)
As with a while loop, once the loop exits, execution proceeds at the statement
following the entire do statement.
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6.6 Statements and Rules

Programs are not simply sequences of instructions to be executed. Instead, the
instruction-followers executing these statements are embedded in a community of
other instruction-followers. A program is a community of interacting entities
providing ongoing behavior and services. In this section, we look at how those
interactions too rely on statements.

When one Thing needs to communicate with another, this is commonly
accomplished through method invocation. Method invocation is an expression in
which one object supplies another with information (in the form of arguments),
and the second supplies the first with other information (in the form of the return
value). These mechanisms are the major means of inter-object communication
and coordination. Of course, method invocation can also be used within an object,
allowing one part of the object to communicate with another.

We have previously seen how interfaces specify methods that an object provides.
Now, we turn to the question of how method behavior is actually implemented.
Statements provide the key. Performing a method amounts to following the
instructions associated with that method, i.e., stepping through the instructions for
that rule. Statements are the steps of those instructions. By sequencing statements,
you can build a rule that the computer can follow to accomplish a desired task.
Some rules require information in order to accomplish their tasks. (For example, a
rule that doubles a number needs the number to be doubled.) Some rules produce
results. (For example, the doubling rule might produce the doubled number.)
Some rules behave differently under different circumstances. (This uses a
conditional statement).

In order to use a rule -- to interact with it -- you need to know whose rule it is,
what information you need to supply in order for the rule to do its work, and what
the rule will give you in return. This prefigures the idea of method signature.
There are other things you'd like to know about a rule -- such as the relationship
between the rule's input and its output -- and these form the basis of the rule's
documentation.

For example, here is a rule for printing a brief form letter:

to printFormLetter using (String title
String firstName ,
String  lastName )

1. print"Dear"
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2. if (title isn'tnull ) print title + lastName
else print firstName

3. printn ":\nWe are tremendously pleased to inform you that

4. printin "you have won!".toUpperCase()
5. printin "Not much, but what did you expect?"
6. printin " Sincerely,\n me"

It's just a short hop from this pseudocode rule to real Java:

void printFormLetter( String title,
String firstName,
String lastName )

{
if ( title '= null )

Console.print( title + lastName );
else

Console.print( firstName );

}

Console.print( ":\nWe are tremendously pleased "

+ "to inform you that " );
Console.printin( "you have won!".toUpperCase() );
Console.printin( "Not much, but what did you expect?"

)

, Console.printin( " Sincerely,\n"
+" me");

}

6.6.1  Method Invocation Execution Sequence

Method invocation is, as we have seen, an expression. To invoke the
printFormLetter, we need to know whose method it is. We follow this object
expression with a dot, then the name of the method, then the parentheses-enclosed
parameter list:

theWidgetCompany.printFormLetter( "Prof.", "Pat", "Smith" )

To evaluate this expression, we need to involkewidgetCompany 'S
printFormLetter method (using the rule, or instructions, or method body,
provided above) with the arguments "Prof.”, "Pat", and "Smith".
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The first step in method invocation is parameter binding. In this step, each
parameter name (title, firstName, and lastName) is treated as though it were
newly declared and it is given the value of the corresponding argument. (Recall
that parameters are the names in the method declaration, while arguments are the
values supplied in the method invocation expression.) In order for this to work,
each value must be assignable to the corresponding parameter's declared type.

After parameter binding, method invocation proceeds as though the method body
were a simple block. The block is, however, within the scope of the parameter
bindings, so that inside the block the parameter names can be used to refer to the
provided argument values. For example, in the body of the printFormLetter, title
is bound to "Prof", firstName is bound to "Pat", and lastName is bound to
"Smith".

Now the body statements are executed in turn. In this case, the first statement is
an if, so its test expression is evaluated to determine whether to execute the
consequent block or the alternative block. When the test expression

title '= null

is evaluated, title is bound to "Prof", so it is not null, causing the consequent to
execute.

This argument-value-providing is one way in which method invocation
implements inter-entity communication: the value is communicated from the
method-invoker to the method owner.

6.6.2 Return

This special statement can only be used inside method bodies. It is used to
terminate the execution of the method body. It is also what is responsible for
making a method body -- which is essentially a block statement -- return a value -
- which is a necessary property of a method invocation expression (unless the
method's return type is void).

The need for this statement arises when the sequence of instructions that you are
writing is turned into a method body. In this case, you need to say what the
methodreturns This return value becomes the value produced by evaluating a
method invocation expression. This is accomplished usirgfuan statement.

The syntax of a return statement is

return expression

where expression  can be any arbitrary Java expression. Remember: the return
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statement -- a statement -- does not have a value, but the method invocation - an
expression -- does.

To execute a return statement, evaluate the expression. Then, exit the enclosing
method, providing the value of the expression as the return value of the method
invocation expression. Exiting the enclosing method means both exiting from the
block that is the method body and also exiting the scope of the
parameter/argument bindings.

After a return statement, execution proceeds at the method invocation whose
method body contained the return statement; evaluation of this expression is
complete (with its value the value supplied by the return statement) and execution
of the statement containing the method invocation continues.

For example, if we execute
String transformed = this.transform( "Knock, knock" );
and the transform method of this object ends with the line
return "Who's there?";
then the value of the invocatiothis.transform( "Knock, knock" ) is

"Who's there?" . Execution continues by assigning the value of the invocation
("who's there?" ) to the nameansformed

Another example is the doDouble( int ) method mentioned above. The code for
doDouble might read:

int doDouble( int whatToDouble )
{

return whatToDouble * 2;

}
To evaluate the application of doDouble to 7,

1. The parameter name whatToDouble is bound to 7.
2. Within the scope of this binding, the body block of doDouble is executed.

a. Each statement in the block is executed in turn. Since there is only
one statement, it is executed.

i. The expression whose value is to be returned is evaluated.
This requires evaluating the subexpressions (name
whatToDouble and literal 2) and then applying the operator
to these values.

ii. The value produced by the operator expression (14) is
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returned by the method

3. This exits both the method body block and the parameter scope, providing
the value (14) as the value of the method invocation expression.

There is also an alternate form of return that does not take an expression. This
form is used in methods whose return type is void. In this case, a return statement
executes by exiting the method (and, with it, the scope of the parameter nhames).
Since the simple return statement is used only in methods whose return type is
void, there is no value for it to supply.

This return statement can also be left implicit certain methods. For example, in
the printFormLetter method that we saw above, there was no explicit return
statement. In Java, a method without a return statement is presumed to have a
return statement as its final statement. This return statement is a sitmple -
- it is the form that does not return a value. So the end of that method body was
equivalent to saying
/..
Console.printin( " Sincerely,\n"
+" me");
return;

}

In a method whose return type is not void, an explicit return statement must
always be executed in order to provide the method's return value. Value-returning
is another example of inter-object communication.

Chapter Summary
» Statements combine expressions to produce useful behavior.
* A statement does not have a value or a type.
» A statement is executed to produce an effect.
» A side-effecting expression followed by a semicolon is a simple statement.
» Declarations and definitions are also simple statements.

* A sequence of statements can be grouped into a block by surrounding the
sequence with braces {}
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» Conditional statements allow you to write code containing alternative
execution sequences. The execution sequence of a conditional statement
depends on the result of evaluating a boolean expression.

* A loop allows the same block of code to be executed repeatedly, until an
exit condition -- a boolean expression -- is true.

* Areturn statement is used to exit from a method, with or without a value.

» Method bodies, or rules, use sequenced statements -- including loops and
conditionals -- to produce chunks of executable behavior. A method is
specified by its name, the information it needs, and the value (if any) that
it produces.

Exercises

1. Using Java's if statement, write instructions for determining which team returns
an out-of-bounds ball to play in a soccer game. In soccer, the team that did not
last touch the ball receives possession of the ball and returns it to play.

a. You may presume that you have a methagtouch() , that returns either
homeTeam Of visitTeam , and that the goal of your code is to assign the correct
team value (eithemomeTeam or visitTeam ) to the already-defined name
possessingTeam

b. In addition, make your code determine wheteeinBallToPlayMethod is
sideThrow , cornerKick , Or goalKick . You may make use of the
ballOutLine() method to determine whether the ball exited viastb€Line ,
thehomeEndLine , or thevisitEndLine

2. Using Java's while statement, give instructions for building a tall tower of
blocks.

3. Using Java's while statement, give instructions for blowing up a balloon.

® If the ball has exited via the side line, the return is by side throw. If the ball exits via the home
end line and is last touched by the home team, the visitors return the ball to play by means of a
corner kick. A ball that is pushed beyond the home end line by the visiting team is returned by the
home team via a goal kick. The situation at the visitor's end line is the opposite.
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4. Which of the following are expressions, which statements, and which illegal?
For the expressions, indicate the type and value. For the statements, indicate the
effect (if known) and the execution sequence. You may assume that x is anint, b a
boolean.

a. intx=5

b. boolean b;

C. x+3

d. x=x+3

€. X=x+3;

f. x==

g. x==3;

h. b=x==3;

i g
Console.print( "What is your name? " );
String name = Console.readIn();

String cap = name.toUpperCase();

}

5. What will the value of d be after each of the following statements? Also,
indicate any other changes that may occur as a result of executing the statement.
You may assume that they are executed in the order given.

a. double d = 3.5;
b. d=d*3;
C. if(d<8)

{

Console.println( "d is pretty small");

d. d=20

€. while (d<30)
{
d=d*?2;
}
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Chapter 7 Building New Things: Classes and Objects

Chapter Overview
* How do I group together related rules?
* How do I build a computational object?
* What are Java programsally made of?

In this chapter, you will learn to put together the pieces you've already seen --
things, names, expressions, statements, rules, and interfaces -- to create
computational objects that can populate your communities.

In order to create an individual object, you first have to describe what kind of
object it is. This includes specifying what things you can do with it -- as in its
interface(s) -- but also how it will actually work. This description of the "kind of
object" is like building a recipe for the object, but not like the object itself. (You
can't eat the recipe for chocolate chip cookies.) These object-recipes are called
classes.

For each thing that your object can do, your class needs to give a rule-recipe. This
is called a method. Your objects may also have (named) pieces. These are called

©1999 Lynn Andrea Stein. This chapter is excerpted from a drdfitefactive Programming In Java
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fields, and they are special java hames that are always a part of any object made
from this recipe.

When you actually use your class (recipe) to create a new object, there may be
things that you need to do to get it started off right. These startup instructions are
called a constructor.

When you are building an object, you are bound by the interfaces it promises to
meet. If the interface promises a behavior, you have to provide a rule (method)
body for the object to use.

This chapter is supplemented by reference charts on the syntax and semantics of
Java classes, methods, and fields. It includes style sidebars on good
documentation practice.

Most of the syntax of this section is covered in the appendix Java Charts.

Objectives of this Chapter
1. To recognize the difference between classes and their instances.

2. To be able to read a class definition and project the behavior of its
instances.

3. To be able to define a class, including its fields, methods, and
constructors.

7.1 Classes are Object Factories

In a previous chapter, we saw how to build an interface, or specification, that
described the contract a particular kind of object would fulfill. We also saw that
an interface does not provide enough information to actually create an object of
the appropriate kind. Interfaces do not say anything about how methods actually
work. They do not talk about the information that an object needs to keep track of.
And they do not say anything about the special things that need to happen when a
new object is created.

In this chapter, we will learn how to create objects and how to describe the ways
in which they work. The mechanism that Java provides for doing this is called a
class Like an interface, a class says something about what kind of thing an object
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is. Like an interface, a class defines a Java type. However, interfaces specify only
contracts; classes also specify implementation. Class methods are full-fledged
rules, with bodies telling how to accomplish the task of that rule (not just the rule
specification, or method signature, of abstract interface methods). Classes also
talk about data -- information to be kept track of by objects -- as well as methods,
or behavior. And a special part of a class -- the constructor -- talks about how to
go about creating an object of the type specified by that class.

7.1.1 Classes and Instances

Objects created from a class are callestancesof that class. For example, the
classcCheckBox refers to the instructions for creating and manipulating a GUI
widget that displays a selectable checkbox on your computer scregkBox is

the name of the class, i.e., of the instructions. Let's say we create two particular
checkboxes:

CheckBox yesCheckBox = new CheckBox();
CheckBox noCheckBox = new CheckBox();

] yes
[] no

Figure 1. The actual CheckBoxes.

The two objects labeled by the namgssCheckBox and noCheckBox are
instances of the classheckBox. That is, they ar@articular CheckBox es. The
instructions for how to create -- or be -CBeckBox, on the other hand, aren't a
CheckBox at all; the instructions arénstructions or a class. In fact, the
instructions are an object, too, though a very different kind of object and not one
as obviously useful as @eckBox or aTimer Or aCounter . The kind of object

the instructions are is calleccass .

Because the class contains the instructions for how to make a new instance and
for how to behave like an instance of that class, we sometimes say that a class is
like a factory where instances are made. Both a factory and its product are
objects, but factories and the widgets that they make are very different kinds of
objects. The factory has all of the know-how about its instances. But the factory
isn't one of its instances, just as the classckBox isn't aCheckBox. It's a
factory!
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7.1.2 Recipes Don't Taste Good

Another analogy for a class (as opposed to its instances) is that the class is like a
recipe for how to make instances. The instances are like food cooked from the
recipe (say, chocolate chip cookies). It isn't hard to tell the difference between
these things. The cookies smell good. If you are hungry, the note-card with the
recipe on it won't be very satisfying. (It probably tastes a lot like cardboard.) On
the other hand, if you're going over to Grandma's to cook, you might want to take
the recipe but you probably don't want to stick the chocolate chip cookie in your
back pocket. Classes actually contain a lot of information other than just how to
make an instance. (The recipe might, too. It might include information on how
long it takes to make the cookies, whether they need to be refrigerated, how long
it will take before they go stale, or even how many calories they contain.)

Boulliabaise |,

fish hea¢ )
Chocolate Chip

mussels -
Cookies
2c. sugar ...

Figure 2. Two recipes (classes) and two platefuls of cookies
(instances) made from the second recipe.

