

Laravel Application
Development
Cookbook

Over 90 recipes to learn all the key aspects of
Laravel, including installation, authentication, testing,
and the deployment and integration of third parties in
your application

Terry Matula

 BIRMINGHAM - MUMBAI

Laravel Application Development Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1211013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-282-7

www.packtpub.com

Cover Image by Sujay Gawand (sujaygawand@gmail.com)

Credits

Author
Terry Matula

Reviewers
Jason Lewis

Elan Marikit

Acquisition Editors
Mary Jasmine Nadar

Saleem Ahmed

Lead Technical Editor
Dayan Hyames

Technical Editors
Aparna Kumari

Sharvari Baet

Nadeem N. Bagban

Project Coordinator
Leena Purkait

Proofreaders
Stephen Copestake

Paul Hindle

Indexer
Tejal R. Soni

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Terry Matula is a web developer and Laravel advocate based in Austin, TX.

He's been a passionate computer enthusiast since he first played Oregon Trail on an Apple
//e. He started programming in BASIC at a young age, making simple Scott Adams-like games
on a Commodore Vic-20. Since then, he's worked as a developer using Flash/ActionScript,
ASP.NET, PHP, and numerous PHP frameworks, with Laravel being his favorite by far.

He blogs web development tips and tricks at his website http://terrymatula.com

I'd like to thank Taylor Otwell for creating such a wonderful framework,
and everyone in the Laravel community for being the most helpful and
supportive group of people I've seen in the web development community.
I'd also like to thank my beautiful wife Michelle for her continued
encouragement and support, even when I was working 18 hour days to
finish this book. Finally, I'd like to thank my son Evan, for keeping me
grounded and being a shining light in my life.

About the Reviewers

Jason Lewis is a web developer and designer hailing from The Land Down Under (Australia).
He's been using web technologies to develop websites for the past 7 years and is currently a
huge Laravel evangelist. During the day, Jason is a professional firefighter, while at night he
works hard on code and helps others learn to code. He's always willing to help and loves to
write articles that guide others.

Elan Marikit is a software engineer with experience in many technologies, including
PHP, JavaScript, MySQL, Linux, FreeBSD, and others. Elan has considerable experience
in developing complex web-driven applications using an MVC-based framework such as
CodeIgniter and Laravel. He is a Zend Certified Engineer for PHP 5.3 and is currently working
in a Singapore-based startup company that builds scalable online travel portals with a focus
in Southeast Asia.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface	 1
Chapter 1: Setting Up and Installing Laravel	 5

Introduction	 5
Installing Laravel as a git submodule	 6
Setting up a virtual host and development environment in Apache	 7
Creating "clean" URLs	 9
Configuring Laravel	 10
Using Laravel with Sublime Text 2	 11
Setting up your IDE to autocomplete Laravel's namespaces	 14
Using Autoloader to map a class name to its file	 18
Creating advanced Autoloaders with namespaces and directories	 19

Chapter 2: Using Forms and Gathering Input	 21
Introduction	 21
Creating a simple form	 22
Gathering form input to display on another page	 23
Validating user input	 25
Creating a file uploader	 27
Validating a file upload	 29
Creating a custom error message	 31
Adding a honey pot to a form	 33
Uploading an image using Redactor	 36
Cropping an image with Jcrop	 38
Creating an autocomplete text input	 42
Making a CAPTCHA-style spam catcher	 44

Chapter 3: Authenticating Your Application	 49
Introduction	 49
Setting up and configuring the Auth library	 50
Creating an authentication system	 52

ii

Table of Contents

Retrieving and updating user info after logging in	 56
Restricting access to certain pages	 60
Setting up OAuth with the HybridAuth package	 61
Using OpenID for logins	 62
Logging in using Facebook credentials	 65
Logging in using Twitter credentials	 67
Logging in using LinkedIn	 68

Chapter 4: Storing and Using Data	 71
Introduction	 71
Creating data tables using migrations and schemas	 72
Querying using raw SQL statements	 75
Querying using Fluent	 77
Querying using Eloquent ORM	 80
Using automatic validation in models	 82
Using advanced Eloquent and relationships	 85
Creating a CRUD system	 88
Importing a CSV using Eloquent	 91
Using RSS as a data source	 94
Using attributes to change table column names	 95
Using a non-Eloquent ORM in Laravel	 98

Chapter 5: Using Controllers and Routes for URLs and APIs	 101
Introduction	 101
Creating a basic controller	 102
Creating a route using a closure	 103
Creating a RESTful controller	 104
Using advanced routing	 105
Using a filter on the route	 106
Using route groups	 108
Building a RESTful API with routes	 109
Using named routes	 115
Using a subdomain in your route	 117

Chapter 6: Displaying Your Views	 121
Introduction	 121
Creating and using a basic view	 122
Passing data into a view	 123
Loading a view into another view/nested views	 125
Adding assets	 128
Creating a view using Blade	 130
Using TWIG templates	 132
Utilizing advanced Blade usage	 135

iii

Table of Contents

Creating localization of content	 137
Creating menus in Laravel	 140
Integrating with Bootstrap	 143
Using named views and view composers	 146

Chapter 7: Creating and Using Composer Packages	 149
Introduction	 149
Downloading and installing packages	 150
Using the Generators package to set up an app	 153
Creating a Composer package in Laravel	 157
Adding your Composer package to Packagist	 162
Adding a non-Packagist package to Composer	 164
Creating a custom artisan command	 166

Chapter 8: Using Ajax and jQuery	 171
Introduction	 171
Getting data from another page	 172
Setting up a controller to return JSON data	 175
Creating an Ajax search function	 177
Creating and validating a user using Ajax	 179
Filtering data based on checkbox selection	 182
Making an Ajax newsletter sign-up box	 185
Sending an e-mail using Laravel and jQuery	 188
Creating a sortable table using jQuery and Laravel	 191

Chapter 9: Using Security and Sessions Effectively	 195
Introduction	 195
Encrypting and decrypting data	 196
Hashing passwords and other data	 199
Using CSRF tokens and filters in forms	 202
Using advanced validation in forms	 204
Building a shopping cart	 207
Using Redis to save sessions	 211
Using basic sessions and cookies	 212
Creating a secure API server	 215

Chapter 10: Testing and Debugging Your App	 219
Introduction	 219
Setting up and configuring PHPUnit	 219
Writing and running a test case	 221
Using Mockery to test controllers	 223
Writing acceptance tests using Codeception	 226
Debugging and profiling your app	 228

iv

Table of Contents

Chapter 11: Deploying and Integrating Third-party Services into
Your Application	 233

Introduction	 233
Creating a queue and using Artisan to run it	 234
Deploying a Laravel app to Pagoda Box	 236
Using the Stripe payment gateway with Laravel	 240
Doing a GeoIP lookup and setting custom routing	 243
Gathering e-mail addresses and using them with a third-party e-mail service	 245
Storing and retrieving cloud content from Amazon S3	 248

Index	 253

Preface
Laravel has become one of the fastest growing PHP frameworks ever. With its expressive
syntax and excellent documentation, it's easy to get a fully functioning web application
up-and-running in very little time. Additionally, the use of modern PHP features makes Version
4 of Laravel very easy to customize to our own needs and also makes it easy for us to create
a highly complex site if need be. It's a perfect blend of the simple and advanced.

This book covers merely a fraction of all that Laravel is capable of. Think of it more as a
starting point, with code examples to get things working. Then customize them, add to them,
or combine them to create your own applications. The possibilities are endless.

One of the best things about Laravel is the community. If you're ever stuck on a problem
and doing a Google search isn't helping, there are always people willing to help out. You
can find helpful community members on IRC (#laravel on Freenode) or the forums
(http://forums.laravel.io) or you can contact the many Laravel users on Twitter.

Happy Laravel-ing!

What this book covers
Chapter 1, Setting Up and Installing Laravel, covers various ways to get Laravel up-and-running.

Chapter 2, Using Forms and Gathering Input, shows many ways to use forms in Laravel.
It covers using Laravel's form class as well as some basic validation.

Chapter 3, Authenticating Your Application, demonstrates how to authenticate users. We'll see
how to use OAuth, OpenId, and various social networks for authentication.

Chapter 4, Storing and Using Data, covers all things data, including how to use data sources
other than a MySQL database.

Chapter 5, Using Controllers and Routes for URLs and APIs, introduces various routing
methods in Laravel and how to make a basic API.

Preface

2

Chapter 6, Displaying Your Views, demonstrates how views work in Laravel. We'll also
incorporate the Twig templating system and Twitter Bootstrap.

Chapter 7, Creating and Using Composer Packages, explains how to use packages in our app
as well as how to create our own package.

Chapter 8, Using Ajax and jQuery, provides different examples of how to use jQuery in Laravel
and how to make asynchronous requests.

Chapter 9, Using Security and Sessions Effectively, covers topics about securing our
application and how to use sessions and cookies.

Chapter 10, Testing and Debugging Your App, shows how to include unit testing in our app
with PHPUnit and Codeception.

Chapter 11, Deploying and Integrating Third-party Services into Your Application, introduces a
number of third-party services and how we can include them in our application.

What you need for this book
This book basically requires a working LAMP stack (Linux, Apache, MySQL, and PHP). The web
server is Apache 2, which can be found at http://httpd.apache.org. The recommended
database server is MySQL 5.6, which can be downloaded from http://dev.mysql.com/
downloads/mysql. The recommended minimum PHP version is 5.4, which is found at
http://php.net/downloads.php.

For an all-in-one solution, there is also a WAMP server (http://www.wampserver.com/en)
or XAMMP (http://www.apachefriends.org/en/xampp.html) for Windows or MAMP
(http://www.mamp.info/en/mamp-pro) for Mac OS X.

Who this book is for
This book is designed for people with an intermediate knowledge of PHP. It would also
be helpful to know the basics of another PHP framework or Version 3 of Laravel. Some
knowledge of the MVC structure and object-oriented programming would also be beneficial.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles, are shown as follows: "Then, we
use the artisan command to generate a new key for us, and it's automatically saved in the
correct file".

Preface

3

A block of code is set as follows:

Route::get('accounts', function()
{
 $accounts = Account::all();
 return View::make('accounts')->with('accounts',
 $accounts);
});

Any command-line input or output is written as follows:

 php artisan key:generate

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "After logging in to Pagodabox,
click on the New Application tab".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Preface

4

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded on our
website, or added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Setting Up and

Installing Laravel

In this chapter, we will cover:

ff Installing Laravel as a git submodule

ff Setting up a virtual host and development environment in Apache

ff Creating "clean" URLs

ff Configuring Laravel

ff Using Laravel with Sublime Text 2

ff Setting up your IDE to autocomplete Laravel's namespaces

ff Using Autoloader to map a class name to its file

ff Creating advanced Autoloaders with namespaces and directories

Introduction
In this chapter, we'll learn how to get Laravel up-and-running with ease and make sure it's
simple to update when any core changes are made. We'll also get our development and
coding environment set up to be very efficient so we can focus on writing great code and not
have to worry about issues not related to our applications. Finally, we'll look at some ways to
get Laravel to automatically do some work for us so we'll be able to extend our application in
very little time.

Setting Up and Installing Laravel

6

Installing Laravel as a git submodule
There may be a time when we want to have our Laravel installation separate from the rest of
our public files. In this case, installing Laravel as a git submodule would be a solution. This will
allow us to update our Laravel files through git without touching our application code.

Getting ready
To get started, we should have our development server running as well as have git installed.
In the server's web directory, create a myapp directory to hold our files. Installation will all be
done in the command line.

How to do it...
To complete this recipe, follow these steps:

1.	 In your terminal or command line, navigate to the root of myapp. The first step is to
initialize git and download our project files:
$ git init

$ git clone git@github.com:laravel/laravel.git

2.	 Since all we need is the public directory, move to /laravel and delete
everything else:
$ cd laravel

$ rm –r app bootstrap vendor

3.	 Then, move back to the root directory, create a framework directory, and add
Laravel as a submodule:
$ cd ..

$ mkdir framework

$ cd framework

$ git init

$ git submodule add https://github.com/laravel/laravel.git

4.	 Now we need to run Composer to install the framework:
php composer.phar install

More information about installing Composer can be found at
http://getcomposer.org/doc/00-intro.md. The rest
of the book will assume we're using composer.phar, but we
could also add it globally and simply call it by typing composer.

Chapter 1

7

5.	 Now, open /laravel/public/index.php and find the following lines:
require __DIR__.'/../bootstrap/autoload.php';

$app = require_once __DIR__.'/../bootstrap/start.php';

6.	 Change the preceding lines to:
require __DIR__.'/../../framework/laravel/bootstrap/
 autoload.php';

$app = require_once __DIR__.'/../../framework/laravel/
 bootstrap/start.php';

How it works...
For many, simply running git clone would be enough to get their project going. However,
since we want to have our framework act as a submodule, we need to separate those files
from our project.

First, we download the files from GitHub, and since we don't need any of the framework
files, we can delete everything but our public folder. Then, we create our submodule in
the framework directory and download everything there. When that's complete, we run
composer install to get all our vendor packages installed.

To get the framework connected to our application, we modify /laravel/public/index.
php and change the require paths to our framework directory. That will let our application
know exactly where the framework files are located.

There's more...
One alternative solution is to move the public directory to our server's root. Then, while
updating our index.php file, we'll use __DIR__ . '/../framework/laravel/
bootstrap' to include everything correctly.

Setting up a virtual host and development
environment in Apache

When developing our Laravel app, we'll need a web server to run everything. In PHP 5.4 and
up, we can use the built-in web server, but if we need some more functionality, we'll need a
full web stack. In this recipe, we'll be using an Apache server on Windows, but any OS with
Apache will be similar.

Setting Up and Installing Laravel

8

Getting ready
This recipe requires a recent version of WAMP server, available at http://wampserver.com,
though the basic principle applies to any Apache configuration on Windows.

How to do it...
To complete this recipe, follow these steps:

1.	 Open the WAMP Apache httpd.conf file. It is often located in C:/wamp/bin/
apache/Apach2.#.#/conf.

2.	 Locate the line #Include conf/extra/httpd-vhosts.conf and remove
the first #.

3.	 Move to the extra directory, open the httpd-vhosts.conf file, and add the
following code:
<VirtualHost *:80>
 ServerAdmin {your@email.com}
 DocumentRoot "C:/path/to/myapp/public"
 ServerName myapp.dev
 <Directory "C:/path/to/myapp/public">
 Options Indexes FollowSymLinks
 AllowOverride all
 # onlineoffline tag - don't remove
 Order Deny,Allow
 Deny from all
 Allow from 127.0.0.1
 </Directory>
</VirtualHost>

4.	 Restart the Apache service.

5.	 Open the Windows hosts file, often in C:/Windows/System32/drivers/etc, and
open the file hosts in a text editor.

6.	 At the bottom of the file, add the line 127.0.0.1 myapp.dev.

How it works...
First, in the Apache config file httpd.conf, we uncomment the line to allow the file to include
the vhosts configuration files. You can include the code directly in the httpd.conf file, but
this method keeps things more organized.

In the httpd-vhosts.conf file, we add our VirtualHost code. DocumentRoot tells the
server where the files are located and ServerName is the base URL that the server will look
for. Since we only want to use this for our local development, we make sure to only allow
access to the localhost with the IP 127.0.0.1.

Chapter 1

9

In the hosts file, we need to tell Windows which IP to use for the myapp.dev URL. After
restarting Apache and our browser, we should be able to go to http://myapp.dev and
view our application.

There's more...
While this recipe is specific to Windows and WAMP, the same idea can be applied to
most Apache installations. The only difference will be the location of the httpd.conf
file (in Linux Ubuntu, it's in /etc/apache2) and the path to the public directory for
DocumentRoot (in Ubuntu, it might be something like /var/www/myapp/public).
The hosts file for Linux and Mac OS X will be located in /etc/hosts.

Creating "clean" URLs
When installing Laravel, the default URL we will use is http://{your-server}/public.
If we decide to remove /public, we can use Apache's mod_rewrite to change the URL.

Getting ready
For this recipe, we just need a fresh installation of Laravel and everything running on a
properly configured Apache server.

How to do it...
To complete this recipe, follow these steps:

1.	 In our app's root directory, add a .htaccess file and use this code:
<IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteRule ^(.*)$ public/$1 [L]
</IfModule>

2.	 Go to http://{your-server} and view your application.

How it works...
This simple bit of code will take anything we add in the URL and direct it to the public
directory. That way, we don't need to manually type in /public.

Setting Up and Installing Laravel

10

There's more...
If we decide to move this application to a production environment, this is not the best way
to accomplish the task. In that case, we would just move our files outside the web root and
make /public our root directory.

Configuring Laravel
After installing Laravel, it's pretty much ready to go without much need for configuration.
However, there are a few settings we want to make sure to update.

Getting ready
For this recipe, we need a regular installation of Laravel.

How to do it...
To complete this recipe, follow these steps:

1.	 Open /app/config/app.php and update these lines:
'url' => 'http://localhost/,
'locale' => 'en',
'key' => 'Seriously-ChooseANewKey',

2.	 Open app/config/database.php and choose your preferred database:
'default' => 'mysql',
'connections' => array(
 'mysql' => array(
 'driver' => 'mysql',
 'host' => 'localhost',
 'database' => 'database',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
 'collation' => 'utf8_unicode_ci',
 'prefix' => '',
),
),

3.	 In the command line, go to the root of the app and make sure the storage folder
is writable:
chmod –R 777 app/storage

Chapter 1

11

How it works...
Most of the configuration will happen in the /app/config/app.php file. While setting the
URL isn't required, and Laravel does a great job figuring it out without setting it, it's always
good to remove any work from the framework that we can. Next, we set our location. If we
choose to provide localization in our app, this setting will be our default. Then, we set our
application key, since it's best to not keep the default.

Next, we set which database driver we'll be using. Laravel comes with four drivers out of
the box: mysql, sqlite, sqlsrv (MS SQL Server), and pgsql (Postgres).

Finally, our app/storage directory will be used for keeping any temporary data, such as
sessions or cache, if we choose. To allow this, we need to make sure the app can write to
the directory.

There's more...
For an easy way to create a secure application key, remove the default key and leave it empty.
Then, in your command line, navigate to your application root directory and type:

php artisan key:generate

That will create a unique and secure key and automatically save it in your configuration file.

Using Laravel with Sublime Text 2
One of the most popular text editors used for coding is Sublime Text. Sublime has many
features that make coding fun, and with plugins, we can add in Laravel-specific features to
help with our app.

Getting ready
Sublime Text 2 is a popular code editor that is very extensible and makes writing code effortless.
An evaluation version can be downloaded from http://www.sublimetext.com/2.

We also need to have the Package Control package installed and enabled in Sublime, and
that can be found at http://wbond.net/sublime_packages/package_control/
installation.

Setting Up and Installing Laravel

12

How to do it...
For this recipe, follow these steps:

1.	 In your menu bar, go to Preferences then Package Control:

Chapter 1

13

2.	 Choose Install Package:

3.	 Search for laravel to see the listing. Choose Laravel 4 Snippets and let it install.
After it's complete, choose Laravel-Blade and install it.

Setting Up and Installing Laravel

14

How it works...
The Laravel snippets in Sublime Text 2 greatly simplify writing common code, and it includes
pretty much everything we'll need for application development. For example, when creating a
route, simply start typing Route and a list will pop up allowing us to choose which route we
want, which then automatically completes the rest of the code we need.

There's more...
Installing the Laravel-Blade package is helpful if we use the Blade template system that comes
with Laravel. It recognizes Blade code in the files and will automatically highlight the syntax.

Setting up your IDE to autocomplete
Laravel's namespaces

Most IDEs (Integrated Development Environment) have some form of code completion as
part of the program. To get Laravel's namespaces to autocomplete, we may need to help it
recognize what the namespaces are.

Chapter 1

15

Getting ready
For this recipe, we'll be adding namespaces to the NetBeans IDE, but the process will be
similar with others.

How to do it...
Follow these steps to complete this recipe:

1.	 Download the following pre-made file that lists the Laravel namespaces:
https://gist.github.com/barryvdh/5227822.

2.	 Create a folder anywhere on your computer to hold this file. For our purposes,
we'll add the file to C:/ide_helper/ide_helper.php:

Setting Up and Installing Laravel

16

3.	 After creating a project with the Laravel framework, navigate to File | Project
Properties | PHP Include Path:

4.	 Click on Add Folder… and then add the folder at C:/ide_helper.

Chapter 1

17

5.	 Now when we start typing the code, the IDE will automatically suggest code
to complete:

How it works...
Some IDEs need help understanding the syntax of a framework. To get NetBeans to understand,
we download a list of all the Laravel classes and options. Then, when we add it to the Include
Path, NetBeans will automatically check the file and show us the autocomplete options.

There's more...
We can have the documents downloaded and updated automatically using Composer. For
installation instructions, visit https://github.com/barryvdh/laravel-ide-helper.

Setting Up and Installing Laravel

18

Using Autoloader to map a class name
to its file

Using Laravel's ClassLoader, we can easily include any of our custom class libraries in our
code and have them readily available.

Getting ready
For this recipe, we need to set up a standard Laravel installation.

How to do it...
To complete this recipe, follow these steps:

1.	 In the Laravel /app directory, create a new directory named custom, which will hold
our custom classes.

2.	 In the custom directory, create a file named MyShapes.php and add this
simple code:
<?php
class MyShapes {
 public function octagon()
 {
 return 'I am an octagon';
 }
}

3.	 In the /app/start directory, open global.php and update ClassLoader so it
looks like this:
ClassLoader::addDirectories(array(

 app_path().'/commands',
 app_path().'/controllers',
 app_path().'/models',
 app_path().'/database/seeds',
 app_path().'/custom',

));

4.	 Now we can use that class in any part of our application. For example, if we
create a route:
Route::get('shape', function()
{
 $shape = new MyShapes;
 return $shape->octagon();
});

Chapter 1

19

How it works...
Most of the time, we will use Composer to add packages and libraries to our app. However,
there may be libraries that aren't available through Composer or custom libraries that we want
to keep separate. To accomplish this, we need to dedicate a spot to hold our class libraries; in
this case, we create a directory named custom and put it in our app directory.

Then we add our class files, making sure the class names and filenames are the same. This
could either be classes we create ourselves or maybe even a legacy class that we need to use.

Finally, we add the directory to Laravel's ClassLoader. When that's complete, we'll be able to
use those classes anywhere in our application.

See also
ff The Creating advanced Autoloaders with namespaces and directories recipe

Creating advanced Autoloaders with
namespaces and directories

If we want to be sure that our custom classes don't conflict with any other class in our app,
we will need to add them to a namespace. Using the PSR-0 standard and Composer, we can
easily autoload these classes into Laravel.

Getting ready
For this recipe, we need to set up a standard Laravel installation.

How to do it...
To complete this recipe, follow these steps:

1.	 Inside the /app directory, create a new directory named custom, and inside of custom,
create a directory named Custom, and in Custom, create a directory named Shapes.