7.1.3 Classes are Types

Like interfaces, classes represent partickilags of objects, or types. Once a class

has been defined (see below), its name can be used to declare variables that hold
objects of that type. So an instance of a class can be labeled using a name whose
declared type is that class. For example, ¢theckBox es described above are
labeled using namegesCheckBox and noCheckBox ) whose declared type is
CheckBox . Note that the classheckBox -- theCheckBox recipe -- can't be labeled

using a name whose declared typersckBox . The type of the classheckBox is

Class , notCheckBox . (This is the recipe vs. cookie distinction again.)

If an object is an instance of a class -- suchyea€heckBox and the class
CheckBox -- then the type membership expressigssCheckBox instanceof
CheckBox ) has the valuerue . Of courseCheckBox instanceof CheckBox is
false (since the class isn't @eckBox ), but CheckBox instanceof Class is
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true .

Style Sidebar

Class Declaration

It is conventional to declare the members of a class in the following orde

]

 static final fields (i.e., constants)

static non-final fields

non-static fields

constructors

methods

This order is not necessary -- any class member can refer to any other [class
member, even if it is declared later -- but it makes your code easier to fead
and understand.

All non-private members of the class should be listed in the clags's
documentation.

7.2 Class Declaration

A class definition starts out looking just like an interface declaration, although it
says that it is a class rather than an interface:

class Cat {

-

A class definition tells you what type of thing it is -- a class -- what it is called --
its name -- and what it's made of -- its definition, between braces. This last part is
called the class'®ody. The body of the class definition contains all of the
information about how instances of that class behave. It also gives instructions on
how to create instances of the class. These elements -- fields, methods, and
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constructors -- are called the clags'smbers® Each member is declared inside
the body of the class, but not inside any other structure within the class. Another
way of saying this is that each member is declaréapaievel within the class. So
members are all and only those things declared at top level within a class.

4— Class name.

a— Red<

For example, each instance of JavR&tangle class has a set of four
coordinates describing the rectangle's position and extent, as well as methods
including one which tells whether a particular x, y paindgle theRectangle

...class Rectangle {

int height;
int width;
int X;
inty;

...inside(...)...

}

In this caseheight , width , x, y, andinside are all members of thRectangle
class.

Members and instances are quite different:
 members are parts of a class

* instances are things created from the class.

! Be careful not to confuse members, which are parts of the class, with instances, which are objects
made from the class. If chocolate chip cookies are instances of the cookie class (recipe), the
chocolate chips are members of the class.
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We will return to each of the elements of this declaration later in this chapter.

7.2.1 Classes and Interfaces

A class mayimplement one or more interfaces. This means that the class
subscribes to the promises made by those interfaces. Since an interface promises
certain methods, a class implementing that interface will need to provide the
methods specified by the interface. The methods of an interface are abstract --
they have no bodies. Generally, a class implementing an interface will not only
match the method specifications of the interface, it will also provide bodies --
implementations -- for its methods.

- - - \
) Counthngy, |
|‘ wd wcrement() | implement=
wr get\alue Q) —
3T IScoveCOMw%r
f

g -

For example, acoreCounter  class might meet the contract specified by the
Counting interface:

interface Counting

{

abstract void increment();
abstract int getValue();

}
So might astopwatch , although it might have a totally different internal
representation. Both would haierement()  andgetvalue() methods, but the
bodies of these methods might look quite different. For example, a ScoreCounter
for a basketball game might implement increment() so that it counts by 2 points
each time, while a Stopwatch might call its own increment() method even if no
one else does.

A class that implements a particular interface must declare this explicitly:
class ScoreCounter implements Counting {

-
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If a class implements an interface, an instance of that class can also be treated as
though its type were that interface. For example, it can be labeled with a name
whose declared type is that interface. For example, an instance of class
ScoreCounter ~ can be labeled with a name of typeaunting . It will also answer

true when asked whether it's ainstanceof that interface type: if
myScoreCounter iS a ScoreCounter , then myScoreCounter instanceof

Counting is true. Similarly, you can pass or returScareCounter wWhenever a
Counting is required by a method signature.

The generality of interfaces and the inclusion of multiple implementations within
a single (interface) type is an extremely powerful feature. For example, you can
use a name of typeounting to label either an instance &foreCOunter or an
instance ofStopwatch (and use itSincrement() and getValue() methods)
without even knowing which one you've got. This is the power of interfaces!

7.3 Data Members, or Fields

The Rectangle class, above, had certain things that were a part of each of its
instanceswidth , height , etc. This is because part of what it is to Re@angle
involves having these properties. Rectangle -factory (Or Rectangle -recipe)
needs to include these things. Of course, @agangle made from this class

will have itsownwidth, height, etc. -- it wouldn't do for eveRgctangle to have

the samewidth!

Lecranale.
it \ne s
1‘& ot NN
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Many objects have properties such as these: information ca#iezior data that
each instance of a class needs to keep track of. This kind of information is stored
in parts of the object called fields. ffeld is simply a name that is a part of an
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object. For the most common kind of field, each instance of a class is born with its
own copy of the field -- its own label or shoebox, depending on the type of name
the field is.

Declaring a field looks just like an ordinary name declaration or definition
(depending on whether the field is explicitly initialized). Such a declaration is a
field declaration if it takes place #bp level in the class, i.e., if it is a class
member. (A local variable declared inside a method body or other block is not at
top level in the class.)

Consider th&ectangle class defined above and reproduced here:
class Rectangle {
int height;
int width;
int x;
inty;

}

Each instance of this class will have faur -sized shoeboxes associated with it,
corresponding to the height, width, horizontal and vertical coordinates of the
Rectangle instance. These fields are declared at top level inside the class body.

These fields are declared here, but not initialized: none of these fields is explicitly
assigned a value. Fields, unlike variables, are initialized by default. If you don't
give a field a value explicitly, it will have a default value determined by its type.
For examplejnt fields have a default value of Contrastint local variables,
which don't have a default value and cannot be used until they are initialized. For
details on the default values for each type, see the sidebar on Default
Initialization.
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Java Types and Default Initialization

In Java, field names can be declared without assigning them an irftial
value. In this case, Java automatically provides the field widefault
value. The value used by Java depends on the type of the field.

Fields with numeric types are initialized by default to the appropoiate
that is, eitheo oro.0 (using the appropriate number of bits).

Fields with typechar default to the value of the character with ascii arld
unicode code 0 -3u000' . This character is sometimes calldat null
character, but should not be confused with the special Java value the
non-pointer.

Fields withboolean type are by default assigned the vaktuee

Fields associated with reference types -- includimigg -- are by default
not bound to any object, i.e., their default valueuis .

If a declaration is combined with an assignment -- i.e., a definition -- the
definition value is used and these default rules do not apply.

These rules apply to names of fields as well as to the components of afrays
-- described in a later chapter. In contrast, local variables must be explititly
assigned values -- either in their declaration (definition) or in a subseqiient
assignment statement -- before they are used. There are also names falled
parameters, which appear in methods aadh expressions; they are
initialized by their invoking expressions and are discussed in elsewherg in
this book.

7.3.1 Fields are not Variables

The difference in default initialization is only one difference between fields and
local variables. This section covers several other important differences after first
reviewing some properties of local variables.

A local variable is a name declared inside a method body. The scope of a local
variable -- the space within which its name has meaning -- is only the enclosing
block. At most, this is the enclosing method, so the maximum lifetime of a

variable name is as long as the method is running. Once the method exits, the
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variable goes away. (A similar variable will come into existence the next time the
method is invoked, but any information stored in the variable during the previous
method invocation is lost.)

7.3.1.1 Hotel Rooms and Storage Rental

Because a field is a part of an object, and because an object continues to exist
even when you're not explicitly manipulating it, fields provide longer-term
(persistent) storage. When you exit a block, any variables declared within that
block are cleared away. If you reenter that block at some later point, when you
execute the declaration statement, you will get a brand new variable. This is
something like visiting a hotel room. If | visit Austin frequently, | may stay in
similar (or even the same) hotel rooms on each trip. But even if | stay in the same
hotel room on subsequent visits, | can't leave something for myself there. Every
time that | check into the hotel, | get what is for all intents and purposes a brand
new room.

Contrast this with a long-term storage rental. If | rent long-term storage space, |
can leave something there on one visit and retrieve it the next time that | return.
Even if | leave the city and return again later, the storage locker is mine and what
| leave there persists from one visit to the next. When I'm in Seattle, the things |
left in my rental storage in Austin are still there. When | get back to Austin, | can
go to my storage space and get the things | left there. This is just like a field: the
object and its fields continue to exist even when your attention is (temporarily)
elsewhere, i.e., even when none of the object's methods are being executed.

[ cnecking n Checking n Again
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The storage locker story is actually somewhat more complex than that, and so is
the field story. It might be useful for someone else to have a key to my storage
locker, and it is possible for that person to go to Austin and change what's in the
locker. So if | share this locker with someone else, what | leave there might not be
what | find when | return. It is important to understand that this is still not the
same as the hotel room. Between my visits, the hotel cleans out the room. If |
leave something in my hotel room, it won't be there the next time | come back.
Each time, my hotel room starts out "like new". In contrast, the contents of my
storage locker might change, but that is because my locker partner might change
it, not because | get a freshly cleaned locker each time that | visit.

The locker partner story corresponds closely to something that can happen with
fields. It is possible for the value of a field to change between invocations of the
owning object's methods, essentially through the same mechanism (sharing) as the
storage locker. To minimize this (when it is not desired), fields are typically
declaredprivate . For more on this matter, see the discussion of Public and
Private in the next chapter. We will return to the issue of shared state (e.g. when
two or more people have access to the same airport locker) in the chapter on
Synchronization.

7.3.1.2 Whose Data Member is it?

A second way in which fields differ from variables is that every field belongs to
some object. For example, in tRectangle code, there's no such thingwasth

in the abstract. Evenyidth field belongs to somparticular Rectangle instance,

i.e., some object made from tRectangle class/factory/recipe.

Because a field belongs to an object, it isn't really appropriate to refer to it without
saying whose field you are referring to. Many times, this is easy:
myRectangle.width , for example, if you happen to haveRractangle named
myRectangle . The syntax for a field access expression is (1) an object-identifying
expression (often, but not always, a name associated with the object), followed by
(2) a period, followed by (3) the name of the field. You can now use this as you
would any other name:

myRectangle.width = myRectangle.width * 2;
for example.

There is, however, a common case in which the answer to the question "whose
field is it?" may be an object whose name you don't know. This occurs when you

are in a class definition and you want to refer to the instance whose code you are
now writing. (Since a class is the set of instructions for how to create an instance,
it is common to say "the way to do this is to use my awt field....")
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In Java, the way to say "myself" tgis . That is,this IS a special name
expression that is always bound to the current object, the object inside whose code
the namehis appears. That means that the way to say "mywdth field...."

is this.width . (Note the period betweeiis andwidth -- it is important!)

7.3.1.3 Scoping of Fields

The final way in which fields differ from (local) variables is in their scoping. The
scope of a name refers to the segment of code in which that name has meaning,
i.e., is a legitimate shoebox or label. (If you refer to a name outside of its scope,
your Java program will not compile because the compiler will not be able to
figure out what you mean by that name.) A local variable only has scope from its
declaration to the end of the enclosing block. (A method's parameter has scope
throughout the body of that method.)

A field name has scope anywhere within the enclosing class body. That means
that you can use the field name in any other field definition, method body, or
constructor body throughout the class, including the part of the class body that is
textually prior to the field declaration! For example, the following is legal, if
lousy, Java code:
class Square{
int height = this.width;
int width = 100;

}
(This isn't very good code because (a) it's convoluted and (b) it doesn't do what
you think it does. Althougltis.width is a legal expression at the point where
it's used, the value afis.width is not yet set to 100. The result of this code is
to setheight to O andwidth to 100. The rule is: all fields come into existence
simultaneously, but their initialization is done in the order they appear in the class
definition text.)

A cleaner version of this code would say

class Square{
int height = 100;
int width = this.height;
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Comparison of Kinds of Name$

Class or Interface [Field

Name (Data Member) Parameter (Local) Variable

Everywhere within |[Everywhere Everywhere From declaration to
Scope [containing programwithin containingjwithin method |end of enclosing

or package. class. body. block.

Until program Lifetime of objeciUntil method Until enclosing bloclk
Lifetime |execution whose field it is. invocation exits.

completes. completes.

Label names: [Value of matchinfjllegal to use withou

null argument explicit initialization
Default 9 . P
oL expression
Initializ |- Shoebox names .
. supplied to
ation value depends ol ethod
type. invocation.

7.3.2 Static Members

So far, we've said that fields belong to instances made from classes and that each
instance made from the class gets its own copy. Recall that the class itself is an
object, albeit a fairly different kind of object. (The class is like a factory or a
recipe; it is an instance of the class caltbs .) Sometimes, it is useful for the

class object itself to have a field. For example, this field could keep track of how
many instances of the class had been created. Every time a new instance was
made, this field would be incremented. Such a field would certainly be a property
of the class (i.e., of the factory), not of any particular instance of that class.

The declaration for a class object field looks almost like an instance field. The
only difference is that class field declarations are preceded by the keyword

2 The column for Class or Interface Name refers only to top-level (non-inner) classes or interfaces.
The scope and lifetime of an inner class is determined by the context of its declaration.
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static .2 For example:

class Widget {
static int numinstances;

}

In this case, individualvidget s donot havenuminstances fields. There is only
onenuminstances field, and it belongs to the factory, not theiget s. To access
it, you would saywidget.numinstances . In this casethis.numinstances is
not legal code anywhere within tiagdget class.

Style Sidebar

Field Documentation

In documenting a field, you need to indicate what that field represelnts
conceptually to the object of which it is a part. In addition, you shouyld
answer these questions as appropriate:

« What range of values can this field take on?

« What other values are interdependent with this one? For example,
must this field's value always be updated in concert with another fi¢ld,
or must its value remain somehow consistent with another field?

» Are there any "special" values of this field that carry hidden meaning?

 What methods (or constructors) modify this field? Which read this

field? What else relies on its value?

 Where does the value of this field come from?

» Can the value of this field change?

% The choice of the keyworstatic , while understandable in a historic context, strikes us as an
unfortunate one as the common associations with the term don't really accord with its usage here.
In Javastatic  means "belonging to the class object.”
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7.4 Methods

In a previous chapter, we saw how method signatures describe the name,
parameters, and return type of a method. A method signature declared in an
interface ends in a semi-colon; this method specifies a contract, but doesn't say
anything about how it works. It is essentially a rule specification. This kind of
method -- a specification without an implementation -- is calbetlact

Classes specify more than just a contract. Classes also specify how their instances
work. In order for an instance to do be able to do something, its class must give
more than the rule specification for its methods. An instance needs the rule body
for its methods. Classes must supply bodies for any methods promised by the
interfaces that they implement. They may also supply additional methods with
their own signatures and bodies.

Methods can be identified by the fact that a method name is always followed by
an open parenthesis. (There may then be some arguments or parameters, on which
more below; there will always be a matching close parenthesis as well.)

7.4.1 Method Declaration

A method definition also follows the type-of-thing name-of-thing convention,
but the type-of-thing is the type that is returned when the method is called. So, for
example, theénside method in the definition oRectangle, above, returns a
boolean value:

...boolean inside( int x, inty) { ... }

Inside the parentheses is the list of parameters to the method: calling
pictureFrame.inside on a particularx andy value returns true or false
depending on whether the po{rty) is insidepictureFrame . (Remember that
theinside method only exists with reference to a particlHactangle -- it's
alwayssomeobject's method!) The list of parameters, like every other declaration,
follows the type-of-thing name-of-thing convention. Note, though, that while a
regular variable definition can declare multiple names with a single type, in a
parameter list each name needs its own type.

A few more notes on methods: If there are no parameters, the method takes no
arguments, but it must still be declared and invoked with parentheses:
pictureFrame.isEmpty() , for example. If there is no return value, the return
type of the method i&id . Finally, inside the body of the method, the parameters
may be referred to by the names they're given in the parameter declaration. It
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doesn't matter what other names they might have had outside of the method body,
or what else those parameter names might refer to outside the method body. We'll
return to the issue of scoping later.

Recall from previous chapters that the method definition as we've described it so
far -- the return type and the parameter list -- is also called the signature of the
method. It tells you what types of arguments need to be supplied when the method
is called -- it must be possible to assign a value of the argument type to a variable
of the parameter type -- and what type of thing will be returned when the method

is invoked. It doesn't tell you much about the relationships between the method's
inputs and its outputs, though. (The method's documentation ought to do that!)

Style Sidebar

Method Implementation Documentation

Documentation for methods in classes is much like the documentation| for
methods in interfaces. However, class/object methods have bodies as|well
as signatures. In addition to the usual documentation of the method
signature (see the Style Sidebar on Method Documentation in the chépter
on Interfaces), your method documentation here should include

e ways in which this method implementation differs from or specializes
the documented interface method (signature).

* information concerning the design rationale (why the method woiks
the way that it does), just as you would for any piece of Java code.|For
more detail, see the Style Sidebar on Documentation in the chapter on
Statements.

7.4.2 Method Body and Behavior

This relationship -- how to get from the information supplied as arguments to the
result, or return value -- is the "how to do it" part of the method. Its details are
contained in the method body, which -- like a class body -- goes between a pair of
braces. What goes in here can be variable definitions or method invocations or
any of the complex statements that you will learn about later. You cannot,
however, declare other methods inside the body of a method. Instead, the method
body simply contains a sequence of instructions that describe how to get from its
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inputs (if any) to its output (if any), or what else should happen in between.

The body of a method is inside the scope of its parameters. That is, the parameter
names may be used anywhere within the method to refer to the corresponding
arguments supplied at method invocation time. The body of an instance method is
also within the scope of the special namie . Just as in fields, inside a method

the namethis refers to the particular instance whose method this is. Static
methods -- methods belonging to the class -- are not within the scape of
though. That is, you can't use the special name exprassiornn a static method.

In order to return a value from a method, you use a special statemant: .
There are actually two forms of this statemeaturn(...) ; returns a value
(whatever is in the parentheses) from a method invocation. For example,

return (total + 1);

returns one more than the valuet@él , though it doesn't change the value of

total at all. The parentheses around the expression whose value is to be returned
are in fact optional, leading to the second form of retwfarn;  is used to exit

from a method whose return typevisd , i.e., that does not return anything.

Remember (from the chapter on Expressions) that a method invocation is an
expression whose type is the return type of the method and whose value is the
value returned by the method. You make this happen (when you're describing the
method rule) by using an expliaiéturn  statement in a method's body. In the
chapter on Statements, we saw the execution rule for a method body and how it
relates to the evaluation rule for method invocation. This process is summarized
in the sidebar on Method Invocation and Execution.

7.4.3 A Method ALWAYS Belongs to an Object

A method is a thing that can la®ne (or invoked, or called). For example, a
painting program can draw a line, éawLine could be the name of a method.
Every method belongs to a particular objedtor instance, eacimcrement
method belongs to a particulatoreCounter  (Or Stopwatch , Or...) object; there
is no such thing as an independgetvalue method. So, ifmyScoreCounter
refers to a particularscoreCounter , myScoreCounter.getValue() invokes
myScoreCounter 'Sint -returning method. You can't just cgétvalue() . Whose
getvalue() method is it, anyway?

Each time that you refer to a method, you should ask yourself whose method it is.
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You can invoke a method by first referring to the object, then typing a period,
then the method name, as yScoreCounter.getValue() . Sometimes, the
answer to "whose method is it?" will be "my own", that is, the method belongs to
the object whose code is being executed. As with fields, the way to say "myself"
is with the special name expressioiz , so the way to say "mygetvalue()

method" isthis.getValue() . (Note the period betweetis andgetvalue() --

it is important!)

Generally, methods belong to instances of the class in which they're defined.
Occasionally, though, it may be useful to have a method that belongs to the class
itself. This corresponds to a property of the factory (or recipe), rather than one
belonging to the widgets (or cookies) produced. For example, a method that prints
out the number of widgets produced by the factory so far would be a method
belonging to the factory, not one belonging to any particular widget. Methods that
belong to the class instead of to its instances look just like regular methods,
except that they are prefaced with the keywsiedic . (This name is pretty
unintuitive, though it makes some sense in its historical context. Remember: In
Java, static  means "belonging to the class/factory/recipe itself, not to its
instances.") A static method can be addressed by first citing the object it belongs
to, then period, then the method namédget.howManyWidgets() . A static
methodshould notbe invoked usinghis , though, because it doesn't belong to an
instance.

Inside the method body, the namie may be treated as any other name.

it is also possible to refer to the object whose method it is as (for example, if you
want to pass it as an argument to another method).

7.4.4  Method Overloading

Just as in an interface, it is possible for a class to have multiple methods with the
same name. This is calledethod overloading since the name of the method is
overloaded -- it actually refers to two or more distinct methods -- belonging to
that object. In this case, each method must have a different footprint, i.e., the
ordered list of parameter types must differ for two methods of the same object
with the same name.

When an object has an overloaded method, the particular method to be invoked is
selected by comparing the types of the arguments supplied with the footprints of
the methods. The method whose footprints best matches the (declared) types of
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the arguments supplied is the one that is invoked. This matching is done using the
same type inclusion rules as the operaasnceof

Method Invocation and Execution

Method invocation is an expression; it is evaluated, producing a value.
Within this expression, the body of the method is treated as a blpck
(sequence) statement to be executed. This sidebar summarizes this progcess.

1. Before the method invocation expression can be evaluated, the olpject
expression describing whose method it is must be evaluated. This objelct is
called the methodirget.

2. Based on this object and the (declared) types of the argunjent
expressions, the method body is selected.

3. The argument expressions are evaluated and the method parareter
names are bound to the corresponding arguments. If the target i an
instance (i.e., if the method is not static), the namre is bound to the
target as well.

4. Within the scope of these name bindings, the body of the statemept is
executed as a normal block except for special rules conceting
statements.

e If, at any point within the execution of the body, a return statemeni is
encountered, its expression (if present) is evaluated and then the ejntire
method body and the scope of parameter nameshandare exited
upon completion of the return statement.

« If the method has a return type other than void, the return statement is
mandatory and must include an expression whose type is consisgtent
with the return type. A suitable return statement must be encounte¢red
on any normal execution path through the method body. In this cise,
the value of the return expression is the value returned by the meijhod
invocation expression.

» If the return type of the method is void, the final closing brace of the
method body is treated as an implicit return; statement, i.e., a rejurn
with no expression. This has the effect of exiting the method body i&nd
special name scope.
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7.5 Constructors

So, how do objects get created? Each class has a special member, called a
constructor, which gives the instructions needed to create a new instance of the
class. (If you don't give your class a constructor, Java automatically uses a default
constructor, which roughly speaking "just creates the instance" -- details below.
So some of the classes that you see may not appear to have constructors -- but
they all do.)

75.1 Constructor are Not Methods

A constructor is sort-of like a method.
1. It has a (possibly empty) parameter list enclosed in parentheses.
2. It has a body, enclosed in braces, consisting of statements to be executed.

3. Inside the constructor bodyhis. expressions can be used to refer to
methods and fields of the individual instance under construction.

There are several differences.

1. The name of a constructor always matches the name of the class whose
instances it constructs.

N

. A constructor has no return type.

3. A constructor does not return anythingsurn  statements are not
permitted in constructors.

4. A constructor cannot be invoked directly.

Instead, a constructor is invoked as a part okw expression. The result of
evaluating thisiew expression is a new instance of the type whose constructor is
evoked.

For example:
class Pie {
might have the constructor

Pie (Ingredients stuff) {
stuff.bake();
}
}
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In other words, to create gie , bake its ingredients. Note thafuff is a
parameter, just like in a method. Constructor parameters work exactly like method
parameters, and constructors take arguments to match these parameters in the
same way that methods take parameters.

But you don't invoke a constructor in the same way that you invoke a method. In
order to invoke a method, you need to know whose method it is. In order to use a
constructor, you only need to know the name (and parameter type list) of the
constructor. You invoke a constructor with a new expression as follows:

new Pie ( mylngredients )

wheremyingredients IS Of typelngredients

7.5.2 Syntax

The syntax of a constructor is similar to, but not identical to, the syntax of a
method. A constructor may begin with a visibility modifier (i.eublic |,
protected , Or private ) or one of a handful of other modifiers. Next comes the
name of the constructor, which is always identical to the name of the class. The
name is followed by a comma-separated parameter list enclosed in parentheses.
This parameter list, like the parameter list of a method, consists of type-of-thing
name-of-thing pairs. As in a method, the constructor name plus the ordered list of
parameter types forms the constructor's footprint. It is possible for a class to have
multiple constructors as long as they have distinct footprints.

After the parameter list, a constructor has a body enclosed in braces. This body is
identical to a method body -- an arbitrary sequence of statements -- except that it
may not contain &turn statement. This is because constructors are not methods
that can be called and that return values of specified types; instead, a constructor
is invoked using anew expression whose value is a new instance of the
constructor class's type. The constructor body may contain any other kind of
expression or statement, however, including declarations or definitions of local
variables.

modifiers ClassName ( type_1name_1 , .. type_nname_n )
// body statements go here
}

For example, the NameDropper StringTransformer class might begin as follows.
Note that the constructor argument is used to initialize the private field, the
particular name that *this* NameDropper will drop.
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public class NameDropper extends StringTransformer

{

private String who;

public NameDropper ( String name )

{

this.who = name;

}

/letc.

Note the use of anis. expression to refer to the field of the particular
NameDropper instance being created.

This constructor could be invoked using the expressi®m NameDropper(
"Jean")  Or new NameDropper( "Terry")

| NoameDopeC | ez [ omabper
| = *

Shina_UShO _ Jl whoiTe
4 sting Franshvm(Sring) Rame Do
who : Jean
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Style Sidebar

Constructor Documentation

Although a constructor is not a method, documentation for a constructdr is
almost identical to documentation for a method. Constructor documentajtion
should include:

» specifics distinguishing this constructor from others

« preconditions for using this constructor

« parameters required and their role(s)

» relationship of the constructed object to parameters or other factors
» side effects of the constructor

e additional assumptions and design rationale as appropriate

7.5.3 Execution Sequence

Before a constructor is invoked, the instance is actually created. In particular, any
shoeboxes or labels declared as fields of the instance are created before the
execution of any constructor code. This permits access to these fields from within
the constructor body. In addition, any initialization of these fields -- through
definitions in their declarations -- is executed at this time as well. Fields are each
created and then each initialized in textual order, but all fields -- even those
declared after the constructor are created and initialized prior to the execution

of the constructor. Once each of the instance fields is created, execution of the
constructor itself can begin.

When a constructor is executed, its parameters are matched with the arguments
supplied in the invocationnéw) expression. For example, in the body of the
NameDropper constructor, the namene is identified with the particular String

* There should be no such fields, declared after the constructor, because this makes your code
difficult to read and so is bad style. However, if any such declarations are made, they still executed
prior to the constructor itself.
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supplied to the constructor invocation expression. So if the constructor were
invoked with the expressionew NameDropper( "Terry" ) , the namename
would be associated with the String "Terry" during the execution of the body of
the NameDropper constructor. When the statement

this.who = name;
is executed, the value of the expressiane is the String "Terry".

Once each of the parameter names has been associated with the corresponding
argument, the execution of the statements constituting the constructor's body
proceeds in order (except where that order is modified by control-flow
expressions such @s or while ). These statements may include local variable
declarations; in this case, the name declared has scope from its declaration to the
end of the enclosing block, just as in a method. When the end of the constructor is
reached, execution of the constructor invocation expression is complete and the
value -- the new instance -- is produced.

Because a constructor body may not contain a return statement, it is not possible
to exit normally from any part of the constructor body except the end. Judicious
use of conditionals can simulate this effect, however.

7.5.4  Multiple Constructors and the Implicit No-Arg
Constructor

A class may have more than one constructor as long as each constructor has a
different footprint, i.e., as long as they have different ordered lists of parameter
types. So, for example, NameDropper might also have a variant constructor that
took a descriptive phrase as well as name:

public NameDropper ( String name, String adjective )

{

this.who = adjective + " " + name;

}

In this case,new NameDropper( "Marilyn Monroe" ) would create a
NameDropper that started every phrase with "Marilyn Monroe says..." while

new NameDropper( "Norma Jean", "My dear friend" )

(i.e., NameDropper(String, String) )would attribute everything to "My dear
friend Norma Jean..."