2.	 Inside the /app/custom/Custom/Shapes directory, create a file named
MyShapes.php and add this code:
<?php namespace Custom\Shapes;

class MyShapes {
 public function triangle()
 {
 return 'I am a triangle';
 }
}

Setting Up and Installing Laravel

20

3.	 In the root of the application, open the composer.json file and locate the
autoload section. Update it so it looks like this:
"autoload": {
 "classmap": [
 "app/commands",
 "app/controllers",
 "app/models",
 "app/database/migrations",
 "app/database/seeds",
 "app/tests/TestCase.php",
],
 "psr-0": {
 "Custom": "app/custom"
 }
}

4.	 Open the command line and run dump-autoload on Composer:
php composer.phar dump-autoload

5.	 Now we can call that class by using its namespace. For example, if we create a route:
Route::get('shape', function()
{
 $shape = new Custom\Shapes\MyShapes;
 return $shape->triangle();
});

How it works...
Namespaces are a powerful addition to PHP, and they allow our classes to be used without
us having to worry about their class names interfering with other class names. By autoloading
namespaces in Laravel, we could create a complex group of classes and never have to worry
about class names conflicting with other namespaces.

For our purposes, we're loading the custom class through composer, and the PSR-0 standard
of autoloading.

There's more...
To further extend the use of our namespaced class, we could use the IoC to bind
it to our app. More information can be found in the Laravel documentation at
http://laravel.com/docs/ioc.

See also
ff The Using Autoloader to map a class name to its file recipe

2
Using Forms and
Gathering Input

In this chapter, we will cover:

ff Creating a simple form

ff Gathering form input to display on another page

ff Validating user input

ff Creating a file uploader

ff Validating a file upload

ff Creating a custom error message

ff Adding a "honey pot" to a form

ff Uploading an image using Redactor

ff Cropping an image with Jcrop

ff Creating an autocomplete text input

ff Making a CAPTCHA style spam catcher

Introduction
In this chapter, we'll learn about using forms in Laravel, and how to accomplish some
typical tasks. We'll begin with some simple form validation and file uploads, and move
on to incorporating some frontend tools, such as Redactor and jCrop, into Laravel.

Using Forms and Gathering Input

22

Creating a simple form
One of the most basic aspects of any web application is the form. Laravel provides easy ways
to build HTML for our forms.

Getting ready
To get started, we need a fresh installation of Laravel.

How to do it...
To complete this recipe, follow these steps:

1.	 In the app/views folder, create a new userform.php file.

2.	 In routes.php, create a route to load the view:
Route::get(userform, function()
{
 return View::make('userform');
});

3.	 In the userform.php view, create a form using the following code:
<h1>User Info</h1>
<?= Form::open() ?>
<?= Form::label('username', 'Username') ?>
<?= Form::text('username') ?>

<?= Form::label('password', 'Password') ?>
<?= Form::password('password') ?>

<?= Form::label('color', 'Favorite Color') ?>
<?= Form::select('color', array('red' => 'red', 'green' =>
 'green', 'blue' => 'blue')) ?>

<?= Form::submit('Send it!') ?>
<?= Form::close() ?>

View your form in the web page, by going to http://{your-server}/userform (where
{your-server} is the name of your server).

Chapter 2

23

How it works...
For this task, we created a simple form using Laravel's built-in Form class. This allows
us to easily create form elements with minimal code, and it's W3C (World Wide Web
Consortium) compliant.

First, we open the form. Laravel automatically creates the <form> html, including the action,
the method, and the accept-charset parameters. When there are no options passed in, the
default action is the current URL, the default method is POST, and the charset is taken from
the application config file.

Next we create normal text and password input fields, along with their labels. The first
parameter in the label is the name of the text field and the second is the actual text to print. In
the form builder, the label should appear before the actual form input.

The form select requires a second parameter, an array of the value in the drop-down box. In
this example, we're creating an array using the 'key' => 'value' syntax. If we want to
create option groups, we just need to create nested arrays.

Finally, we create our Submit button and close the form.

There's more...
Most of Laravel's form methods can also include parameters for a default value and
custom attributes (classes, IDs, and so on). We could also use Form::input() for
many fields, if we didn't want to use the specific methods. For example, we could have
Form::input('submit', NULL, 'Send it!') to create a submit button.

See also
ff The Gathering form input to display on another page recipe

Gathering form input to display on another
page

After a user submits a form, we need to be able to take that information and pass it to another
page. This recipe shows how we can use Laravel's built-in methods to handle our POST data.

Getting ready
We'll need the simple form set up from the Creating a simple form section.

Using Forms and Gathering Input

24

How to do it...
Follow these steps to complete this recipe:

1.	 Create a route to handle the POST data from the form:
Route::post('userform', function()
{
 // Process the data here
 return Redirect::to('userresults')-
 >withInput(Input::only('username', 'color'));
});

2.	 Create a route to redirect to, and to display the data:
Route::get('userresults', function()
{
 return 'Your username is: ' . Input::old('username')
 . '
Your favorite color is: '
 . Input::old('color');
});

How it works...
In our simple form, we're POSTing the data back to the same URL, so we need to create a
route that accepts POST using the same path. This is where we would do any processing of
the data, including saving to a database or validating the input.

In this case, we simply want to pass the data to the next page. There are a number of ways to
accomplish this. For example, we could use the Input class's flashOnly() method:

Route::post('userform', function()
{
 Input::flashOnly('username', 'color');
 return Redirect::to('userresults');
});

However, we're using a shortcut that Laravel provides, and only passing along two of the three
form fields we asked for.

On the next page, we use Input::old() to display the flashed input.

See also
ff The Creating a simple form recipe

Chapter 2

25

Validating user input
In most web applications, there will be certain form fields that are required to process the
form. We also want to be sure that all the e-mail addresses are formatted correctly, or the
input must have a certain number of characters. Using Laravel's Validator class, we can
check for these rules and let the user know if something is not correct.

Getting ready
For this recipe, we just need a standard installation of Laravel.

How to do it...
To complete this recipe, follow these steps:

1.	 Create a route to hold the form:
Route::get('userform', function()
{
 return View::make('userform');
});

2.	 Create a view named userform.php and add a form:
<h1>User Info</h1>
<?php $messages = $errors->all('<p
 style="color:red">:message</p>') ?>
<?php
foreach ($messages as $msg)
{
 echo $msg;
}
?>
<?= Form::open() ?>
<?= Form::label('email', 'Email') ?>
<?= Form::text('email', Input::old('email')) ?>

<?= Form::label('username', 'Username') ?>
<?= Form::text('username', Input::old('username')) ?>

<?= Form::label('password', 'Password') ?>
<?= Form::password('password') ?>

<?= Form::label('password_confirm', 'Retype your Password')
 ?>

Using Forms and Gathering Input

26

<?= Form::password('password_confirm') ?>

<?= Form::label('color', 'Favorite Color') ?>
<?= Form::select('color', array('red' => 'red', 'green' =>
 'green', 'blue' => 'blue'), Input::old('color')) ?>

<?= Form::submit('Send it!') ?>
<?php echo Form::close() ?>

3.	 Create a route that handles our POST data and validates it:
Route::post('userform', function()
{
 $rules = array(
 'email' => 'required|email|different:username',
 'username' => 'required|min:6',
 'password' => 'required|same:password_confirm'
);
 $validation = Validator::make(Input::all(), $rules);

 if ($validation->fails())
 {
 return Redirect::to('userform')-
 >withErrors($validation)->withInput();
 }

 return Redirect::to('userresults')->withInput();

});

4.	 Create a route to handle a successful form submission:
Route::get('userresults', function()
{
 return dd(Input::old());
});

How it works...
In our form page, we begin by checking if there are any errors and displaying them if found.
Inside the error, we can set the default style for each error message. We also have the option
of checking for and displaying errors for individual fields using $errors->get('email').
The $errors variable is automatically created by Laravel if it detects a flashed error.

Next, we create our form. In the last parameter of the form elements, we're getting
Input::old(), which we use to store the previous input if the validation happens to fail.
That way, the user won't need to keep filling out the entire form.

Chapter 2

27

We then create a route where the form is POSTed, and set up our validation rules. In this case,
we use the required rule for email, username, and password, to make sure something is
typed into those fields.

The email field also gets the email rule, which uses PHP's built-in FILTER_VALIDATE_EMAIL
filter of the filter_var function. The email field must also not be the same as the username
field. The username field uses the size validation to check for at least six characters. Then the
password field checks the value of the password_confirm field and makes sure they're
the same.

Then, we create the validator and pass in all of the form data. If any of those rules aren't met,
we navigate the user back to the form, and also send back any validation error messages as
well as the original form input.

If the validation passes, we go to the next page using Laravel's dd() helper function, which
uses var_dump() to show the form values on the page.

See also
ff The Creating a simple form recipe

Creating a file uploader
There may be times when we'd like the user to upload a file to our server. This recipe shows
how Laravel can handle file uploads through a web form.

Getting ready
To create a file uploader, we need a standard version of Laravel installed.

How to do it...
To complete this recipe, follow these steps:

1.	 Create a route in our routes.php file to hold the form:
Route::get('fileform', function()
{
 return View::make('fileform');
});

2.	 Create the fileform.php View in our app/views directory:
<h1>File Upload</h1>
<?= Form::open(array('files' => TRUE)) ?>
<?= Form::label('myfile', 'My File') ?>

Using Forms and Gathering Input

28

<?= Form::file('myfile') ?>

<?= Form::submit('Send it!') ?>
<?= Form::close() ?>

3.	 Create a route to upload and save the file:
Route::post('fileform', function()
{
 $file = Input::file('myfile');
 $ext = $file->guessExtension();
 if ($file->move('files', 'newfilename.' . $ext))
 {
 return 'Success';
 }
 else
 {
 return 'Error';
 }
});

How it works...
In our View, we use Form::open () and pass in an array with 'files' => TRUE that
automatically sets the enctype in the Form tag; then we add a form field to take the file.
Without using any other parameters in Form::open(), the form will use the default method
of POST and action of the current URL. Form::file() is our input field to accept the files.

Since our form is posting to the same URL, we need to create a route to accept the POST
input. The $file variable will hold all the file information.

Next, we want to save the file with a different name but first we need to get the extension
of the uploaded file. So we use the guessExtension() method, and store that in a variable.
Most of the methods for using files are found in Symfony's File libraries.

Finally, we move the file to its permanent location using the file's move() method, with the
first parameter being the directory where we will save the file; the second is the new name
of the file.

If everything uploads correctly, we show 'Success', and if not we show 'Error'.

See also
ff The Validating a file upload recipe

Chapter 2

29

Validating a file upload
If we want to allow users to upload a file through our web form, we may want to restrict which
kind of file they upload. Using Laravel's Validator class, we can check for a specific file type,
and even limit the upload to a certain file size.

Getting ready
For this recipe, we need a standard Laravel installation, and an example file to test our upload.

How to do it...
Follow these steps to complete this recipe:

1.	 Create a route for the form in our routes.php file:
Route::get('fileform', function()
{
 return View::make('fileform');
});

2.	 Create the form view:
<h1>File Upload</h1>
<?php $messages = $errors->all('<p style="color:red">:message</
p>') ?>
<?php
foreach ($messages as $msg)
{
 echo $msg;
}
?>
<?= Form::open(array('files' => TRUE)) ?>
<?= Form::label('myfile', 'My File (Word or Text doc)') ?>

<?= Form::file('myfile') ?>

<?= Form::submit('Send it!') ?>
<?= Form::close() ?>

3.	 Create a route to validate and process our file:
Route::post('fileform', function()
{
 $rules = array(
 'myfile' => 'mimes:doc,docx,pdf,txt|max:1000'
);

Using Forms and Gathering Input

30

 $validation = Validator::make(Input::all(), $rules);

 if ($validation->fails())
 {
return Redirect::to('fileform')->withErrors($validation)
 ->withInput();
 }
 else
 {
 $file = Input::file('myfile');
 if ($file->move('files', $file
 ->getClientOriginalName()))
 {
 return "Success";
 }
 else
 {
 return "Error";
 }
 }
});

How it works...
We start with a route to hold our form, and then a view for the form's html. At the top
of the view, if we get any errors in validation, they will be echoed out here. The form begins
with Form::open (array('files' => TRUE)), which will set the default action,
method, and enctype for us.