If -- and only if -- a class contains no constructors at all, a default constructor is
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assumed present. This default constructor takes no arguments and does nothing
beyond creating the object (and initializing the fields if they are defined in their
declarations).

If there is even one constructor, the implicit no-arg constructor is not assumed.
This means that if you define a constructor such as the one for NameDropper,
above, that takes a parameter, the class will not have a no-arg constructor (unless
you define one).

[Hazard: This can cause a problem when extending a class, if you're not careful.
See chapter on Inheritance.]

755 Constructor Functions

Often, one of the main functions of a constructor is to initialize the state of the
instance you're creating. Some initializations don't require a constructor; they can
happen when the field is declared, by using a definition instead of a simple
declaration:

class LightSwitch {
boolean isOn = false;
}

In this case, eaclightSwitch  instance is created in the off position. In this kind
of initialization, each instance of the class has its field created with the same
initial value.

Contrast this with the following example, in which the initial value ofridree
field isn't known until the particulatudent instance is created.

class Student {
String name;

Student( String who ) {
this.name = who;

}
}
In this case, a constructor is used to explicitly initialize the field named.
When the initial value of a field varies from instance to instance, it cannot be
assigned in the field declaration. Instead, it must be assigned at the time that the
particular instance is created: in the constructor.

A constructor (or a method body) can also refer to properties of the class object
itself. Recall the Widget class, which kept track of how many instances had been
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created. When the constructor is invoked, it can increment the appropriate field:

class Widget {
static int numinstances;

static int howManyWidgets(){
return Widget.numinstances;

}

Widget(¥{
Widget.numinstances = Widget.numinstances + 1;

}
}

Note that the constructor is not declargatic ~ (Constructors don't properly
belong to any object) but that it refers tetatic  field. Note also that theatic
field is referred to using the class nammd@et ), not usingthis . We've also
filled in the static method referred to above.

Finally, note that there is no explicit return statement in a constructor. A
constructor is not a method, and it cannot be invoked directly. Instead, it is used in
a construction expression, with the keyweedl: new Widget() IS an expression
whose type isvidget and whose value is a brand new instance ofvilaget

class, for example.

Q. Construct acounter class which supports an increment (increase-by-one)
method. Where does tlmeunter 's initial value come from?
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Style Sidebar

Capitalization Conventions

By convention, the first letters of all class and interface names pgre
capitalized. Since constructor names match their classes, constructor nemes
also begin with capital letters. Java file names also match the clasg (or
interface) declared within, so Java file names begin with a capital letter.

All other names (except constants) begin with lower case letters.| In
particular, the names of Java primitive types begin with lower case letters,
as do fields, methods, variables, and parameters.

After the first letter, mixed case is used, with subsequent capital letfers
indicating the beginnings of intermediate words: e@assName and
instanceName .

The exception to the above conventions is the capitalization of consthnts
(i.e., static final fields; see below). The names of constants are entifely
capitalized. Intermediate words are separated using underscores| ():
CONSTANT_NAME

Summary
A Javaclass is a Java type.

» Each (public, top level) class must be defined in a separate file whose
name matches the class name.

* Aninstance of a class is an object whose type is that class.

» If a class implements an interface, its instances must satisfy the interface's
promises.

* Classes have methods, fields, and constructors.

* In a class, methods typically have bodies specifying how to carry out the
method. (Otherwise, the methodiistract , and so is the class.)
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Every method belongs to some object. Unless deckased , a method
belongs to (each of) a class's instances, not to the class itself.

A field declares (and perhaps also defines) a name whose scope is the
class body (i.e., any methods, fields, or constructors in the class body) and
whose lifetime is the lifetime of the instance it belongs to.

Every field belongs to some object. Unless declasadc , a field
belongs to (each of) a class's instances. Each instance has its own copy of
the field, i.e., its own unique label with that field's name and type.

In Java,this is a special name, bound in any non-static member, that
refers to the instance whose instructions are being followed. An instance
can refer to its own methods and fields by saytizg methodName...)

orthis. fieldName , or to itself by the name expressiai .

A constructor gives instructions for how to create an instance of the class.

The class itself is an object. (It is an instance of the dass .) Fields
and methods declaredatic  belong to the class object itself and are
properly referred to using ClassName. methodName...) or
ClassName . fieldName .

Exercises

1. Consider the following definition:
public class MeeterGreeter

{

private String greeterName;

public MeeterGreeter( String name )

{

this.greeterName = name;
}
public void sayHello()

{

Console.printin( "Hello, I'm " + this.greeterName
);
}
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}

public void sayHello( String towhom )
{
Console.printin( "Hello, " + towhom
+", I'm" + this.greeterName
)i
}

public String getNameWithIntroduction ( String towhom

)

{
// *AAA

this.sayHello( towhom );
return this.greeterName;

}

Now assume that the following definition is executed:
MeeterGreeter pat = new MeeterGreeter( "Pat" ),

a.

terry = new MeeterGreeter( "Terry" );

What is printed byat.sayHello() ? What is returned? Which method is
invoked?

What is printed bynew MeeterGreeter( "Chris" ).sayHello(
"Terry") ? What is returned? Which method is invoked?

What is printed byerry.sayHello( "Pat" ) ? What is returned? Which
method is invoked?

Assume that the expressigat.getNameWithintroduction( "Chris"
) is being evaluated. What would the value be of each of the following
expressions if they were to appear on the ***d line:

i. toWhom

il. this.greeterName

iii. name

iV. this.sayHello()

V. new MeeterGreeter( "Pat")

Vi. this.getNameWithintroduction( towhom );

2. Now consider the following modification of tiveeterGreeter code. Assume
that we add the field definition
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private static String greeting = "Hello";

We will want to make several other modifications toNteeterGreeter  code.

a. Write achangeGreeting method that allows a user to change the greeting
string.

i.  What arguments should this take?

ii. What should it return?

iii. What should its body say?

iv. To which object should this method belong?

ii. Write an expression that invokes thieangeGreeting method that you
have written.

iii. Next, modify the sayHello methods to replace the fixed string "Hello"
with the a reference to the greeting field. Whose greeting field is it?

3. Define a class whose instances each have one method,
rememberAndReturnPrevious  , that takes a String and returns the String it was
previously given. Supply the first return value through the instance creation
expression. Give an example of your code in use.
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Chapter 8 Designing With Objects

Chapter Overview
* How do I design using objects and entities?

In the preceding chapters, we have seen how interfaces specify contracts and how
classes implement them. We have used expressions and statements to create
instructions that describe the processes of performing actions, making up method
and constructor bodies. And we have used names to retain an object's state even
while none of the object's methods is executing. In this chapter, we turn to the
guestion of how we design systems using these various tools.

The first part of this chapter looks at one simple example to illustrate how the
fields and methods of an object can be identified and implemented. Although the
example is small, the principles described here are general and will be used in the
design of any object-oriented program. This example also provides an opportunity
to look briefly at the question of privacy, or how an object separates internal
information from information that it makes available to other objects.

The next section of this chapter turns to look at three important kinds of objects
that appear in many systems. These kinds of objects -- data repositories, resource

©1999 Lynn Andrea Stein. This chapter is excerpted from a drdfitefactive Programming In Java
forthcoming textbook from Morgan Kaufmann Publishers. It is an element of the course materials developed
as a part of Lynn Andrea Stein's Rethinking CS101 Project at the MIT Al Lab and the Department of
Electrical Engineering and Computer Science at the Massachusetts Institute of Technology.

Permission is granted to copy and distribute this material for educational purposes only, provided that the
following credit line is included: "©1999 Lynn Andrea Stein." In addition, if multiple copies are made,
notification of this use must be sent to ipij@ai.mit.edu or ipij@mkp.com.
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libraries, and traditional objects -- each play distinctly different roles in any
system, and their designs reflect these roles. A fourth distinct kind of object --
animate objects -- is the topic of the next chapter.

The chapter concludes with a discussion of the ways in which different objects
and types are interrelated.

Objectives of this Chapter

 To become familiar with the identification of objects, methods, fields,
interfaces, and classes from a problem description.

» To recognize common kinds of objects and the roles that they play.

 To learn to identify opportunities to use these patterns in designing
systems.

8.1 Object Oriented Design

So far, you've seen a lot of Java how-to: how to declare, define, assign, and
invoke variables of primitive and object types, classes, object instances, methods,
and control flow. Now that you have some fluency with the basic building blocks
of Java, it is time to start looking at why each of these constructs is used and how
they are combined to build powerful programs. In this chapter, we'll look at
objects and classes; in the next, we'll continue this discussion by focusing on
instruction-followers and self-animating objects.

8.1.1  Objects are Nouns

When you are constructing a computational system, you need to build pieces of
code to play various roles in the system you're constructing. To a first
approximation, you can do this by writing down a description in English of the
system and the interactions you want to have with it (and that you want its parts to
have with one another), then mapping these things onto elements of Java. When
you do this, you will find that Java objects correspond roughly to the nouns of
your description.

To be a bit more precise, Java objects are things in your computational world, but
not all of the things are Java objects. Some of the things will have primitive types
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-- numbers, for example, will probably hieuble s or ints -- but most of the
things that are important enough to represent and complex enough that Java
doesn't have a built-in type for them will be objects in your world. This means
that you will have to define a Java class which describes what this type of object
is (more below).

For example:

A counter has a number associated with it. When it starts out, the number is O.
You can increment the counter, and each time you do so, the number goes up
by one. At any time, the counter can also be asked to provide the current value
of its associated number.

The nouns in this paragraph are counter and nunfdad youy but we'll assume

that you either refers to the user, which we don't need to implement, or to some
other component outside of the current system.) The counter will be a Java object;
we can use amt for the number since it isn't asked to do anything, just to be
there.

8.1.2 Methods are Verbs

When you write down your description, you will also find that there are lots of
things that these objects do to/with/for one another, or that you want to do
to/with/for them. These things correspond to the verbs in your English
description, and they are the methods of your Java objects. Every verb has a noun
associated with it -- its subject -- aadery Java method belongs to some object

In our basic counter example, the verbs are increment (and its alternate form, goes
up by one) and provide (as in "provide the current value"). Increment is
something you need to be able to do to the counter object. We could handle
provide in either of two ways: we could give the counter someone or something to
provide the value to, or we could ask it. We will adopt the second of these
options, though we will return to the first option in the chapter on Communication
Patterns. This means that the counter object is going to have to have (at least)
these methods.

8.1.3 Interfaces are Adjectives

Interfaces and classes are both types. How do you know when to use which one?
As a general rule of thumb, names (including parameters, fields, and local
variables) should generally be declared using an interface type whenever possible.
Constructor expressions, of course, require a class type.
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Interfaces are good at capturing commonality. It is almost always useful to define
an interface corresponding to the set of features of your objects that would hold
for any implementation of them. For example, the need for any counter to have an
increment method and a getValue method makes these good properties to
encapsulate in an interface. No matter how we implement the counter, these
method properties will hold. In contrast, the fact that most counters will keep
track of their value using a field (perhaps even an int fieldO is an implementation-
specific detail that cannot be expressed in an interface. An interface talks about
what an object can do, not about how it accomplishes these tasks.

A Counting interface might say:
interface Counting

{

void increment();
int getValue();
}

Why would we use this? By referring to any actual counters by their interface
type --Counting -- rather than their implementation types, we make it possible
for the implementor to modify details of the implementation -- or, even, to change
which underlying implementation we're using -- without changing the code that
uses it. We also avoid committing to any specific aspects of the implementation --
such as the representation of the current value through a long or a double or even
a String -- that really shouldn't matter to the user of the class.

The name of this interface is only moderately adjectival, but most interfaces are
named using adjectives. For example, we have Ressitable and will soon

see Animatable , Runnable , and Cloneable . We could almost calCounting
Incrementable  instead.

8.1.4  Classes are Object Factories

So if the nouns are objects, the verbs are methods, and the interfaces are
adjectives, what is left for the classes? Java classelsirigof objects. They
correspond, roughly, to machines (or factories) that tell you (or Java) how to
make new objects, not (necessarily) to anything explicitly in your English
description.

For example, thelass BasicCounter is something that tells Java how to make
anew BasicCountgy . It doesn't appear explicitly in the English description, but
parts of the description are about it and other parts imply things about what it
must say. The phrase "When it starts out, the number is 0" talks iaii@it
conditions for BasicCounter  objects; the class is the thing responsible for
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establishing these (since it is the factory wiarnenter s are made).

For that matter, the class is responsible for establishing what the parts of an object
are. "Parts" here refers tmethods and fields. What are the pieces of a
BasicCounter  object? In this case, its number (and maybe an associated display).
What are the things &asicCounter can do (or that we can do with/to a
BasicCounter)? increment and provide its value, at least. Socldke
BasicCounter  will most likely include a number field (which is going to be of
typeint ), as well as methods corresponding to incrementing and value-providing.
It will also initialize the number field to 0.

Q. Is this a static or dynamic initialization? Where does it take place?
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Class and Member Documentation

This list summarizes many of the main features that good documente
will capture about classes and their members. For more detail, see
specific documentation sidebars in the previous chapter.

 methods

« fields

e constructors

Style Sidebar

parameters: type and role
return value: type and role
function: why you'd do it

"side effects": what else it does (esp. values changed)

type and role
how it changes & which methods use/change it

constraints and interdependencies

parameters: type and role
relation of parameters to the particular instance produced

"side effects": what else it does (esp. values changed)

its interface, especially key methods and fields & how |they

interact

8.1.5

Some Counter Code

Here is a very basic implementation of the counter class:
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class BasicCounter implements Counting

{
int currentValue = 0;
void increment()
{
this.currentValue = this.currentValue + 1;
}
int getValue()
return this.currentValue;
}
}

Some notes on this code:

* The class is a factory for makirgasicCounter S. Its body talks about
what each individuaBasicCounter  looks like, not about the factory
itself.

» Each individuaBasicCounter  has itsown currentvalue  field. Each one
starts out with the value, but they can change independently: each
currentvalue  field belongs to a specif@asicCounter

 We haven't included a constructor because, in this case, Java's default
constructor does what we want. This is in general true when there is no
dynamic initialization (each instance starts out in the same state).

* Theincrement andgetvalue methods are methods that belong to each
BasicCounter  instance. In each case, they refer to ¢heentvalue
field of that BasicCounter instance. We note this by using the java
keywordthis

Someone wanting to use BEasicCounter could now do so by invoking an
instance creation expression with tBigicCounter ~ factory:

new BasicCounter()

This expression is probably more useful if we embed it inside another expression
or statement, e.g.,

Counting myCounter = new BasicCounter();

Note the use of the interface type when declaring the name, but the class type
within the construction expression.

Now we can askiyCounter to increment itself or to give us its value:

myCounter.increment();
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Console.printin( myCounter.getValue() );
// prints 1

myCounter.increment();
myCounter.increment();
myCounter.increment();

Console.printin( myCounter.getValue() );
// prints 4

Final

A name in Java may be declared with the modifiar . This means that
the value of that name, once assigned, cannot be changed. Such a name is,
in effect, constant.

The most common use of this feature is in declaring final fields. These|are
object properties that represent constant values. Often, these field are ptatic
as well as final, i.e., they belong to the type object rather than to|its
instances. Making a constant static as well as final makes it easy for cther
objects to refer to this value. It is appropriate for static final fields to pe
declared public and to be accessed directly by other objects. Static final
fields are the only fields allowed in interfaces.

In addition to final fields, Java parameters and even local variables cap be
declared final. A final parameter is one whose value may not be char|ged
during the execution of the method. A final variable is one whose valu¢ is
unchanged during its scope, i.e., until the end of the enclosingblock.

Java methods may also be declared final. In this case, the method canr|ot be
overridden in a subclass. Such methods can be inlined by the compileri.e.,
the compiler can make these methods execute more efficiently than cther
non-final methods. A static method is implicitly final. An abstract methjd
may not be declared final.

Java classes declared final cannot be extended (or subclassed).

! Final fields and parameters are unnecessary unless you plan to use inner classes. They may,
however, allow additional efficiencies for the compiler, and in any case they cannot be
detrimental.
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8.1.6 Public and Private

When we defined thBasicCounter  class, we intended that the rest of the world
would interact with its instances (things produced bycthe BasicCounter
factory) only throughncrement()  andgetvalue() . But there is nothing about
the code we've written that prevents someone from defining a BasicCounter name
and then changing the value of tBasicCounter instance'surrentvalue  field.
For example, it would be perfectly possible for another object to say

BasicCounter anotherCounter = new BasicCounter();

anotherCounter.currentValue = anotherCounter.currentValue +
1;

instead of
anotherCounter.increment();

This would be rather rude of it (and very bad style), but it is technically possible
and unfortunately done all of the time. Using the interface tygmunting --

rather than the class typeBasicCounter  -- is one way to avoid this, and this is

yet another reason why it is generally better to use the interface type. But as the
implementor ofBasicCounter , we can't require that it always be treated as a
Counting instead of as aBasicCounter . Further, coercion (such as
(BasicCounter) myCounter ) will get you around the interface-associated
name? Class designers don't always get to choose how users of the class will
interact with it or as what type they'll choose to treat it.

We can take a stronger position on the matter of direct field access, though. We
can, in fact, prevent direct field accesspgtecting the currentvalue  field of

2 Specifically, it would be legal, if longwinded, to say
((BasicCounter) myCounter).currentValue

= ((BasicCounter) myCounter).currentValue + 1;
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eachBasicCounter  instance. We do this by changing the declaration of the field
in class BasicCounter

class BasicCounter {
private int currentValue = 0;

void increment ...

}

By makingcurrentvalue  private to class BasicCounter , only the instance of
BasicCounter itself can access theirrentvalue  field. Now, this rudeness on
the part of the calling object would simply be impossible. (The compiler would
complain that the calling object could not access BasicCounter's private field
currentValue.)

In general, it's a good idea to define fieldpamte when you don't want them

to be accessed directly by other objects. You can also defiae  methods,

which are generally things an object uses for its internal computations but not
intended to be used from outside the object. Private things are a part of the class's
or its instances' own internal representations and machinations; they are not to be
shared.

Any member, not just a field or a method, carpbete . You can even define

private  constructors. Although this may seem like an odd thing to do, it actually
isn't all that strange. It means that the class object (along with any instances it
creates) maintains complete control over whether and when new instances can be
created. The class can refuse to create any instances, or it can create just one
instance and return this any time someone asks for a new one (using a special
method the class defines for this purpose, such as getinstance(), not the (private)
constructor), or it can ask for the secret password before creating an instance if it
(or its designer) wants to.

The opposite oprivate  is public. You should declare thingsiblic when you

want them to be accessible from any part of anyone's code. You can also declare
classes and interfaces to faslic , in which case they must be defined in a file
whose name is the same as the name of the class or interfacayplus

If you don't declare somethingivate  or public , it is in an intermediate state.
There are actually two intermediate statesiected  and the default state.
These two are in fact equivalent to one another angiiez  unless you use
packages, a Java feature that we will explore in the chapter on Abstraction. Until
then -- until you are building complex enough code that you need to subdivide it
at finer levels than all-or-none -- you should gselic andprivate all of the

time, i.e., everything in your code should be one or the other.

IP1J || Lynn Andrea Stein



8.2 Kinds of Objects 8~11

8.2 Kinds of Objects

Objects are the nouns of programming: the people, places, and things. Nouns do a
lot of different things in the world and, similarly, objects to a lot of different
things in programs. In this section, we take a closer look at several kinds of
objects, their typical construction, and why you might use them. The objects
discussed here are all relatively passive; they do nothing until asked. In the next
chapter, we go on to look at active objects, objects that have their own instruction
followers.

8.2.1 Data Repositories

A data repository is a very simple object that exists solely to hold a set of
interrelated data. The data repository object simply glues these things together,
providing a convenient way to deal with the grouped data as a single unit.

One example of a data object might be a postal address. This might consist of a
street address, a city or town, a state or province, a postal code, and a country.
There isn't really much that you would do with an address, other than pull out the
individual pieces or maybe modify one or more of the pieces. (For example, the
postal service just changed my postal code, so although my address object stayed
the same, its postal code field needed to change.) The whole address is useful and
meaningful in a way that the pieces individually are not, so it is often convenient

to be able to package these pieces together and to pass the address object around
as a single unit.

Here is some code for a very simple address object. Note that this code has some
aesthetic problems, which we will address shortly.

public class OversimplifiedAddress {
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public String streetAddress,
city,
state,
postalCode;

}

// Problems with this class:

// Non-final fields ought not to be public.

// Fields ought to be initialized by (missing) constructor
or default.

Like instances of this OversimplifiedAddress class, data repository objects exist
to hold a collection of pieces together. Typically, each of these pieces is
represented by a field of the object. The simplest form of data repository object is
one -- like an instance of the Oversimplified Address class -- that has a set of
public fields and nothing else. However, this form is not recommended.

One object should never access another object's fields difectly.

In our simple address object, we violated this rule. To fix that class definition, we
should instead make each of these fields internal to the object. So that other
objects can access these fields, we need to provide getter and setter methods to
access them. Ayetter method is a method that returns the value of a field. A
setter method is one that has a single parameter, the new (desired) value of the
field; evaluating this method modifies the state of the object to reflect this new
value. Getter methods are sometimes cafletbctors and setter methods are
sometimes callednutators. It is common to use the name of the field prefixed
with get as the name of the getter method and the name of the field prefixed with
set as the name of the setter method.

Note that getter and setter methods need not correspond one to one with fields.
Instead, a setter method may change the value of more than one field; a getter
value may return an object that encapsulates more than one field value.

Alternately, a getter or setter may make reference to an apparent field that doesn't
actually exisper se

We can improve the address class by modifying it to use getter and setter
methods. Only one pair of these methods is shown here, although the complete

3 Actually, this should read "One object should never access another otjecfisal fields

directly." Final fields are in effect constants; the reasons for objecting to field access do not apply
to read-only accesses to a constant.] Instead, an object should provide methods for accessing its
fields. [Teacher's note: Where getter methods are simply long-winded ways of doing field access,
a good compiler should be able to inline this code. In Java, this can be done when the getter
method is declared final.
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class definition would presumably contain four pairs of getter and setter methods.
public class BetterAddress {

private _ String streetAddress,
city,
state,
postalCode;

““public void setPostalCode( String code )

}

{
}

this.postalCode = code;

public String getPostalCode()

{
}

return this.postalCode;

// Remaining problems with this class:

// Fields should be initialized by (absent) constructor or

default.
Why shouldn't one object access the fields of another directly? (Why should you
use getter and setter methods?)

1. Methods separate use from actual (internal) representation. The user of a

class shouldn't need to know (or care) how information is actually
represented inside the class. For example, US postal codes are commonly
written as five-digit numbers. A different implementation of addresses
intended for use only in the US might actually represent the postalCode
field using an int instead of a String. The getter and setter methods of this
USAddress object could do the conversion for the user:

public String getPostalCode()
{

return new String( this.postalCode );
}
We might have an interface (say, GeneralizedAddress) containing (an
abstract version of) this method. Both USAddress and BetterAddress
classes could implement the GeneralizedAddress interface, even though
they use different internal representations.

Another variant of separating use from actual representation involves
getter and/or setter methods for fields that don't actually exist. For
example, it might be useful for these address objects to have a
getAddressLabel field, which would return the multiline String containing

the complete address suitable for printing on an envelope. This getter
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method would automatically calculate the appropriate value from the
individual fields of the address object; there is no actual field
corresponding to the information that this getter field provides.

public String getAddressLabel()

{
return new String( this.streetAddress + "\n"
+ this.city + ", "
+ this.state + " "
+ this.postalCode + "\n"
+ this.country );
}

Getter and/or setter methods like this one, which do not correspond to any
actual field of the object, are sometimes callatual fields. To the user

of the object, it looks as though there's a field there. Whether that field
actually exists or just looks like it is nobody's business but the
implementing object's.

2. Methods can provide additional behavior, including access control and
error checking. For example, BetterAddress could be augmented with an
internal list of the states or provinces within each country. If the setter
method were given an argument that didn't match one of the appropriate
values, it could report an error. The most extreme case of this is a read-
only field, one in which no non-private setter method is supplied. This
prevents a user of the object from ever modifying the value of thaf'field.

Another example of augmenting the behavior of a setter might involve
automatically filling in the city and state whenever a postal code is
entered. The postal code's setter method could look up the appropriate city
and state information based on the postal code supplied and propagate this
information to these other fields as well, saving the user the work of
providing this information separately. (Some mail order companies do this
now: you give them your postal code, and they tell you what city and state
you live in!)

There are other reasons why methods, rather than fields, are a good idea. Some of
these involve issues that will not be discussed until later in this book. For
example, if you are using inheritance (Chapter 9), methods give you additional
flexibility and more appropriate behavior than fields. There are also issues that

“ Note that a read only field is different from a constant (final) field. A read-only field can be
changed by its owning object, but not by anyone else. A final field's value, once set, cannot be
changed. This is enforced by the Java compiler.
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arise when two or more people try to use the same things at the same time
(covered in the chapter on Synchronization); the tools that you can use to address
these issues generally rely on methods rather than fields.

One of the most common reasons for a pure data repository class is to allow
simultaneous return of multiple interrelated values. An example of this type is the
Dimension class in the java.awt package. This class exists so that its instances can
hold both (horizontal and vertical) coordinates, e.g., of a window size. This allows
them to be simultaneously returned from a method such as Window's getSize()
method. If getSize() weren't able to return a data repository type such as
Dimension, you'd first have to invoke a method that returned the Window's
horizontal dimension, then one that returned its vertical dimension. If the
Window's size changed in between these two method invocations, your two
individual dimension components would combine to produce a nonsensical value!

Pure data repository objects are actually quite rare in good object-oriented design.
This is because most objects do more than hold some state. The extensions we've
described above, including propagation of changes, virtual fields, and access
control already begin to expand the data repository idea. In the next subsection,
we look at objects that exist to provide behavior without state. In the following
subsection, we will return to objects that contain both data and more interesting
behavior.

8.2.2 Resource Libraries

We have seen objects that hold together an interrelated set of data. Sometimes, an
object exists to hold together an interrelated set of methods. If these methods are
not tied to any particular state of the world, they may usefully be grouped together
within a (generally non-instantiable) class that exists solely for this purpose.
Consider, for example, the square root function. It is a useful function, and it is
often convenient to have it lying around. But, in Java, any function must be a
method belonging to a particular object. Java has a square root method; but whose
method is it?

The answer to this question is that sqrt() belongs to a special class called Math.
Math is a class that exists precisely so that you can use its methods, like sqrt().
Math is a canonical function library; it has no use beyond being the place to find
its member functions. It exists to provide the answer to the question, "Whose
method is sqrt()?"

Because Math is a place to find these functions, it is not a class of which you
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would want to make instances. Instead, Math has only static methods and static
fields. This means that you can use its methods and data members through the
class object (Math) itself.For example, a typical method is Math.sqrt(double d),
which takes a double and returns a double that is the square root of its argument.
Without the Math class to collect it and other mathematical functions, it is hard to
imagine to whom this sqrt function could belong. Math exists so that there is a
place to collect sqrt and a number of other abstract mathematical functions.

The Math class has static methods for the trigonometric functions, logarithms and
exponentiation, various flavors of rounding, and very simple randomization. Math
also has two (static final, i.e., constant) fields: E and PI, doubles representing the
corresponding mathematical constants. See the sidebar on Math for details.

Q. Since it's not instantiable, why couldn't Math be an interface?

Math -- the class, with its static methods and fields -- is a very useful class.
However, it wouldn't make sense to create any instances of it. In fact, Math has no
publicly available constructor. This is a common way to prevent a class from
being instantiated: give it only a private constructor. In general, a resource
collection is the kind of object of which wouldn't have any use for multiple
copies.