Next we create a route to capture the post data and validate it. We set a $rules variable as
an array, first checking for a specific mime type. There can be as few or as many as we want.
Then we make sure the file is less than 1000 kilobytes, or 1 megabyte.

If the file isn't valid, we navigate the user back to the form with the error messages. The
$error variable is automatically created in our view if Laravel detects a flashed error
message. If it is valid, we attempt to save the file to the server. If it saves correctly, we'll
see "Success", and if not, we'll see "Error".

There's more...
One other common validation for files is to check for an image. For that, we can use this in our
$rules array:

'myfile' => 'image'

This will check to make sure the file is either a .jpg, .png, .gif, or .bmp file.

Chapter 2

31

See also
ff The Creating a file uploader recipe

Creating a custom error message
Laravel has built-in error messages if a validation fails, but we may want to customize those
messages to make our application unique. This recipe shows a few different ways to create
custom error messages.

Getting ready
For this recipe, we just need a standard installation of Laravel.

How to do it...
To complete this recipe, follow these steps:

1.	 Create a route in routes.php to hold the form:
Route::get('myform', function()
{
 return View::make('myform');
});

2.	 Create a view named myform.php and add a form:
<h1>User Info</h1>
<?php $messages = $errors->all
 ('<p style="color:red">:message</p>') ?>
<?php
foreach ($messages as $msg)
{
 echo $msg;
}
?>
<?= Form::open() ?>
<?= Form::label('email', 'Email') ?>
<?= Form::text('email', Input::old('email')) ?>

<?= Form::label('username', 'Username') ?>
<?= Form::text('username', Input::old('username')) ?>

<?= Form::label('password', 'Password') ?>
<?= Form::password('password') ?>

Using Forms and Gathering Input

32

<?= Form::submit('Send it!') ?>
<?= Form::close() ?>

3.	 Create a route that handles our POST data and validates it:
Route::post('myform', array('before' => 'csrf', function()
{
 $rules = array(
 'email' => 'required|email|min:6',
 'username' => 'required|min:6',
 'password' => 'required'
);

 $messages = array(
 'min' => 'Way too short! The :attribute must be at
 least :min characters in length.',
 'username.required' => 'We really, really need a
 Username.'
);

 $validation = Validator::make(Input::all(), $rules,
 $messages);

 if ($validation->fails())
 {
 return Redirect::to('myform')->withErrors
 ($validation)->withInput();
 }

 return Redirect::to('myresults')->withInput();
}));

4.	 Open the file app/lang/en/validation.php, where en is the default language
of the app. In our case, we're using English. At the bottom of the file, update the
attributes array as the following:
'attributes' => array(
 'password' => 'Super Secret Password (shhhh!)'
),

5.	 Create a route to handle a successful form submission:
Route::get('myresults', function()
{
 return dd(Input::old());
});

Chapter 2

33

How it works...
We first create a fairly simple form, and since we aren't passing any parameters to
Form::open(), it will POST the data to the same URL. We then create a route to accept the
POST data and validate it. As a best practice, we're also adding in the csrf filter before our
post route. This will provide some extra security against cross-site request frogeries.

The first variable we set in our post route will hold our rules. The next variable will hold any
custom messages we want to use if there's an error. There are a few different ways to set
the message.

The first message to customize is for min size. In this case, it will display the same message
for any validation errors where there's a min rule. We can use :attribute and :min to hold
the form field name and minimum size when the error is displayed.

Our second message is used only for a specific form field and for a specific validation rule. We
put the form field name first, followed by a period, and then the rule. Here, we are checking
whether the username is required and setting the error message.

Our third message is set in the language file for validations. In the attributes array, we
can set any of our form field names to display any custom text we'd like. Also, if we decide to
customize a particular error message across the entire application, we can alter the default
message at the top of this file.

There's more...
If we look in the app/lang directory, we see quite a few translations that are already part of
Laravel. If our application is localized, we can set custom validation error messages in any
language we choose.

See also
ff The Creating a simple form recipe

Adding a honey pot to a form
A sad reality of the Web is that there are "spam bots" that search the web and look for forms
to submit spam to. One way to help combat this is to use a technique called a honey pot. In
this recipe, we'll create a custom validation to check for spam submissions.

Getting ready
For this recipe, we just need a standard Laravel installation.

Using Forms and Gathering Input

34

How to do it...
To complete this recipe, follow these steps:

1.	 Create a route in routes.php to hold our form:
Route::get('myform', function()
{
 return View::make('myapp');
});

2.	 Create a view in our app/view directory named as myform.php and add the form:
<h1>User Info</h1>
<?php $messages = $errors->all('<p style =
 "color:red">:message</p>') ?>
<?php
foreach ($messages as $msg)
{
 echo $msg;
}
?>
<?= Form::open() ?>
<?= Form::label('email', 'Email') ?>
<?= Form::text('email', Input::old('email')) ?>

<?= Form::label('username', 'Username') ?>
<?= Form::text('username', Input::old('username')) ?>

<?= Form::label('password', 'Password') ?>
<?= Form::password('password') ?>
<?= Form::text('no_email', '', array('style' =>
 'display:none')) ?>

<?= Form::submit('Send it!') ?>
<?= Form::close() ?>

3.	 Create a route in our routes.php file to handle the post data, and validate it:
Route::post('myform', array('before' => 'csrf', function()
{
 $rules = array(
 'email' => 'required|email',
 'password' => 'required',
 'no_email' => 'honey_pot'
);
 $messages = array(

Chapter 2

35

 'honey_pot' => 'Nothing should be in this field.'
);
 $validation = Validator::make(Input::all(), $rules,
 $messages);

 if ($validation->fails())
 {
 return Redirect::to('myform')->withErrors
 ($validation)->withInput();
 }

 return Redirect::to('myresults')->withInput();
}));

4.	 In our routes.php file, create a custom validation:
Validator::extend('honey_pot', function($attribute, $value,
 $parameters)
{
 return $value == '';
});

5.	 Create a simple route to use for a success page:
Route::get('myresults', function()
{
 return dd(Input::old());
});

How it works...
We first create a fairly simple form; since we aren't passing any parameters
to Form::open(), it will POST the data to the same URL. In the form, we create a field that's
designed to be empty, but hide it from the user using CSS. By naming it as something with the
word email in it, many spam bots will mistake it for an email field and try to populate it.

We then create a route to accept the post data and validate it, along with having a csrf
filter added before the route. We add a custom validation rule to our no_email field, which
will make sure that field stays empty. We also create an error message for that rule in the
$messages array.

Next, we actually create our custom validation rule in the routes file. This rule will get the
value from the form field and return TRUE if the value is empty.

Now, if a bot tries to fill in the entire form, it will not validate since that extra field is designed
to stay empty.

Using Forms and Gathering Input

36

There's more...
One alternative to creating a custom validation is to use the rule size: 0, which will make
sure the honey_pot field is exactly 0 characters in length. However, this method keeps the
validation check much simpler.

We might also want to redirect any honey pot errors to another page that doesn't have a form.
That way, any automatic form submission scripts won't continue to try and submit the form.

Uploading an image using Redactor
There are a few different JavaScript libraries that can turn a form's text area into a WYSIWYG
editor. Redactor is a newer library but is very well coded and has gained quite a bit of
popularity in a short amount of time. For this recipe, we'll apply Redactor to our Laravel form,
and create routes to allow for image uploads through Redactor.

Getting ready
We need to download a copy of Redactor from https://github.com/dybskiy/
redactor-js/tree/master/redactor. Download redactor.min.js and save it to the
public/js directory. Download redactor.css and save it to the public/css directory.

How to do it...
To complete this recipe, follow these steps:

1.	 Create a route in our routes.php file to hold our form with the redactor field:
Route::get('redactor', function()
{
 return View::make('redactor');
});

2.	 Create a view in our app/views directory and name it as redactor.php:
<!DOCTYPE html>

<html>
 <head>
 <title>Laravel and Redactor</title>
 <meta charset="utf-8">
 <link rel="stylesheet" href="css/redactor.css" />
 <script src="//ajax.googleapis.com/ajax/libs/
 jquery/1.10.2/jquery.min.js"></script>
 <script src="js/redactor.min.js"></script>
 </head>

Chapter 2

37

 <body>
 <?= Form::open() ?>
 <?= Form::label('mytext', 'My Text') ?>

 <?= Form::textarea('mytext', '', array('id' =>
 'mytext')) ?>

 <?= Form::submit('Send it!') ?>
 <?= Form::close() ?>
 <script type="text/javascript">
 $(function() {
 $('#mytext').redactor({
 imageUpload: 'redactorupload'
 });
 });
 </script>
 </body>
</html>

3.	 Make a route that will handle the image upload:
Route::post('redactorupload', function()
{
 $rules = array(
 'file' => 'image|max:10000'
);
 $validation = Validator::make(Input::all(), $rules);
 $file = Input::file('file');
 if ($validation->fails())
 {
 return FALSE;
 }
 else
 {
 if ($file->move('files', $file->
 getClientOriginalName()))
 {
 return Response::json(array('filelink' =>
 'files/' . $file->getClientOriginalName()));
 }
 else
 {
 return FALSE;
 }
 }
});

Using Forms and Gathering Input

38

4.	 Create another route to show our form input after it's submitted:
Route::post('redactor', function()
{
 return dd(Input::all());
});

How it works...
After creating our form route, we create the view to hold our form HTML. In the head of the
page, we load in the redactor CSS, the jquery library (using Google's CDN), and the redactor
JavaScript file.

Our form will only have one field, a text area named mytext. In our script area, we initialize
Redactor on the text area field and set the imageUpload parameter to a route or controller
that will accept the image upload. Ours is set to redactorupload, so we create a route for it
that accepts post data.

In our redactorupload route, we do some validation and, if everything is okay, the image
will upload to our images directory. To get the image to display in our text area, it needs a
JSON array with a file link as the key and the image path as the value. For this, we'll use
Laravel's built-in Response::json method, and pass in an array with the image's location.

On our form page, if the image validated and uploaded correctly, Redactor will display the image
inside the text area. If we submit, we'll see the text included the tag and the image path.

There's more...
While this recipe is specifically for image uploads, non-image file uploads work in a very
similar manner. The only real difference is that file upload route should also return filename
in the JSON output.

Cropping an image with Jcrop
Image editing and manipulation can sometimes be a difficult thing to implement in our
application. Using Laravel and the Jcrop JavaScript library, we can make the task much simpler.

Downloading the example code

You can download the example code files for all Packt
books you have purchased from your account at
http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

Chapter 2

39

Getting ready
We need to download the Jcrop library from http://deepliquid.com/content/Jcrop_
Download.html and unzip it. Put the file jquery.Jcrop.min.js into our public/js
directory, and the jquery.Jcrop.min.css and Jcrop.gif files into our public/css
directory. We'll use the Google CDN version of jQuery. We also need to make sure we have the
GD library installed on our server, so we can do image manipulation. In our public directory,
we'll need an images folder to store the images, and should have the permission set for it to
be writable.

How to do it...
Follow these steps to finish this recipe:

1.	 Let's create a route in our routes.php file to hold our form:
Route::get('imageform', function()
{
 return View::make('imageform');
});

2.	 Create the form for uploading an image, in app/views with the filename
imageform.php:
<h1>Laravel and Jcrop</h1>
<?= Form::open(array('files' => true)) ?>
<?= Form::label('image', 'My Image') ?>

<?= Form::file('image') ?>

<?= Form::submit('Upload!') ?>
<?= Form::close() ?>

3.	 Make a route to handle the image upload and validation:
Route::post('imageform', function()
{
 $rules = array(
 'image' => 'required|mimes:jpeg,jpg|max:10000'
);

 $validation = Validator::make(Input::all(), $rules);

 if ($validation->fails())
 {
 return Redirect::to('imageform')->withErrors
 ($validation);
 }

Using Forms and Gathering Input

40

 else
 {
 $file = Input::file('image');
 $file_name = $file->getClientOriginalName();
 if ($file->move('images', $file_name))
 {
 return Redirect::to('jcrop')->with('image',
 $file_name);
 }
 else
 {
 return "Error uploading file";
 }
 }
});

4.	 Create a route for our Jcrop form:
Route::get('jcrop', function()
{
 return View::make('jcrop')->with('image', 'images/'
 . Session::get('image'));
});

5.	 Make a form, where we can crop the image, in our app/views directory with the
filename jcrop.php:
<html>
 <head>
 <title>Laravel and Jcrop</title>
 <meta charset="utf-8">
 <link rel="stylesheet" href="css/
 jquery.Jcrop.min.css" />
 <script src="//ajax.googleapis.com/ajax/libs/
 jquery/1.10.2/jquery.min.js"></script>
 <script src="js/jquery.Jcrop.min.js"></script>
 </head>
 <body>
 <h2>Image Cropping with Laravel and Jcrop</h2>
 <img src="<?php echo $image ?>" id="cropimage">

 <?= Form::open() ?>
 <?= Form::hidden('image', $image) ?>
 <?= Form::hidden('x', '', array('id' => 'x')) ?>
 <?= Form::hidden('y', '', array('id' => 'y')) ?>
 <?= Form::hidden('w', '', array('id' => 'w')) ?>
 <?= Form::hidden('h', '', array('id' => 'h')) ?>
 <?= Form::submit('Crop it!') ?>

Chapter 2

41

 <?= Form::close() ?>

 <script type="text/javascript">
 $(function() {
 $('#cropimage').Jcrop({
 onSelect: updateCoords
 });
 });
 function updateCoords(c) {
 $('#x').val(c.x);
 $('#y').val(c.y);
 $('#w').val(c.w);
 $('#h').val(c.h);
 };
 </script>
 </body>
</html>

6.	 Create a route that will process the image and display it:
Route::post('jcrop', function()
{
 $quality = 90;

 $src = Input::get('image');
 $img = imagecreatefromjpeg($src);
 $dest = ImageCreateTrueColor(Input::get('w'),
 Input::get('h'));

 imagecopyresampled($dest, $img, 0, 0, Input::get('x'),
 Input::get('y'), Input::get('w'), Input::get('h'),
 Input::get('w'), Input::get('h'));
 imagejpeg($dest, $src, $quality);

 return "";
});

How it works...
We start with a basic file upload; to make it easier, we'll only be using .jpg files. We use
the validation to check for the image type as well as making sure the file size is under 10,000
kilobytes. After the file is uploaded, we send the path to our Jcrop route.

In the HTML for the Jcrop route, we create a form with hidden fields that will hold the
dimensions of the cropping. The JavaScript function updateCoords takes the cropping
dimensions and updates the values of those hidden fields.

Using Forms and Gathering Input

42

When we're done cropping, we submit the form and our route gets the POST data. The image
is run through the GD library and cropped, based on the dimensions that were posted. We
then overwrite the image and display the updated and cropped file.

There's more...
While this recipe only covers cropping a jpg image, adding in gif and png images wouldn't
be very difficult. We'd just need to get the file extension by passing the file name to
Laravel using File::extension(). Then, we could either do a switch or if statement
to use the appropriate PHP function. For example, if the extension is .png, we'd use
imagecreatefrompng() and imagepng(). More information can be found at
http://www.php.net/manual/en/ref.image.php.

Creating an autocomplete text input
On our web forms, there may be times when we want to have an autocomplete text field. This
can be handy for populating common search terms or product names. Using the jQueryUI
Autocomplete library along with Laravel, that becomes an easy task.

Getting ready
In this recipe, we'll be using the CDN versions of jQuery and jQueryUI; however, we could also
download them and place them in our public/js directory, if we wanted to have them locally.

How to do it...
To complete this recipe, follow these steps:

1.	 Create a route to hold our autocomplete form:
Route::get('autocomplete', function()
{
 return View::make('autocomplete');
});

2.	 Make a view in the app/views directory named autocomplete.php with our
form's HTML and JavaScript:
<!DOCTYPE html>
<html>
 <head>
 <title>Laravel Autocomplete</title>
 <meta charset="utf-8">
 <link rel="stylesheet"
 href="//codeorigin.jquery.com/ui/1.10.2/themes/
 smoothness/jquery-ui.css" />

Chapter 2

43

 <script src="//ajax.googleapis.com/ajax/
 libs/jquery/1.10.2/jquery.min.js"></script>
 <script src="//codeorigin.jquery.com/ui/1.10.2/
 jquery-ui.min.js"></script>
 </head>
 <body>
 <h2>Laravel Autocomplete</h2>

 <?= Form::open() ?>
 <?= Form::label('auto', 'Find a color: ') ?>
 <?= Form::text('auto', '', array('id' => 'auto'))
 ?>

 <?= Form::label('response', 'Our color key: ') ?>
 <?= Form::text('response', '', array('id' =>
 'response', 'disabled' => 'disabled')) ?>
 <?= Form::close() ?>

 <script type="text/javascript">
 $(function() {
 $("#auto").autocomplete({
 source: "getdata",
 minLength: 1,
 select: function(event, ui) {
 $('#response').val(ui.item.id);
 }
 });
 });
 </script>
 </body>
</html>

3.	 Create a route that will populate the data for the autocomplete field:
Route::get('getdata', function()
{
 $term = Str::lower(Input::get('term'));
 $data = array(
 'R' => 'Red',
 'O' => 'Orange',
 'Y' => 'Yellow',
 'G' => 'Green',
 'B' => 'Blue',
 'I' => 'Indigo',
 'V' => 'Violet',
);

Using Forms and Gathering Input

44

 $return_array = array();

 foreach ($data as $k => $v) {
 if (strpos(Str::lower($v), $term) !== FALSE) {
 $return_array[] = array('value' => $v, 'id' =>
 $k);
 }
 }
 return Response::json($return_array);
});

How it works...
In our form, we're creating a text field to accept user input that will be used for the
autocomplete. There's also a disabled text field that we can use to see the ID of the value
that was selected. This can be useful if you have an ID for a particular value that's numeric, or
otherwise not named in a standard way. In our example, we're using the first letter of the color
as the ID.

As the user starts typing, autocomplete sends a GET request to the source that we added,
using the word term in the query string. To process this, we create a route that gets the input,
and convert it to lower-case. For our data, we're using a simple array of values but it would be
fairly easy to add in a database query at this point. Our route checks the values in the array to
see if there are any matches with the user input and, if so, adds the ID and value to the array
we will return. Then, we output the array as JSON, for the autocomplete script.

Back on our form page, when the user selects a value, we add the ID to the disabled
response field. Many times, this will be a hidden field, which we can then pass on when
we submit the form.

There's more...
If we'd like to have our getdata route only accessible from our autocomplete form, or some
other AJAX request, we could simply wrap the code in if (Request::ajax()) {} or create
a filter that rejects any non-AJAX requests.

Making a CAPTCHA-style spam catcher
One way to combat "bots" that automatically fill in web forms is by using the CAPTCHA
technique. This shows the user an image with some random letters; the user must fill in a text
field with those letters. In this recipe, we will create a CAPTCHA image and verify that the user
has entered it correctly.

Chapter 2

45

Getting ready
We need a standard Laravel installation and make sure we have the GD2 library installed on
our server, so we can create an image.

How to do it...
To complete this recipe, follow these steps:

1.	 In our app directory, create a directory named libraries, and in our
composer.json file, update it as follows:
"autoload": {
 "classmap": [
 "app/commands",
 "app/controllers",
 "app/models",
 "app/database/migrations",
 "app/database/seeds",
 "app/tests/TestCase.php",
 "app/libraries"
]
},

2.	 In our app/libraries directory, create a file named Captcha.php to hold our
simple Captcha class:
<?php
class Captcha {
 public function make()
 {
 $string = Str::random(6, 'alpha');
 Session::put('my_captcha', $string);

 $width = 100;
 $height = 25;
 $image = imagecreatetruecolor($width,
 $height);
 $text_color = imagecolorallocate($image, 130, 130,
 130);
 $bg_color = imagecolorallocate($image, 190, 190,
 190);

 imagefilledrectangle($image, 0, 0, $width, $height,
 $bg_color);

Using Forms and Gathering Input

46

 imagestring($image, 5, 16, 4, $string,
 $text_color);

 ob_start();
 imagejpeg($image);
 $jpg = ob_get_clean();
 return "data:image/jpeg;base64,"
 . base64_encode($jpg);
 }
}

3.	 In the root of our app, open the command-line interface to update the
composer autoloader:
php composer.phar dump-autoload

4.	 Create a route in routes.php to hold the form with captcha:
Route::get('captcha', function()
{
 $captcha = new Captcha;
 $cap = $captcha->make();
 return View::make('captcha')->with('cap', $cap);
});

5.	 Create our captcha view in the app/views directory with the name captcha.php:
<h1>Laravel Captcha</h1>
<?php
if (Session::get('captcha_result')) {
 echo '<h2>' . Session::get('captcha_result') . '</h2>';
}
?>
<?php echo Form::open() ?>
<?php echo Form::label('captcha', 'Type these letters:') ?>

<img src="<?php echo $cap ?>">

<?php echo Form::text('captcha') ?>

<?php echo Form::submit('Verify!') ?>
<?php echo Form::close() ?>

Chapter 2

47

6.	 Create a route to compare the captcha value and the user input:
Route::post('captcha', function()
{
 if (Session::get('my_captcha') !==
 Input::get('captcha')) {
 Session::flash('captcha_result', 'No Match.');
 } else {
 Session::flash('captcha_result', 'They Match!');
 }
 return Redirect::to('captcha');
});

How it works...
We begin by updating our composer.json file to add our libraries directory to the
autoloader. Now, we can add any classes or libraries we'd like into that directory, even if
they're custom classes or possibly some legacy code.

To keep things simple, we create a simple Captcha class with a single make() method. In
this method, we first create a random string using Laravel's Str:random(), which we tell to
output a 6-character string of only letters. We then save that string to a session, so we can
use it for validation later.

Using the string, we create a 100x25 pixel jpg image, with a gray background and darker gray
text. Instead of saving the file to the server, we use the output buffer and save the image data
to a variable. That way, we can create a data URI to send back to our route.

Next, we need to run composer's dump-autoload command, so our new class can be used
by the application.

In our captcha route, we use the Captcha class to create the captcha data URI and
send it to our form. For our purposes, the form will simply display the image and ask for the
characters in a text field.

When the user submits the form, we compare the Session that the Captcha class created
with the user input. In this recipe, we're just checking if the two values match but we could
also create a custom validation method and add it our rules. We then set a session saying if
it matched or not, and return the user back to the CAPTCHA page.

3
Authenticating

Your Application

In this chapter, we will cover:

ff Setting up and configuring the Auth library

ff Creating an authentication system

ff Retrieving and updating user info after logging in

ff Restricting access to certain pages

ff Setting up OAuth with the HybridAuth package

ff Using OpenID for logins

ff Logging in using Facebook credentials

ff Logging in using Twitter credentials

ff Logging in using LinkedIn

Introduction
Many modern web applications include some way for users to register and log in. To make
sure our application and our users' information is secure, we need to make sure that each
user is properly authenticated. Laravel includes a great Auth class that makes this task very
easy to accomplish. In this chapter, we'll begin with setting up our own authentication system,
and move on to using third-party authentication in our Laravel app.