Another resource collection class is cs101.util.Console. Console -- documented in
a sidebar in the chapter on Things, Types, and Names -- provides console input
and output through the print(), printin() and readin() methods. These, too, are
static methods of the class; you don't need to create a Console instance before
using these methods. (In fact, like Math, Console is a class of which you can't
create instances.) The resources provided by cs101.util.Console (streams) are a bit
more complicated than the resources provided by java.lang.Math, and in the
chapter on networking and 1/0 we will explore these issues in greater detail. The
Console class is describe more completely in a sidebar of chapter 3.

Other classes that provide static collections of resources (whether functions or
otherwise) include java.lang.System, cs101.util. MoreMath, and cs101.util. Coerce.
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class Math

The built-in Java class Math may be the canonical resource library|

contains two (static) fields, Math.E and Math.Pl, both double
corresponding to the mathematical constants e and pi, respectively.

Math also contains a host of useful mathematical functions, again all st
Each of the following methods takes a double as an argument and retu
double:

cos |cosine of its argument acos |arc cosine of its argument
sin  [sine of its argument asin larc sine of its argument
tan [tangent of its argument atan farc tangent of its argument

exp

Math.E raised to the power of i
argument

Logarithm base Math.E of its
argument
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smallest double corresponding

sqrt [square root of its argument ceil |an integer value that is larger tr

its argument

floor |an integer value that is smaller rint

largest double corresponding tc double corresponding to the

than its argument integer value nearest its argum

Math.abs takes a double, a float, a long, or an int, and produces a valu
the same type as its argument thar is guaranteed to be non-negative.

Math.max andMath.min each take two arguments of the same type (bc
double, float, long, or int). max returns the larger of its arguments; min
smaller.

Math.round takes a double and returns the long closest in value to
argument.

Math.pow takes two doubles and yields the value of the first raised to
power of the secondmth.pow( base, expt ) = bas&")

Math.random takes no arguments and returns a double equal to or I
than 0.0 and strictly smaller than 1.0.
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There are a few other Math methods not included here. In addition, there
are extra mathematical functions (including more flexible and powerful

ranidomization) available in the package java.math. For these additipnal
methods, see the Java APl documentation on the Javasoft web site.

8.2.3  Traditional Objects

Some objects, like data repositories, exist primarily to bundle together certain
pieces of data. Other objects exist primarily to hold stateless, general-purpose
functional behavior. Most objects fall into neither of these categories. Instead,
most objects represent things with both state -- what happens to be true of them
Right Now -- and behavior -- how that object can change over time. Some of
these objects, like Windows, Buttons, and Menus, have visual manifestations.
Other objects, like the ones that represent Strings or URLS, are more obviously
internal to programs. Many of the objects that you create will be of this kind.

A String is an object that keeps track of the sequence of characters of which it is
composed, so somewhere inside the String object must be data that corresponds to
those characters. But a String is not simply a data repository; it has a diverse set
of methods. What kinds of things might you want to do with a String? Certainly
look at some of the characters, which you can do using the Sttiagis(int

index) method. Java's String class provides additional methods, though, which
allow you to do more than simply look at parts of the String. For example, there is
toUpperCase() , Which returns a String just like the one whose method you
invoke, but with all letters in upper case. (For exampleji
there".toUpperCase() returns a String that would print out ‘a8 THERE" .)
String's toUpperCase()  method is neither a selector nor a mutator. More
complete descriptions of the String class and its methods are included in the
sidebar on the String class in the first Interlude.

Another kind of traditional object that we've seen is a counter. This object has
internal state (whatever the current count is set to) and methods providing access
to this state (e.g.increment() and getvalue( )). The methods can't work
without the state; the state isn't directly accessible, but provides the basis for
method behavior. This is an extremely typical kind of object.

Here is some code implementing a slightly more sophisticated Counter class than
the one described at the beginning of this chapter. In addition to the functionality
provided by that BasicCounter class, this class implementsRébetable
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interface, i.e., providesraset() method.
public class Counter implements Counting, Resettable

{

private int currentValue;

public Counter()
{

this.reset();

public void increment()

{

this.currentValue = this.currentValue + 1;

}

public void reset()

{

this.currentValue = 0;

}

public int getValue()
{

return this.currentValue;

}
}

The two methods +increment()  andreset() -- rely on the current state (count)

of the individual instance whose methods they are. Two different counters can
have two different states (e.g., one can have count 4 and the other count 27).
Incrementing the first will have a different effect (producing 5, etc.) from
incrementing the second (which produces 28). Resetting one will not reset the
other. Increment() and reset) make no sense without reference to the
particular counter instance they're incrementing or resetting. This relationship
between state (data members) and methods is typical of “traditional” objects.
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Traditional objects are exemplified by the following properties:
» Each instance has its own state.

» This state is not directly accessible. Instead, it provides the basis for
method behavior.

» Method behavior is dependent on the internal state of a particular instance.

» State plus behavior, packaged together, provide a single logical unit.

8.3 Types and Objects

8.3.1 Declared Type and Actual Type

What happens when we take an object of one type and treat it as though it had
another type? One common example of this that we've seen is using an interface-
type name to hold an object. The object is an instance of some class. The name
says that it's in instance of some interface. The interface provides a much more
limited view of the object than the actual implementation. Does this change the
object? What happens when we ask whether the object is an instanceof its class,
for example.

The answer is that the object is the same object no matter what its declared type
(e.g. the declared type of the name that may be holding it, or of the method that
may return it, or wherever else its type may be declared). It can do all of the same
things regardless of its declared type. And it responds the same way when asked
whether it is an instanceof its class, regardless of whether its declared type is
some more specialized interface.

For example, if we take an instance of the Counter class defined above, with its
reset(), increment() and getValue() methods, and assign it to a name of type
Counting (an interface with only increment() and getValue() methods), we haven't
actually changed the Counter instance:

Counting count = new Counter();
If we ask whether

count instanceof Counter

this is true. Of course
count instanceof Counting
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is also true. But
count instanceof BasicCounter

is false, given the definitions earlier in this chapter.

Using a Counting name instead of a Counter name does have some effect, though.
First, we may not know about the Counter type. In this case, we are limited to
treating count as though it were a Counting, not a Counter. For example, we
couldn't call its reset() method, because Countings don't have reset() methods.
Even if we did know about Counters, we'd have to explicitly cast count to be a
Counter before we could use its Counter-specific properties:

( (Counter) count ).reset();

So an interface provides a limited view without limiting the actual object.

8.3.2 Use Interface Types

When declaring names and otherwise using objects, you should generally use
interface types rather than class types. This allows the implementation of objects
to vary independently of their use. It also allows different versions of the object to
be used without dependence on unnecessary or possibly mutable properties. An
interface allows common behavior to be abstracted and relied on. An interface can
also be used to allow for future abstraction and variation, such as the Counting
interface that allowed for the creation of a Timer.

For example, suppose that we are building a video game. The outer window of the
video game is likely to be the same whether the game is Pong or Battleship or
Spacelnvaders. It has controls such as start, stop, reset, and pause. What exactly
happens when these controls are invoked depends on the particular game that is
displayed in this window. But we want to build a generic DefaultGameFrame
window that doesn't have to rely on the particular type of game that it will hold.
We can accomplish this using an interface.

public interface GameControllable

{
public void start();
public void stop();
public void reset();
public void pause();
public void unpause();

}

Now, the DefaultGameFrame can refer to the game using the type
GamecControllable. As long as Pong or Battleship or Spacelnvaders implements

IP1J || Lynn Andrea Stein



8~22  Designing with Objects Chapter 8
|

GameControllable, any of these games can be used inside the DefaultGameFrame.
When the DefaultGameFrame's reset control is invoked, DefaultGameFrame
simply calls its GameControllable's reset() method. If the GameControllable
happens to be Pong, it will bring the paddles back to rest and set the scores to 0. If
the GameControllable is space invaders, the player will begin again with a full set
of ammunition and plenty of aliens to shoot.

8.3.3  Use Contained Objects to Implement Behavior

One object can use another to provide behavior on the first object's behalf. For
example, we might have a Clock object that provides a getTime() method and a
setTime() method. We might also have a VCR object that includes among its
functionality getTime() and setTIme(). Should the VCR implement its own
getTime() and setTime() methods? This seems awfully inefficient. Or should the
VCR reuse the Clock's getTime() and setTime() methods directly? (We will see a
mechanism by which this can be accomplished in the chapter on Inheritance.) The
problem with this solution is that the VCR isn't really a Clock (or a kind of
Clock). Instead, the VCR can provide these methods by having a Clock inside it.

For example, the code for the VCR might say (in part):

public class VCR
{

private Clock clock;

public Time getTime()
{

return this.clock.getTime();

}

public void setTime( Time t)

{

this.clock.setTime( t );

}

// ete.
}
In this way, the VCR provides access to the Clock's methods indirectly. This
reuse of behavior by inclusion is a very powerful mechanism. In this case, the
VCR might be providing access to the full set o Clock's methods. In another case,
the including class might only provide a subset of the included class's methods, or
it might provide a superset by combining those methods in different ways. The
including class and the included class can even implement a common interface
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(such as TimeStorer) so that code that uses one or the other can't really tell the
differenceso long as it only uses the interface's methods

The DefaultGameFrame and GameControllable described above are similar.
When the DefaultGameFrame is asked to perform a reset (or a start or a stop
or...), it passes this request along to the GameControllable. In that case, the use of
an interface type -- GameControllable -- for the included object increases the
flexibility and usability of the including class.

8.3.4 The Power of Interfaces

Why are interfaces so good at providing this flexibility? Because and interface is
all about the contract an object makes and not about implementation. By relying
on an interface, you defer any dependence on implementation details that might
not be true of another implementation. This independence from implementation-
specific details is enforced by the compiler, which will not let you rely on
properties of an object specified by its interface type beyond those explicitly
declared in the interface.

An object can also implement many different interfaces. In this case, it can be
"seen" by other objects through each of these different interface types. Each
interface type provides a different view of the object. By controlling these
interfaces, a programmer controls the view that the object's users have of that
object.

Reliance on interface types doesn't work perfectly, though. For example, a

resource library such as Console or Math doesn't have an interface type. This is
because resource libraries are typically non-instantiable classes. Only instances
can have interface types.

Chapter Summary

* In an informal description of the program, nouns generally correspond to
objects or to fields, methods to verbs, and interfaces to adjectives.

» Classes are the factories from which objects are created.

* Interface types provide a valuable layer of abstraction, allowing the
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implementation to vary without affecting the use.

 Members, classes, and instance marked public are accessible from
anywhere within a program. Members marked private are only accessible
within their defining class or instance.

* A data repository object exists to glue together a set of interdependent
data. It has fields corresponding to this data and methods that allow you to
read and modify this data.

» A resource library exists to hold a collection of methods or system-wide
resources. Generally, a resource library supplies these methods and
resources statically, i.e., it is not a class that is ever instantiated.

» Traditional objects mix both data and methods. These objects provide the
kind of integrated state-dependent behavior that we expect of real world
objects.

Exercises

1. Design and implement a class called Time that keeps track of the hour and
minute together. Give it a nextMinute method that returns another Time, a minute
later. How do you access the fields of Time objects?

2. Design and implement a class that provides IntegerArithmetic functions add(
int, int ), sub(int, int ), mul( int, int ), and div( int, int ). You can give it any other
methods you think might be useful. What doe s its constructor do? Why do you
think that Java doesn't have such a class?

3. Design and implement a 2DVector class representing vectors in the plane.
Include sum, difference, and product methods.
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Chapter 9 Animate Objects

Chapter Overview
 How do | create an object that can act by itself?

This chapter builds on the previous ones to create an object capable of acting
without an external request. Such an object has its own instruction follower, in
Java called a Thread. In addition, an object with its own instruction-follower must
specify what instructions are to be followed. This is accomplished by
implementing a certain interface -- meeting a particular contract specification --
that indicates which instructions the Thread is to execute.

The remainder of this chapter deals with examples of how Threads and animate
objects can be used to create communities of autonomously interacting entities.

Objectives of this Chapter
+ To understand that Threads are Java's instruction-followers.

» To appreciate the relationship between a Thread and the instructions that it
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executes.

« To be able to construct an animate object using AnimatorThread and
Animate.

9.1 Animate Objects

In previous chapters, we saw how objects group together state and behavior.
Some objects exist primarily to hold together constituent pieces of a single
complex state. Other objects exist to hold a static collection of primarily
functional or system-specific resources. Most objects contain both local state and
methods that rely on and interact with this state in complex ways. Many of these
objects wait for something to happen or for someone else to ask them to act. That
is, nothing happens until something outside the object invokes a method of the
object. In this chapter, we look at objects that are capable of taking action on their
own, without being asked to do so from outside. These objects have their own
instruction-followers, making them full-blown entities.

Consider, for example, the Counter. This is a relatively traditional object. It has
both state and methods that depend on that state. An individual counter object
encapsulates this state-dependent behavior, wrapping it up into a neat package.
But a counter doesn't do anything unless someone asks it to, using its increment()
or reset() method. By itself, a counter can't do much.

Contrast this with a timer. A timer is very similar to a counter in having a method
that advances it to the next state (paralleling the counter's increment() method)
and one that sets the state back to its default condition (such as reset()). A timer
differs from a counter, however in that a timer counts merrily along whether
someone asks it to or not. The timer's reset() method is a traditional (passive)
method; the timer resets only when asked to. But the timer's increment() method
is called by the timer itself on a regular basis.

This kind of object -- one that is capable of acting without being explicitly asked
to do so -- is called an animate object. Such an object has its own instruction-
follower, or actor, associated with it. While traditional objects are roles that an
actor may take on and then leave, an animate object is a role that is almost always
inhabited by an actor and tightly associated with it. Often, animate objects will
use traditional objects (as well as data repositories, resource libraries, and other
kinds of objects) to perform their tasks, temporarily executing instructions
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contained in these objects. But the animate object is where it begins and ends.

What makes an animate object different from other (passive) objects? Recall that
on the first page of the first chapter of this book, we learned about the two
prerequisites for a computation: The instructions for the computation must be
present, and those instructions must be executed. Every method of every object is
a set of instructions -- a rule -- that can be executed. When a method is invoked,
its body is executed. (The method body is executed by the instruction-follower
that invoked the method; this is how a method invocation expression is
evaluated.)

An animate object differs from other objects because it also has its instruction
follower. It does not need to wait for another instruction-follower to invoke one of
its methods (although this may also happen). Instead, it has a way to start
execution on its own.