Authenticating Your Application

50

Setting up and configuring the Auth library
To use Laravel's authentication system, we need to make sure it's set up correctly. In this
recipe, we'll see a common way to accomplish the setup.

Getting ready
To set up the authentication, we just need to have Laravel installed and a MySQL
instance running.

How to do it...
To complete this recipe, follow these steps:

1.	 Go into your app/config/session.php config file and make sure it's set to
use native:
'driver' => 'native'

2.	 The app/config/auth.php config file defaults should be fine but make sure they
are set as follows:
'driver' => 'eloquent',
'model' => 'User',
'table' => 'users',

3.	 In MySQL, create a database named as authapp and make sure the settings are
correct in the app/config/database.php config file. The following are the settings
that we'll be using:
'default' => 'mysql',

'connections' => array(

 'mysql' => array(
 'driver' => 'mysql',
 'host' => 'localhost',
 'database' => 'authapp',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
 'prefix' => '',
),
),

4.	 We'll set up our Users table using migrations and the Schema builder with the
Artisan command line, so we need to create our migrations table:
php artisan migrate:install

Chapter 3

51

5.	 Create the migration for our Users table:
php artisan migrate:make create_users_table

6.	 In the app/database/migrations directory, there will be a new file that has the
date followed by create_users_table.php as the filename. In that file, we create
our table:
<?php

use Illuminate\Database\Migrations\Migration;

class CreateUsersTable extends Migration {

 /**
 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 Schema::create('users', function($table)
 {
 $table->increments('id');
 $table->string('email');
 $table->string('password', 64);
 $table->string('name');
 $table->boolean('admin');
 $table->timestamps();
 });

 }

 /**
 * Reverse the migrations.
 *
 * @return void
 */
 public function down()
 {
 Schema::drop('users');
 }

}

7.	 Run the migration in Artisan to create our table and everything should be set up:
php artisan migrate

Authenticating Your Application

52

How it works...
Authentication uses sessions to store user information, so we first need to make sure our
Sessions are configured correctly. There are various ways to store sessions, including using
the database or Redis, but for our purpose we'll just use the native driver, which leverages
Symfony's native session driver.

When setting up the auth configuration, we'll be using the Eloquent ORM as our driver, an
e-mail address as our username, and the model will be User. Laravel ships with a default User
model and it works very well out of the box, so we'll use it. For the sake of simplicity, we'll stick
with the default configuration of the table name, a pluralized version of the model class name,
but we could customize it if we wanted.

Once we make sure our database configuration is set, we can use Artisan to create our
migrations. In our migration, we'll create our user's table, and store the e-mail address,
password, a name, and a boolean field to store whether the user is an admin or not.
Once that's complete, we run the migration, and our database will be set up to build our
authentication system.

Creating an authentication system
In this recipe, we'll be creating a simple authentication system. It can be used as it is or
extended to include much more functionality.

Getting ready
We will be using the code created in the Setting up and configuring the Auth library recipe
as the basis for our authentication system.

How to do it...
To finish this recipe, follow these steps:

1.	 Create a route in our routes.php file to hold our registration form:
Route::get('registration', function()
{
 return View::make('registration');
});

2.	 Create a registration form by creating a new file in app/views named as
registration.php:
<!DOCTYPE html>
<html>
 <head>

Chapter 3

53

 <title>Laravel Authentication - Registration
 </title>
 <meta charset="utf-8">
 </head>
 <body>
 <h2>Laravel Authentication - Registration</h2>
 <?php $messages = $errors->all('<p style=
 "color:red">:message</p>') ?>
 <?php foreach ($messages as $msg): ?>
 <?= $msg ?>
 <?php endforeach; ?>

<?= Form::open() ?>
 <?= Form::label('email', 'Email address: ') ?>
 <?= Form::text('email', Input::old('email')) ?>

 <?= Form::label('password', 'Password: ') ?>
 <?= Form::password('password') ?>

 <?= Form::label('password_confirm',
 'Retype Password: ') ?>
 <?= Form::password('password_confirm') ?>

 <?= Form::label('name', 'Name: ') ?>
 <?= Form::text('name', Input::old('name')) ?>

 <?= Form::label('admin', 'Admin?: ') ?>
 <?= Form::checkbox('admin','true',
 Input::old('admin')) ?>

 <?= Form::submit('Register!') ?>
 <?= Form::close() ?>
 </body>
</html>

3.	 Make a route to process the registration page:
Route::post('registration', array('before' => 'csrf',
 function()
{
 $rules = array(
 'email' => 'required|email|unique:users',
 'password' => 'required|same:password_confirm',
 'name' => 'required'
);

Authenticating Your Application

54

 $validation = Validator::make(Input::all(), $rules);

 if ($validation->fails())
 {
 return Redirect::to('registration')->withErrors
 ($validation)->withInput();
 }

 $user = new User;
 $user->email = Input::get('email');
 $user->password = Hash::make(Input::get('password'));
 $user->name = Input::get('name');
 $user->admin = Input::get('admin') ? 1 : 0;
 if ($user->save())
 {
 Auth::loginUsingId($user->id);
 return Redirect::to('profile');
 }
 return Redirect::to('registration')->withInput();
}));

4.	 Make a simple page for your profile by adding a route in routes.php:
Route::get('profile', function()
{
 if (Auth::check())
 {
 return 'Welcome! You have been authorized!';
 }
 else
 {
 return 'Please Login';
 }
});

5.	 Create a login route in routes.php to hold the login form:
Route::get('login', function()
{
 return View::make('login');
});

6.	 In our app/views directory, create a file named login.php:
<!DOCTYPE html>
<html>
 <head>

Chapter 3

55

 <title>Laravel Authentication - Login</title>
 <meta charset="utf-8">
 </head>
 <body>
 <h2>Laravel Authentication - Login</h2>
 <?= '' .
 Session::get('login_error') . '' ?>

 <?= Form::open() ?>
 <?= Form::label('email', 'Email address: ') ?>
 <?= Form::text('email', Input::old('email')) ?>

 <?= Form::label('password', 'Password: ') ?>
 <?= Form::password('password') ?>

 <?= Form::submit('Login!') ?>
 <?= Form::close() ?>
 </body>
</html>

7.	 Create a route in routes.php to authenticate the login:
Route::post('login', function()
{
 $user = array(
 'username' => Input::get('email'),
 'password' => Input::get('password')
);

 if (Auth::attempt($user))
 {
 return Redirect::to('profile');
 }

 return Redirect::to('login')->with('login_error',
 'Could not log in.');
});

8.	 Create a route in routes.php that is a secured page:
Route::get('secured', array('before' => 'auth', function()
{
 return 'This is a secured page!';
}));

Authenticating Your Application

56

How it works...
To begin with, we create a fairly simple registration system. In our registration form, we'll be
asking for an e-mail address, password, password confirmation, a name, and then an option
for whether the user is an admin. In the form fields, we also add Input::old(); thus, if the
form doesn't validate correctly, we can repopulate the fields without needing the user to re-
enter all the information.

Our form then posts, adding in the CSRF filter, and runs through some validation. If the
validation passes, we create a new instance of our User model and add in the fields from
our form. For the password, we use Hash::make() to keep the password secure. Since our
admin field accepts a boolean value, we see if the admin checkbox was checked; if so, we set
the value to 1.

If everything is saved correctly, we can automatically log in the user by passing the just
created user ID to Auth::loginUsingId(), and redirect them to the profile page.

The first thing the profile route does is run Auth::check() to see if the user is actually
logged in. If he/she isn't, it will display a link to the login page.

The login page is a simple form asking for e-mail ID and password. When submitted, we put
those two values in an array and pass them to Auth::attempt(), which will automatically
hash our password, and look up the credentials in the database. If it's successful, the Auth
class will set a session and we redirect the user to the profile page.

If the user happens to try and access the secured routes, the system will direct them to the
login page. Using Laravel's Redirect::intended(), we can then direct them back to the
page they originally tried to access.

See also
ff The Setting up and configuring the Auth library recipe

Retrieving and updating user info after
logging in

After a user is logged in, we will need to get the information we have about him/her. In this
recipe, we'll see how to get that information.

Getting ready
We will be using the code created in the Setting up and configuring the Auth library and
Creating an authentication system recipes as the basis for this recipe.

Chapter 3

57

How to do it...
To complete this recipe, follow these steps:

1.	 Update the profile route with this code:
Route::get('profile', function()
{
 if (Auth::check())
 {
 return View::make('profile')->with('user',
 Auth::user());
 }
 else
 {
 return Redirect::to('login')->with('login_error',
 'You must login first.');
 }
});

2.	 Create our profile view in the app/views directory by creating a file named as
profile.php:
<?php echo Session::get('notify') ? "<p style='color:
 green'>" . Session::get('notify') . "</p>" : "" ?>
<h1>Welcome <?php echo $user->name ?></h1>
<p>Your email: <?php echo $user->email ?></p>
<p>Your account was created on: <?php echo $user
 ->created_at ?></p>
<p><a href="<?= URL::to('profile-edit') ?>">Edit your
 information</p>

3.	 Make a route to hold our form to edit the information:
Route::get('profile-edit', function()
{
 if (Auth::check())
 {
 $user = Input::old() ? (object) Input::old() :
 Auth::user();
 return View::make('profile_edit')->with('user',
 $user);
 }
});

Authenticating Your Application

58

4.	 Create a view for our edit form:
<h2>Edit User Info</h2>
<?php $messages = $errors->all('<p style="color:
 red">:message</p>') ?>
<?php foreach ($messages as $msg): ?>
 <?= $msg ?>
<?php endforeach; ?>
<?= Form::open() ?>
<?= Form::label('email', 'Email address: ') ?>
<?= Form::text('email', $user->email) ?>

<?= Form::label('password', 'Password: ') ?>
<?= Form::password('password') ?>

<?= Form::label('password_confirm', 'Retype Password: ') ?>
<?= Form::password('password_confirm') ?>

<?= Form::label('name', 'Name: ') ?>
<?= Form::text('name', $user->name) ?>

<?= Form::submit('Update!') ?>
<?= Form::close() ?>

5.	 Make a route to process the form:
Route::post('profile-edit', function()
{
 $rules = array(
 'email' => 'required|email',
 'password' => 'same:password_confirm',
 'name' => 'required'
);
 $validation = Validator::make(Input::all(), $rules);

 if ($validation->fails())
 {
 return Redirect::to('profile-edit')->withErrors
 ($validation)->withInput();
 }

 $user = User::find(Auth::user()->id);
 $user->email = Input::get('email');
 if (Input::get('password')) {
 $user->password = Hash::make
 (Input::get('password'));

Chapter 3

59

 }
 $user->name = Input::get('name');
 if ($user->save())
 {
 return Redirect::to('profile')->with('notify',
 'Information updated');
 }
 return Redirect::to('profile-edit')->withInput();
});

How it works...
To get our user's information and allow him/her to update it, we start by reworking on our
profile route. We create a profile view and pass Auth::user() to it in the variable $user.
Then, in the view file, we simply echo out any of the information we collected. We're also
creating a link to a page where the user can edit his/her information.

Our profile edit page first checks to make sure the user is logged in. If so, we want to populate
the $user variable. Since we'll redisplay the form if there is a validation error, we first check if
there's anything in Input::old(). If not, this is probably a new visit to the page, so we just
use Auth::user(). If Input::old() is being used, we'll recast it as an object, since it's
normally an array, and use that in our $user variable.

Our edit view form is very similar to our registration form, except that, if we're logged in, the
form is already populated.

When the form is submitted, it is run through some validation. If everything is valid, we need
to get the User from the database, using User::find() and the user ID that's stored in
Auth::user(). We then add our form input to the user object. With the password field, if it
was left empty, we can assume that the user didn't want to change it. So we'll only update the
password if something was already entered.