In Java, an instruction-follower is called a Thread. No object can act except a
Thread. A Thread is a special object that "breathes life" into other objects. It is the
thing that causes other objects to move. An animate object is simply an object that
is "born" with its own Thread. (Typically, this means that it creates its own
Thread in its constructor and starts its Thread running either in its constructor or
as soon as otherwise possible.)

9.2 Animacies are Execution Sequences

In every method of every object, execution of that method follows a well-defined
set of rules. When the method is invoked, its formal parameters are associated
with the arguments supplied to the method call. For example, recall the
UpperCaser StringTransformer:

public class UpperCaser extends StringTransformer

{
public String transform( String what )

{

}
}
If we have UpperCaser cap = new UpperCaser(); then evaluating the
expressiortap.transform( "Who's there?") has the effect of associating the
value of the Stringwho's there?" with the namevhat during the execution of
the body of theransform  method.

return what.toUpperCase();
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Now, the first statement of the method body is executed. In the case of the method
invocation expressiomap.transform( "Who's there?") , there is only one
statement in the method body. This is the return statement, which first evaluates
the expression following the return, then exits the method invocation, returning
the value of that expression. To evaluate the method invocation expression
what.toUpperCase() involves first evaluating the name expressigiat and

then invoking theoUpperCase() method of the object associated with the name
what .

No matter how complex the method body, its execution is accomplished by
following the instructions that constitute it. Each statement has an associated
execution pattern. A simple statement like an assignment expression followed by
a semicolon is executed by evaluating the assignment expression. Expressions
have rules of evaluation; in the case of an assignment, the right-hand side
expression is evaluated, then that value is assigned to the left-hand side (shoebox
or label). Evaluating the right-hand side expression may itself be complicated, but
by following the evaluation rules for each constituent expression, the value of the
right-hand side is obtained and used in the assignment.

A more complex statement, such as a conditional, has execution rules that involve
the evaluation of the test expression, then execution obah@ot bothof the
following substatements (the "if-block” or the "else-block"”). Loops and other
more complex statements also have rules of execution. Declarations set up name-
value associations; return statements exit the method currently being executed.

At any given time, execution of a particular method is at a particular point and in
a particular context (i.e., with a particular set of name-value associations in force).
If we could keep track of what we're in the middle of doing and what we know
about while we're doing it, we could temporarily suspend and resume execution of
this task at any time. Imagine that you're following an instruction booklet to
assemble a complex mechanism. This problem is a lot like placing a bookmark
into your instructions while you go off to do something else for a while. All you
need to know is where you were, what you had around you, and what you were
supposed to do next; the rest of the instructions will carry you forward.

Inside the computer, there are things that keep track of where you are in an
execution sequence. These are special Java objects called Threads. The trick is
that there can be more than one Thread in any program. In fact, there are exactly
as many things going on at once as there are Threads executing in your program.
A Thread keeps track of where it is in its own execution sequence. Each Thread
works on its own assembly project using its own instruction booklet, just like
multiple people can work side by side in a restaurant or a factory.
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In this book, we will make extensive use of a special kind of Thread called an
AnimatorThread. An AnimatorThread is an instruction follower that does the
same thing over and over again. It also has some other nice properties: it can be
started and stopped, suspended and resumed. These last two mean that it is
possible to ask your instruction follower to take a break for a while, then ask it
later to continue working. AnimatorThreads provide a nice abstraction for the
kinds of activities commonly conducted by the animate objects that are often
entities in our communities.

9.3 Being Animate-able

In order for a Thread to animate an object, the Thread needs to know where to
begin. A Thread needs to know that it can rely on the object to have a suitable
beginning place. There must be special contract between the Thread and the
object whose instructions this Thread is to execute. The object promises to supply
instructions; the Thread promises to execute them. (In the case of the

AnimatorThread, it promises to execute these instructions over and over again.)
As we know, such a contract is specified using a Java interface. This interface
defines a method containing the instructions that the Thread will execute. The

Thread will begin its execution at the instructions defined by this method.

9.3.1 Implementing Animate

If we use an AnimatorThread to animate our object, our object must fulfill the
specific contract on which AnimatorThread begins. This contract is specified by
the interface Animate:

public interface Animate

{

public abstract void act();
}
The Animate interface defines only a single method, void act(). A class
implementing Animate will need to provide a body for its act() method, a set of
instructions for how that particular kind of object act()s. An AnimatorThread will
call this act() method over and over again, repeatedly asking the Animate object
to act().

For example, the Timer that we described above could be implemented just as the
Counter, but with the addition of an act() method:

public void act()
{
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this.increment();
}
Of course, we'd also have to declare that Timer implements the Animate interface.
It isn't enough for Timer to have an act() method; we also have to specify that it
does so as a commitment to the Animate interface. Here is a complete Timer
implementation:

public class Timer implements Animate

{

private int currentValue;
public Timer()

{

this.reset();

}

public void increment()

{
}

public void reset()

{
}

public int getValue()
{

}

public void act()
{

~ this.increment();

3
}

Note that the implementation is entirely identical to the implementation of
Counter except for the clauselements Animate  and Timer'sct) method*

this.currentValue = this.currentValue + 1;

this.currentValue = 0;

return this.currentValue;

! As we shall see in the next chapter, we could significantly abbreviate this class
by writing it as
public class Timer extends Counter implements Animate

{
public void act()

this.increment();

}
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Now Timer tick = new Timer(); defines a Timer ready to be animated.

9.3.2 AnimatorThread

On the other side of this contract is the instruction follower, an AnimatorThread.
Like any other kind of Java object, a new AnimatorThread is created using an
instance constructioméw) expression and passing it the information required by
AnimatorThread's constructor. The simplest form of AnimatorThread's
constructor takes a single argument, an Animate whose act() method the new
AnimatorThread should call repeatedly.

For example, we can animate a Timer by passing it to AnimatorThread's
constructor expression:

Timer tick = new Timer();

AnimatorThread mover = new AnimatorThread( tick );

There is one more thing that we need to do before tick starts incrementing itself:
tell the AnimatorThread to startExecution():

mover.startExecution();

An AnimatorThread'sstartExecution() is a very special method. It returns
(almost) immediately. At the same time, the AnimatorThread comes to life and
begins following its own instructions. That is, before the evaluation of the method
invocationmover.startExecution() , there was only one Thread running. At the
end of the evaluation of the invocation, there are two Threads running, the one
that followed the instructiormover.startExecution() and the one named
mover , Which begins following the instructionstak 'sact() method.

Once started, the AnimatorThread's job is to evaluate the exprasisianact()
over and over again. Each time, this incremeeis 's currentvalue  field. The
AnimatorThread nameghover callstick 'sact() method over and over again,
repeatedly causinggk toact .

We can collapse the two AnimatorThread statements into one by writing

new AnimatorThread( tick ).startExecution();
However, this form does not leave us holding onto the AnimatorThread, so we
couldn't later tell it to suspendExecution(), resumeExecution(), or
stopExecution(). (See below.) If we anticipate needing to do any of these things,
we should be sure to hold on to the AnimatorThread (using a label name).
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9.3.3  Creating the AnimatorThread in the Constructor

If our Timers will always start ticking away as soon as they are created, we can
include the Thread creation in the Timer constructor:

public class AnimatedTimer implements Animate
{
private int currentValue;
private AnimatorThread mover;
public AnimatedTimer()
{
this.reset();
this.mover = new AnimatorThread( this );
this.mover.startExecution();

}

public void increment()

{

// ... rest of class is same as Timer

In this case, as soon as we say
Timer tock = new AnimatedTimer();

tock will begin counting away. If we invokeck.getvalue() at two different
times -- even if no one (except its own AnimatorThread) asks to do anything

at all in the intervening time -- the second value might not match the first. This is
becausaock (with its AnimatorThread) can act without needing anyone else to
ask it.

o J—
! >
- Primate | Avinase Timer
0 w covrennalue
\\ wd ek \ wimstoiThead NOVRY |
— = - e
- . [ wid ack0)
| Countin vod nerenwent-C)

Void ‘\(\CNW\e’\'H‘“
| e QerValue D |

—_

ne 6&&‘\/&\ uel)

g ackO methat
Tgfpﬁi\%%@- Acrirnodoc TN

inshweions

IP1J || Lynn Andrea Stein



9.3 Being Animate-able 9~9

Here is another class that could be used to monitor a Counting (such as a Counter
or a Timer):

public class CountingMonitor implements Animate

{

private Counting whoToMonitor;
private AnimatorThread mover;

public CountingMonitor( Counting whoToMonitor )

{

this.whoToMonitor = whoToMonitor;
this.mover = new AnimatorThread( this );
this.mover.startExecution();

}
public void act()

Console.printin( "The timer says "
+ this.whoToMonitor.getValue()

);
}
}
Note in the constructor that the first whoToMonitor (this.whoToMonitor) refers to
the field, while the second refers to the parameter.

9.3.4 A Generic Animate Object

The way that AnimateTimer and CountingMonitor use an AnimatorThread is
pretty useful. There is a cs101 class, AnimateObject, that embodies this behavior.
It is probably the most generic kind of animate object that you can have; any other
animate object would behave like a special case of this one. We present it here to
reinforce the idea of an independent animate object. It generalizes both
CountingMonitor and AnimateTimer.

At this point, you should regard this class as a template. Change its name and add
a real act() method to get a real self-animating object. In the chapter on
Inheritance, we will return to this class and see that there is a way to make this
template quite useful directly.

public class AnimateObject implements Animate

{

private AnimatorThread mover;

public AnimateObject()
{
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this.mover = new AnimatorThread( this );
this.mover.startExecution();

}

public void act()
{

}

// what the Animate Object should do repeatedly

}

It is worth noting that an Animate need not be animated by an AnimatorThread.
For example, a group of Animates could all be animated by a single
SequentialAnimator that asks each Animate to act(), one at a time, in turn. No
Animate could act() while any other Animate was mid-act(). Each would have to
wait for the previous Animate to finish. This SequentialAnimator would require
only a single instruction follower (or Thread) to execute the sequential Animates'
instructions, because it would execute them one act() method at a time. When one
animate is acting, no one else can be.

The nature of execution under such a synchronous assumption would be very
different from executions in which each Animate had its own Thread and they
were all acting simultaneously. Roughly it's the difference between a puppet show
with one not-very-skillful puppeteer, who can only operate a single puppet at a
time, and a whole crowd of puppeteers each operating a puppet. The potential for
chaos is much greater in the second scenario, but so is the potential for exciting
interaction. When each object has its own AnimatorThread -- as in the
AnimateObject template -- any other Animate (or the methods it calls) can
execute at the same time.

9.4 More Detalils

This section broadens the picture painted so far.

9.4.1 AnimatorThread Details

The AnimatorThread class and the Animate interface reside in the package
cs101.lang. This means that any file that uses these classes should have the line

import cs101.lang.*;
before any class or interface definition.
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The class AnimatorThread specifies behavior for a particular kind of instruction
follower. Its constructor requires an object that implements the interface
csl0l.lang.Animate, the object whose act() method the AnimatorThread will
repeatedly execute.

After constructing an AnimatorThread, you need to invoke its startExecution()
method® This causes the AnimatorThread to begin following instructions. In
particular, the instructions that it follows say to invoke its Animate's act() method,
then wait a little while, then invoke the Animate's act() method again (and so on).
To temporarily suspend execution, use the AniamtorThread's suspendExecution()
method. Execution may be restarted using resumeExecution(). To permanently
terminate execution, AnimatorThread has a stopExecution() method. Once
stopped, an AnimatorThread's execution cannot be restarted. However, a new
AnimatorThread can be created on the same Animate object.

An object -- like an Animate -- is a set of instructions -- or methods -- plus some
state used by these instructions. There is nothing to prevent more than one Thread
from following the same set of instructions at the same time. For example, it
would be possible to start up two AnimatorThreads on the same Timer. If the two
AnimatorThreads took turns fairly and evenly, one AnimatorThread would always
move from an odd to an even numbered currentValue, while the other would
always move from an even to an odd numbered value. Of course, there's nothing
requiring that the two AnimatorThreads play fair. Like children, one might take
all of the turns -- incrementing the Timer again and again -- while the other might
never (or rarely) get a turn. AnimatorThreads are designed to minimize this case,
but it can happen. The problem is more prevalent with other kinds of Threads.

One of the ways in which AnimatorThread tries to "play fair" is in providing
intervals between each attempt to follow the act() instructions of its Animate
object. The AnimatorThread has two values that it uses to determine the minimum
interval between invocations of the Animate's act() method and the maximum
interval. Between these two values, the actual interval is selected at random each
time the AnimatorThread completes an act(). You can adjust these parameters
using setter methods of the AnimatorThread. Values for these intervals may also
be supplied in the AnimatorThread's constructor. See the AnimatorThread sidebar
for detalils.

2 AnimatorThread's instances also have a startExecution() method that is identical to the
startExecution() method. This is for historical reasons.
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class AnimatorThread

AnimatorThread is a cs101 class (specifically, cs101.lang.AnimatorThrejad)
that serves as a special kind of instruction-follower. An AnimatorThread's
constructor must be called with an instance of cs101.lang.Animate. [The
AnimatorThread repeatedly follows the instructions in the Animate's aft()
method.

An AnimatorThread is an object, so it can be referred to with gn
appropriate (label) name. It also provides several useful methods:

void startExecution() causes the AnimatorThread to begin following
the instructions at its Animate's act() method. Once started, the
AnimatorThread will follow these instructions repeatedly at semi-randpm
intervals until it is stopped or suspended

void stopExecution() causes the AnimatorThread to terminate ils
execution. Once stopped, an AnimatorThread cannot be restarted. [This
method may terminate execution abruptly, even in the middle of [he
Animate's act() method.

void suspendExecution() causes the AnimatorThread to temporarily
suspend its execution. If the AnimatorThread is already suspendeq or
stopped, nothing happens. If the AnimatorThread has not yet started and is
started before an invocation of resumeExecution(), it will start in|a
suspended state, i.e., it will not immediately begin execution. This method
will not interrupt an execution of the Animate's act() method; suspensipns
take effect only between act()s.

void resumeExecution() causes the AnimatorThread, if suspended, o
continue its repeated execution of its Animate's act() method. If [he
AnimatorThread is not suspended or already stopped, this method (loes
nothing. If the AnimatorThread is suspended but not yet started, invokling
resumeExecution() undoes the effect of any previous suspendExecutjon()
but does not startExecution().