Finally, we save the user information and redirect him/her back to the profile page.

There's more...
The e-mail value in our database will probably need to be unique. For this recipe, we might
want to do a quick check of the user's table, and make sure the e-mail address being updated
isn't used somewhere else.

See also
ff The Creating an authentication system recipe

Authenticating Your Application

60

Restricting access to certain pages
In this recipe, we'll explore how to restrict access to various pages in our app. This way, we can
make pages viewable to only those with the correct credentials.

Getting ready
We will be using the code created in the Setting up and configuring the Auth library and
Creating an authentication system recipes as the basis for this recipe.

How to do it...
To complete this recipe, follow these steps:

1.	 Create a filter in our filters.php file that checks for logged-in users. The default
Laravel auth filter will be fine:
Route::filter('auth', function()
{
 if (Auth::guest()) return Redirect::guest('login');
});

2.	 Create a filter in filter.php for checking if a user is an admin:
Route::filter('auth_admin', function()
{
 if (Auth::guest()) return Redirect::guest('login');
 if (Auth::user()->admin != TRUE)
 return Redirect::to('restricted');
});

3.	 Make a route that we restrict to logged-in users:
Route::get('restricted', array('before' => 'auth',
 function()
{
 return 'This page is restricted to logged-in users!
 Admins Click Here.';
}));

4.	 Make a route that is restricted to admins:
Route::get('admin', array('before' => 'auth_admin',
 function()
{
 return 'This page is restricted to Admins only!';
}));

Chapter 3

61

How it works...
Filters are a powerful part of Laravel and can be used to simplify many tasks. The default
auth filter that comes with Laravel simply checks if a user is logged in or not and, if not,
redirects him/her to the login page. In our restricted route, we add the auth filter to run
before the function is executed.

Our auth_admin filter checks to make sure the user is logged in and also checks if the user
is set as admin. If not, he/she is redirected back to the normal restricted page.

Setting up OAuth with the HybridAuth
package

There may be times when we don't want to worry about storing users' passwords. In that
case, OAuth has become a popular alternative that allows us to authenticate a user based
on a third-party service such as Facebook or Twitter. This recipe will show how to set up the
HybridAuth package to make OAuth easy.

Getting ready
For this recipe, we need a standard Laravel installation and a way to access the command-
line interface, so we can use the Artisan command-line utility.

How to do it...
To complete this recipe, follow these steps:

1.	 Open our app's composer.json file and add HybridAuth to the require section,
so it should look like this:
"require": {
 "laravel/framework": "4.0.*",
 "hybridauth/hybridauth": "dev-master"
},

2.	 In the command-line interface, update composer as follows:
php composer.phar update

3.	 In the app/config directory, create a new file named as oauth.php:
<?php
return array(
 "base_url" => "http://path/to/our/app/oauth/auth",
 "providers" => array (

Authenticating Your Application

62

 "OpenID" => array ("enabled" => true),
 "Facebook" => array (
 "enabled" => TRUE,
 "keys" => array ("id" => "APP_ID", "secret"
 => "APP_SECRET"),
 "scope" => "email",
),
 "Twitter" => array (
 "enabled" => true,
 "keys" => array ("key" => "CONSUMER_KEY",
 "secret" => "CONSUMER_SECRET")
),
 "LinkedIn" => array (
 "enabled" => true,
 "keys" => array ("key" => "APP_KEY", "secret"
 => "APP_SECRET")
)
)
);

How it works...
We begin by adding the HybridAuth package to our composer files. Now, when we update
composer, it will automatically download the package and install it for us. From then on,
we can use the library throughout our app.

Our next step is to set up a configuration file. This file begins with a URL to which the
authentication site will send the user back. That URL should be routed to either a route or
controller where we'll run HybridAuth and do the actual authentication. Finally, we need to add
in our credentials for the sites we want to authenticate against. A full list of sites can be found
at the HybridAuth site: http://hybridauth.sourceforge.net/userguide.html.

Using OpenID for logins
If we don't want to store our users' passwords in our application, there are other
authentication methods that use third parties, such as OAuth and OpenID. In this recipe, we'll
use OpenID to log in our users.

Getting ready
For this recipe, we need to have a standard installation of Laravel and complete the Setting up
OAuth with the HybridAuth package recipe.

Chapter 3

63

How to do it...
To complete this recipe, follow these steps:

1.	 In our app/config directory, create a new file named as openid_auth.php:
<?php
return array(
 "base_url" => "http://path/to/our/app/openid/auth",
 "providers" => array (
 "OpenID" => array ("enabled" => TRUE)
)
);

2.	 In our routes.php file, create a route to hold our login form:
Route::get('login', function()
{
 return View::make('login');
});

3.	 In our app/views directory, create a new view named as login.php:
<!DOCTYPE html>
<html>
 <head>
 <title>Laravel Open ID Login</title>
 <meta charset="utf-8">
 </head>
 <body>
 <h1>OpenID Login</h1>
 <?= Form::open(array('url' => 'openid', 'method' =>
 'POST')) ?>
 <?= Form::label('openid_identity', 'OpenID') ?>
 <?= Form::text('openid_identity', Input::old
 ('openid_identity')) ?>

 <?= Form::submit('Log In!') ?>
 <?= Form::close() ?>
 </body>
</html>

4.	 In routes.php, create the route to run the authentication:
Route::any('openid/{auth?}', function($auth = NULL)
{
 if ($auth == 'auth') {
 try {

Authenticating Your Application

64

 Hybrid_Endpoint::process();
 } catch (Exception $e) {
 return Redirect::to('openid');
 }
 return;
 }

 try {
 $oauth = new Hybrid_Auth(app_path()
 . '/config/openid_auth.php');
 $provider = $oauth->authenticate('OpenID',
 array('openid_identifier' =>
 Input::get('openid_identity')));
 $profile = $provider->getUserProfile();
 }
 catch(Exception $e) {
 return $e->getMessage();
 }
 echo 'Welcome ' . $profile->firstName . ' ' . $profile
 ->lastName . '
';
 echo 'Your email: ' . $profile->email . '
';
 dd($profile);
});

How it works...
We start by creating a config file for the HybridAuth library, setting the URL where the user will
be redirected after authentication, and enabling OpenID.

Next, we create route and a view where the user can enter the OpenID URL they want to use.
A popular one is that of Google, so we suggest using the URL https://www.google.com/
accounts/o8/id or even have it automatically set as a value in the form.

After submitting the form, we should be directed to the authentication system of the OpenID
site and then redirected back to our site. There, we can show the user's name, and e-mail ID,
and show all the information that was sent back.

There's more...
Much more information about what OpenID offers is available at http://openid.net/
developers/specs/.

Chapter 3

65

Logging in using Facebook credentials
If we don't want to worry about storing a user's information and credentials, we could use
OAuth to authenticate with another service. One of the most popular is using Facebook for
logins. With Laravel and the HybridAuth library, we can easily implement OAuth authentication
with Facebook.

Getting ready
For this recipe, we need to have the HybridAuth package installed and set up as in the Setting
up OAuth with the HybridAuth package recipe.

How to do it...
To complete this recipe, follow these steps:

1.	 Create a new App at https://developers.facebook.com.

2.	 Get the App ID and App Secret keys, and in the app/config directory, create a file
named as fb_auth.php:
<?php
return array(
 "base_url" => "http://path/to/our/app/fbauth/auth",
 "providers" => array (
 "Facebook" => array (
 "enabled" => TRUE,
 "keys" => array ("id" => "APP_ID", "secret" =>
 "APP_SECRET"),
 "scope" => "email"
)
)
);

3.	 Create a route in routes.php to hold our Facebook login button:
Route::get('facebook', function()
{
 return "Login with Facebook";
});

4.	 Make a route to process the login information and display it:
Route::get('fbauth/{auth?}', function($auth = NULL)
{
 if ($auth == 'auth') {
 try {

Authenticating Your Application

66

 Hybrid_Endpoint::process();
 } catch (Exception $e) {
 return Redirect::to('fbauth');
 }
 return;
 }

 try {
 $oauth = new Hybrid_Auth(app_path()
 . '/config/fb_auth.php');
 $provider = $oauth->authenticate('Facebook');
 $profile = $provider->getUserProfile();
 }
 catch(Exception $e) {
 return $e->getMessage();
 }
 echo 'Welcome ' . $profile->firstName . ' '
 . $profile->lastName . '
';
 echo 'Your email: ' . $profile->email . '
';
 dd($profile);
});

How it works...
After getting our Facebook API credentials, we need to create a configuration file with those
credentials and our callback URL. We also need to pass in the scope, which is any extra
permission we might want from our user. In this case, we're just going to get their e-mail ID.

Our facebook login page is a simple link to a route where we do the authentication. The user
will then be taken to Facebook to login and/or authorize our site, and then redirected back to
our fbauth route.

At this point, we're just displaying the information that was returned, but we'd also probably
want to save the information to our own database.

There's more...
If we're testing this on our local computer using something like MAMP or WAMP, Facebook
allows us to use the callback URL of localhost.

Chapter 3

67

Logging in using Twitter credentials
If we don't want to worry about storing the user's information and credentials, we could use
OAuth to authenticate with another service. A popular service to use for logins is Twitter. With
Laravel and the HybridAuth library, we can easily implement OAuth authentication with Twitter.

Getting ready
For this recipe, we need to have the HybridAuth package installed and set up as in the Setting
up OAuth with the HybridAuth package recipe.

How to do it...
To complete this recipe, follow these steps:

1.	 Create a new app at https://dev.twitter.com/apps.

2.	 Get the Consumer Key and the Consumer Secret, and in the app/config directory,
create a file named as tw_auth.php:
<?php
return array(
 "base_url" => "http://path/to/our/app/twauth/auth",
 "providers" => array (
 "Twitter" => array (
 "enabled" => true,
 "keys" => array ("key" => "CONSUMER_KEY",
 "secret" => "CONSUMER_SECRET")
)
)
);

3.	 Create a route in routes.php for our Twitter login button:
Route::get('twitter', function()
{
 return "Login with Twitter";
});

4.	 Make a route to process the Twitter information:
Route::get('twauth/{auth?}', function($auth = NULL)
{
 if ($auth == 'auth') {
 try {
 Hybrid_Endpoint::process();
 } catch (Exception $e) {

Authenticating Your Application

68

 return Redirect::to('twauth');
 }
 return;
 }

 try {
 $oauth = new Hybrid_Auth(app_path()
 . '/config/tw_auth.php');
 $provider = $oauth->authenticate('Twitter');
 $profile = $provider->getUserProfile();
 }
 catch(Exception $e) {
 return $e->getMessage();
 }
 echo 'Welcome ' . $profile->displayName . '
';
 echo 'Your image: photoURL
 . '">';
 dd($profile);
});

How it works...
After getting our Twitter API credentials, we need to create a configuration file with those
credentials and our callback URL.

We then make a Twitter login view, which is a simple link to a route where we do the
authentication. The user will then be taken to Twitter to login and/or authorize our site, and then
redirected back to our twauth route. Here, we get their display name and their Twitter icon.

At this point, we're just displaying the information that was returned, but we'd also probably
want to save the information to our own database.

There's more...
If we're testing this on our local computer using something like MAMP or WAMP, Twitter will
NOT allow a callback URL of localhost, but we can use 127.0.0.1 in its place.

Logging in using LinkedIn
If we don't want to worry about storing user's information and credentials, we could use
OAuth to authenticate with another service. A popular service to use for logins, especially for
business applications, is LinkedIn. With Laravel and the HybridAuth library, we can easily
implement OAuth authentication with LinkedIn.

Chapter 3

69

Getting ready
For this recipe, we need to have the HybridAuth package installed and set up as in the Setting
up OAuth with the HybridAuth package recipe.