Between calls to the Animate's act() method, the AnimatorThread slegps,
i.e., remains inactive. The duration of each of these sleep intervalp is
randomly chosen to be at leaséepMininterval and no more than
sleepMininterval + sleepRange . These values are by default set to g
range that allows for variability and slows activity to a rate that is humaply

perceptible. If you wish to change these defaults, they may be set efther
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explicitly using setter methods or in the AnimatorThread constructor.

void setSleepRange( long howLong ) sets the desired variance in sleep
times above and beyond sleepMininterval

void setSleepMininterval( long howlLong ) sets the range of
variation in the randomization

By setting sleepRange to 0, you can make your AnimatorThread's activity
somewhat more predictable as it will sleep for approximately the sgjme
amount of time between each execution of the Animate's act() mettod.
Setting sleepMininterval to a smaller value speeds up the execution raje of
the AnimatorThread. Setting it to O can be dangerous and should| be
avoided. If sleepRange is 0O, it is possible that this AnimatorThread \yill

interfere with other Threads' ability to run.

AnimatorThread supplies a number of constructors. The first requires gnly
the Animate whose act method supplies this AnimatorThread's instructigns:

AnimatorThread( Animate who )

The next two constructors incorporate the same functions as setRange¢ and
setMinlinterval:

AnimatorThread( Animate who, long sleepRange )

AnimatorThread( Animate who, long sleepRange,
long sleepMininterval )

It is also possible to specify explicitly whether the AnimatorThread sholild
start executing immediately. By default, it does so. The following
constructor allows you to override this explicitly using the boolejn
constants AnimatorThread.START _IMMEDIATELY and
AnimatorThread. DONT_START_YET .

AnimatorThread( Animate who, boolean startimmediately )

Finally, there are two additional constructors that incorporate both staitup
and timing information:

AnimatorThread( Animate who, boolean startimmediately,
long sleepRange )

AnimatorThread( Animate who, boolean startimmediately,
long sleepRange, long sleepMininterval )
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9.4.2 Delayed Start and the init() Trick

It is awfully convenient to be able to define an animate object as an Animate that
creates and starts its own AnimatorThread. This hides the Thread creation and
manipulation inside the Animate (as in the example of AnimateTimer), making it
appear to be a fully self-animating object from the outside. However, sometimes
we need to separate the construction of the Animate and its AnimatorThread from
the initiation of the AnimatorThread instruction follower. That is, we want the
AnimatorThread set up, but not yet actually running. For example, we might need
a part that isn't yet available at Animate/AnimatorThread creation time. On these
occasions, it would be awkward to start the execution of an AnimatorThread in
the constructor of its Animate. For example, if the Animate's act() method relies
on other objects and these other objects may not yet be available, you wouldn't
want the AnimatorThread to start executing the act() method yet.

An example of this might be in the StringTransformer class in the first interlude,
in which you can't read or transform a String until after you've accepted an input
connection. Since the input connection might not be available at
StringTransformer construction time, one solution to this problem is to delay the
starting of the execution of the act() method until after the input connection has
been accepted. Once the constructor completes, the newly constructed object's
acceptlnputConnection method can be invoked. At this point -- and not before --
the AnimatorThread's startExecution() method can be invoked. This means that
the call to the AnimatorThread's startExecution() method can't appear in the
constructor. But it can't be invoked by any object other than the Animate, because
the AnimatorThread is held by a private field of the Animate.

This situation -- that there are things that need to be done that are logically part of
the setup of the object, but that cannot be done in the constructor itself -- is a
common one. To get around it, there is a convention that says that such objects
should have init() methods. Whoever is responsible for setting up the object
should invoke its init() method after this setup is complete. The object can rely on
the fact that its init() method will be invoked after the object is completely
constructed and -- in this case -- connected. We could then put the call to the
AnimatorThread's startExecution() method inside this init() method.

Here is a delayed-start version of the AnimateObject template.
public class InitAnimateObject implements Animate

{

private AnimatorThread mover;
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public InitAnimateObject()
{

}

public void init()
{

}

public void act()

this.mover = new AnimatorThread( this );

this.mover.startExecution();

// what the Animate Object should do repeatedly

A concrete example of this issue arises if we look at CountingMonitor and don't
assume that the Counting will be supplied to the constructor. Here is another
version of CountingMonitor without the constructor parameter:

public class InitCountingMonitor implements Animate

{

}

private Counting whoToMonitor;
private AnimatorThread mover = new AnimatorThread(

this);
public void setCounting( Counting whoToMonitor )
{

this.whoToMonitor = whoToMonitor;
}
public void init()
{

this.mover.startExecution();
}
public void act()
{

Console.printin( "The timer says "

+ this.whoToMonitor.getValue()

);
}

The use of a method named init() here is completely arbitrary. You are free to
define your own method and call it whatever you want. However, you will see

that many people follow this convention and provide an init() method for their

objects when there is initialization that must take place after the constructor and
setup process is complete.
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9.4.3 Threads and Runnables

The Animate/AnimatorThread story that we've just seen is not a standard part of
Java, though it is only a minor variant on something that is. There are two reasons
why we've used AnimatorThreads here. The first is that most of the self-animating
object types in this book are objects whose act method is executed over and over
again. AnimatorThread is a special kind of Thread designed to do just that. The
second is that AnimatorThread contains some special mechanisms to facilitate its
use in applications where you might want to suspend and resume its execution or
even to stop it entirely. AnimatorThread provides methods supporting this
behavior.

There is, however, in Java a more primitive type of Thread, called simply Thread.
Like an AnimatorThread, a simple Java Thread can be given an object to animate
when the Thread is created. (Its constructor takes an argument representing the
object whose instructions the Thread is to follow once it has been started.)
However, the Thread does not execute this method repeatedly; it executes it once,
then stops. The contract that a Thread requires of the object providing its
instructions is not Animate, meaning it can be called on to act repeatedly. Instead,
it is Runnable, meaning it can be executed once.

Thread (as of Java 1.1) does not provide suspension, resumption, or cessation
methods. In this book, we avoid the use of plain Java Threads.

In addition, it is technically possible in Java to extend a Thread object rather than
passing it an independent Runnable. Except in code that creates special kinds of
Threads (such as AnimatorThread) capable of animating other objects, the
extending of Thread is highly discouraged in this book. Extending Thread to
create an executing object (whose own run() method is the set of instructions to be
followed) confounds the notion of an executor with the executed.

9.4.4 Thread Methods

start, yield, sleep, (interrupt, join (many versions), isAlive
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Thread methods

Threads are Java's instruction followers. In this book, we will most ofjen
make use of AnimatorThreads. However, it is useful to understand How
Java's built-in Thread class works as well.

Like an AnimatorThread, each Thread provides a few methods for|its
management.

void start() Like AnimatorThread's startExecution(), this method
causes the target Thread to begin following instructions. If the
Thread's constructor was supplied a Runnable, the Thread begir|s
execution at this Runnable's run() method. When the run() methoc
terminates, the Thread's execution is finished.

boolean isAlive() tells you whether the target Thread is alive, i.e.,
has been started and has not completed its execution.

void interrupt() sends the target Thread an InterruptedException.
Useful if that Thread is sleeping, waiting, or joining.

void join() causes the invoking Thread to suspend its execution
until the target Thread completes. Variants allow time limits on this
suspensionyoid join( long millis ) and void join( long

millis, long nanos )

Unlike AnimatorThread, a Thread cannot safely be stopped, suspendefl, or
resumed.

In addition to its role as the type of Java's instruction followers, the Thrgad
class provices useful static (i.e., class-wide) functionality. These methjods
are static methods of the class Thread:

static void sleep( long millis ) causes the currently active
Thread to stop executing for millis milliseconds. This method throws
InterruptedException, so it cannot be used without some additiona
machinery (introduced in the chapter on Exceptions). There is &
variant methodsleep( long millis, long nanos ) that allows
more precision in controlling the duration of the Thread's sleep.

static void yield() is intended to pause the currently executing
Thread and to allow another Thread to run. However, not all versions
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of Java implement Thread.yield in a way that ensures this behavior.

Other Thread features are outside the scope of this course.

9.5 Where do Threads come from?

We have discussed the idea of AnimatorThreads above, showing how to create
self-animating objects by having an AnimatorThread created in an object's
constructor. Such an object is born running; it continually acts, over and over,
until its Thread is suspended or stopped.

In fact, no execution in Java can take place without a Thread. But something must
call the AnimatorThread constructor; this instruction must be executed by a
Thread! So where does the first Thread come from? This depends on the
particular kind of Java program that you are running. In this book, we look
primarily at Java applications. In the appendix, we also answer these questions for
Java applets.

9.5.1  Starting a Program

What does it mean for a Java program to run? It means that there is an instruction
follower that executes the instructions that make up this program. In Java, there is
no execution without a Thread, or instruction-follower, to execute it. So when a
program is run, some Thread must be executing its instructions. Where does this
Thread come from, and how does it know what instructions to execute?

Let's answer the first of these questions first. When a Java program is run, a single
Thread is created and started. This is not a Thread that your program creates; it is
the Thread that Java creates to run your program. Depending on whether your
Java program is an application (as we're discussing in this book) or an applet (as
you may have encountered on the world-wide web) or some other kind of Java
program, there are different conventions as to where this Thread begins its
execution. But running a prograby definitionmeans creating a Thread -- an
instruction follower -- to execute that program.

How does the Thread know where to begin? By convention. What do we mean by
a convention? AnimatorThread's use of Animate is a convention. This convention
is, in some sense, completely arbitrary. That is, a different interface name or other
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method might have been used. For example, the raw Thread class uses a different
convention, that of Runnable/run(). If you were to design your own type of
Thread, you could create a different convention for it to follow. However, once
these names and contracts have been selected by the designers of AnimatorThread
and Thread, they are absolute rules that cannot be violated.

Similarly, there must be some arbitrary convention as to how a Java program
begins. In a standalone application, the convention is that running a Java program
means supplying a class to the executable, and by convention a particular method
of the class is always the place that execution begins. This default execution does
not create an instance of the class, so the method must be a static one. Again by
convention, the name of this method is main, it takes as argument an array of
Strings, and it returns nothing. That is, the arbitrary but unvarying start point for
the execution of a standalone Java application is the

public static void main ( String[] args )

method of the class whose name is supplied to the exectitable.

So if you want to write a program, you simply need to create a class with a
method whose signature matches the line above. The body of that main method
will be executed by the single Thread that is created at the beginning of a Java
execution. When execution of main terminates, the program ends. If you do not
want the program to end, you need to do something during the course of
executing main that causes things to keep going. Typically, this means that you
use the body of main to create one or more objects that themselves may execute.
For example, if the body of main creates an animate object (with its own
AnimatorThread), then that object will continue executing even if the body of
main is completed. This is called "spawning a new Thread".

Here is a very simple class that exists solely to create a new instance of the
AnimateTimer class:

public class Main

{

public static void main ( String[] args )

{

Counting theTimer = new AnimateTimer();

}
}

This program simply counts. The instruction follower that begins when this

% Typically, this means the class you select before choosing run from the IDE menu or the class
whose name follows the commajagta on the command line.
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program starts up (e.g., using java Main) executes the main() method, invoking
new AnimateTimer() and assigning the result to theTimer. This Thread is now
done executing and stops. However, the constructor for AnimateTimer has created
a new AnimatorThread and then called that AnimatorThread's startExecution()
method. This starts up the new Thread which repeatedly calls AnimateTimer's
act() method. The program as a whole will not terminate until the
AnimatorThread stops executing, which it will not do by itself. If you run this
program, you will need to forcibly terminate it from outside the program!

Since we didn't give this program any way to monitor or indicate what's going on,
running it wouldn't be very interesting. But we can use the CountingMonitor
above to improve this program:

public class Main

{

public static void main ( String[] args )

{

Counting theTimer = new AnimateTimer();
Animate theMonitor = CountingMonitor( theTimer );

}
}

Q. Can you find a more succinct way to express the body of the main method?

Q. What will be printed by this program? On what does it depend? (Hint:
fairness.)

The instruction follower executing the Main class's main method exits. However,
before it completes it executes the instructions to create and start two separate
AnimatorThreads. These AnimatorThreads continue after the execution of the
main Thread exits. Again, this program must be forcibly terminated from outside.

Q. Can you cause this program to stop by itself sometime after it has counted to
100? (This is a bit tricky.)

The two versions of the Main class above each contain just the instructions to
create an instance or two. In the cs101 libraries, we have provided a Main that
does this for you. This allows you to write applications without needing to write
public static void main( String[] ) methods yourself.
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class Main

The cs101 libraries include a class, cs101.util.Main, that can be run ffom
the java command line to create an instance of a single class with a notargs
constructor. For example, we could implement the unmonitored Tirper
example using the following command:

java cs101.util.Main AnimateTimer

This causes code much like the first Main class to execute, creating a s|ngle
instance of AnimateTimer (using its no-args constructor).

The class cs101.util.Main contains nothing but the single static metpod
main (taking a String[] argument). The command above tells Java to gtart
its initial instruction follower at this method -- the static main( String[]|)
method of the class cs101.util.Main. The remainder of the information|on
the command line (in this case, AnimateTester) is supplied to the njain
method using its parametér.

“ For more detail on arrays ([]), see the chapter on Dispatch.
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Style Sidebar

Using main()

If you do decide to write your own main() method, you should do so i a
class separate from your other classes, generally one called Main|and
containing only the single public static void main() method requiring| a
String[] (i.e., an array of Strings). This method may have some comple|ity,
creating several objects and gluing them together, for example.

Alternately, you can create an extremely simple main method in any|(or
even every) class that you write. In this case, however, the main method
should do nothing more than to create a single instance of the class wjthin
which it is defined, using that class's no-args constructor. Of course,| the
signature of each main method is the same: public static void main( Strihg[]
args ) The main that will actually be executed is the one belonging to|the
(first) class whose name is supplied to the 