How to do it...
To complete this recipe, follow these steps:

1.	 Create a new app at https://www.linkedin.com/secure/developer.

2.	 Get the API Key and the Secret Key, and in the app/config directory, create a file
named li_auth.php:
<?php
return array(
 "base_url" => "http://path/to/our/app/liauth/auth",
 "providers" => array (
 "LinkedIn" => array (
 "enabled" => true,
 "keys" => array ("key" => "API_KEY",
 "secret" => "SECRET_KEY")
)
)
);

3.	 Create a route in routes.php for our LinkedIn login button:
Route::get('linkedin', function()
{
 return "Login with LinkedIn";
});

4.	 Make a route to process the LinkedIn information:
Route::get('liauth/{auth?}', function($auth = NULL)
{
 if ($auth == 'auth') {
 try {
 Hybrid_Endpoint::process();
 } catch (Exception $e) {
 return Redirect::to('liauth');
 }
 return;
 }

 try {

Authenticating Your Application

70

 $oauth = new Hybrid_Auth(app_path()
 . '/config/li_auth.php');
 $provider = $oauth->authenticate('LinkedIn');
 $profile = $provider->getUserProfile();
 }
 catch(Exception $e) {
 return $e->getMessage();
 }
 echo 'Welcome ' . $profile->firstName . ' ' . $profile
 ->lastName . '
';
 echo 'Your email: ' . $profile->email . '
';
 echo 'Your image: photoURL
 . '">';
 dd($profile);
});

How it works...
After getting our LinkedIn API credentials, we need to create a configuration file with those
credentials and our callback URL.

We then make a LinkedIn login view, with a simple link to a route where we do the LinkedIn
authentication. The user will then be taken to the LinkedIn site to login and/or authorize our
site, and then redirected back to our liauth route. Here, we get their first name, last name,
e-mail ID, and their avatar.

At this point, we're just displaying the information that was returned, but we'd also probably
want to save the information to our own database.

4
Storing and Using Data

In this chapter, we will cover:

ff Creating data tables using migrations and schemas

ff Querying using raw SQL statements

ff Querying using Fluent

ff Querying using Eloquent ORM

ff Using automatic validation in models

ff Using advanced Eloquent and relationships

ff Creating a CRUD system

ff Importing a CSV using Eloquent

ff Using RSS as a data source

ff Using attributes to change table column names

ff Using a non-Eloquent ORM in Laravel

Introduction
One of the backbones of any web application is the use and manipulation of data. Laravel
comes with many handy ways to interact with databases and display their information.
In this chapter, we'll begin with some simple database interactions. Then we'll use other,
non-databases for our data source, and then work on some customizations for our
Laravel application.

Storing and Using Data

72

Creating data tables using migrations
and schemas

Using Laravel, we can easily create our data model using schemas and migrations. In this
recipe, we'll see some basic functionality of how Laravel accomplishes this.

Getting ready
For this recipe, we need a standard Laravel installation, as well as a MySQL database
configured in our database config file.

How to do it...
To complete this recipe, follow these steps:

1.	 Install our migrations table from the command prompt, using artisan:
php artisan migrate:install

2.	 Create a migration to hold our Schema code for creating a new table:
php artisan migrate:make create_shows_table

3.	 In our app/database/migrations directory, locate the file that should be named
similar to 2012_01_01_222551_create_shows_table.php. Add the schema to
create our table and add the columns:
class CreateShowsTable extends Migration {

 /**
 * Make changes to the database.
 *
 * @return void
 */
 public function up()
 {
 Schema::create('shows', function($table)
 {
 $table->increments('id');
 $table->string('name', 140);
 $table->integer('rating')->nullable();
 $table->timestamps();
 });
 }

 /**
 * Revert the changes to the database.
 *

Chapter 4

73

 * @return void
 */
 public function down()
 {
 Schema::drop('shows');
 }
}

4.	 Run the migration to add the table to the database, using the following command:
php artisan migrate

5.	 Create another migration so we can add a column to our table:
php artisan migrate:make add_actor_to_shows_table

6.	 In the app/database/migrations directory, find the file that has a name similar
to 2012_01_01_222551_add_actor_to_shows_table.php. Add the column to
our schema:
class AddActorToShowsTable extends Migration {

 /**
 * Make changes to the database.
 *
 * @return void
 */
 public function up()
 {
 Schema::table('shows', function($table)
 {
 $table->string('actor')->nullable();
 });
 }

 /**
 * Revert the changes to the database.
 *
 * @return void
 */
 public function down()
 {
 Schema::table('shows', function($table)
 {
 $table->drop_column('actor');
 });
 }
}

7.	 Run the migration in the command prompt to add the column to our table:
php artisan migrate

Storing and Using Data

74

How it works...
Using Laravel's Artisan command-line tool, we run the command to create a migrations table.
This will track any migrations and schema changes we make. Then we use Artisan to create a
migrations file that will hold the schema for our shows table.

In the shows schema, we create a simple table to hold a list of TV shows, and how we rate
them. The name of the show is set as a string, the rating as an integer, and we use Laravel's
default mechanism for creating timestamps. When we run the migration, our table will be
created for us.

If we decide we want to add another column in our table, we just create another migration
file using Artisan. In this case, we'll be adding a column to hold an actor's name. Our schema
will get the table we already created and add the column to it. When we rerun the migration,
everything will be updated in the database.

There's more…
We could also have some more boilerplate code created for us by using a couple of
command-line switches with Artisan. For example, to create the shows table, we could
run this command:

php artisan migrate:make create_shows_table –table=show –create

Running that command will produce a migration file that includes the following code:

<?php

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateShowsTable extends Migration {

 /**
 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 Schema::create('shows', function(Blueprint $table)
 {
 $table->increments('id');
 $table->timestamps();
 });
 }

Chapter 4

75

 /**
 * Reverse the migrations.
 *
 * @return void
 */
 public function down()
 {
 Schema::drop('shows');
 }

}

Querying using raw SQL statements
Laravel provides many ways to access our database. If we have existing queries that we've
used before, or if we need something a bit more complicated, we can use raw SQL to access
our database.

Getting ready
For this recipe, we'll be using the table created in the Creating data tables using migrations
and schema recipe.

How to do it...
To complete this recipe, follow these steps:

1.	 In the command prompt, create a migration so we can add some data:
php artisan migrate:make add_data_to_shows_table

2.	 In our app/database/migrations directory, find a file similar to
2012_01_01_222551_add_data_to_shows_table.php, and add some data
using raw SQL:
class AddDataToShowsTable {

 /**
 * Make changes to the database.
 *
 * @return void
 */

public function up()
 {

Storing and Using Data

76

 $sql = 'INSERT INTO shows (name, rating, actor)
 VALUES (?, ?, ?)';
 $data1 = array('Doctor Who', '9', 'Matt Smith');
 $data2 = array('Arrested Development', '10', 'Jason
 Bateman');
 $data3 = array('Joanie Loves Chachi', '3', 'Scott
 Baio');
 DB::insert($sql, $data1);
 DB::insert($sql, $data2);
 DB::insert($sql, $data3);
 }

 /**
 * Revert the changes to the database.
 *
 * @return void
 */
 public function down()
 {
 $sql = "DELETE FROM shows WHERE name = ?";
 DB::delete($sql, array('Doctor Who'));
 DB::delete($sql, array('Arrested Development'));
 DB::delete($sql, array('Joanie Loves Chachi'));
 }
}

3.	 Run the migration in the command prompt to add the data:
php artisan migrate

4.	 In our app/models directory, create a file named Show.php and add a method to
get the shows:
class Show {
 public function allShows($order_by = FALSE,
 $direction = 'ASC')
 {
 $sql = 'SELECT * FROM shows';
 $sql .= $order_by ? ' ORDER BY ' . $order_by
 . ' ' . $direction : '';
 return DB::select($sql);
 }
}

Chapter 4

77

5.	 In our routes.php file, create a Show route to display the information from
the model:
Route::get('shows', function()
{
 $shows = new Show();
 $shows_by_rating = $shows->allShows('rating', 'DESC');
 dd($shows_by_rating);
});

How it works...
To populate some data in our shows table, we first need to create a migration using the Artisan
command-line tool. In the migration file's up method, we create a simple SQL insert command,
and pass in three parameters. We then create three arrays, with the values in the same order
as columns in our query. Then we pass the SQL statement variable and array of values to
Laravel's DB::insert() command. For our down method, we use a SQL delete statement,
searching by the show's name. Once we run the migration, our data will populate into the table.

Next, we create a model to interact with the database in the frontend. Our model has one
method to display all the shows in our table, with optional parameters if we'd like to re-order
how they're displayed.

Our route instantiates the Show model and runs the allShows() method. To display the
results, we use Laravel's dd() helper function. At this point, we could pass the data to a view
and loop through it to display.

See also
ff The Creating data tables using migrations and schema recipe

Querying using Fluent
Laravel provides many ways to access databases. If we choose not to write raw SQL
statements, we can use the Fluent query builder to make things easier.

Getting ready
For this recipe, we'll be using the table created in the Creating data tables using migrations
and schemas recipe.

Storing and Using Data

78

How to do it...
To complete this recipe, follow these steps:

1.	 In the command prompt, create a migration so we can add some data:
php artisan migrate:make add_data_to_shows_table

2.	 In our app/database/migrations directory, find a file similar to
2012_01_01_222551_add_data_to_shows_table.php, and add some data
using the Fluent query builder:
class AddDataToShowsTable {

 /**
 * Make changes to the database.
 *
 * @return void
 */
 public function up()
 {
 $data1 = array('name' => 'Doctor Who',
 'rating' => 9, 'actor' => 'Matt Smith');
 $data2 = array('name' => 'Arrested Development',
 'rating' => 10, 'actor' => 'Jason Bateman');
 $data3 = array('name' => 'Joanie Loves Chachi',
 'rating' => 3, 'actor' => 'Scott Baio');
 DB::table('shows')->insert(array($data1, $data2,
 $data3));
 }

 /**
 * Revert the changes to the database.
 *
 * @return void
 */
 public function down()
 {
 DB::table('shows')
 ->where('name', 'Doctor Who')
 ->orWhere('name', 'Arrested Development')
 ->orWhere('name', 'Joanie Loves Chachi')
 ->delete();
 }
}

Chapter 4

79

3.	 Run the migration to add the data:
php artisan migrate

4.	 In our app/models directory, create a file named Show.php and add a method to
get the shows:
class Show {
 public function allShows($order_by = FALSE,
 $direction = 'ASC')
 {
 $shows = DB::table('shows');
 return $order_by ? $shows->order_by($order_by,
 $direction)->get() : $shows->get();
 }
}

5.	 In our routes.php file, create a Show route to display the information from
the model:
Route::get('shows', function()
{
 $shows = new Show();
 $shows_by_rating = $shows->allShows('rating', 'DESC');
 dd($shows_by_rating);
});

How it works...
To populate some data in our shows table, we first need to create a migration using the
Artisan command-line tool. In the migration file's up method, we create three arrays that hold
our values, using the column names as keys. Those arrays are then put into an array and
passed to the Fluent insert function. The down method uses the where() and orWhere()
functions to locate records by their name, and deletes them. Once we run the migration, our
data will populate into the table.

Next, we create a model to interact with the database in the frontend. Our model has one
method to display all the shows in our table, with optional parameters if we'd like to reorder
how they're displayed.

Our route instantiates the Show model and runs the allShows() method. To display the
results, we use Laravel's dd() helper function. We could also create a view and pass the
data there to loop through.

Storing and Using Data

80

There's more...
Many more fluent methods can be found in Laravel's documentation at
http://laravel.com/docs/queries.

See also
ff The Creating data tables using migrations and schemas recipe

Querying using Eloquent ORM
Laravel provides many ways to interact with databases. One of the easiest ways is using the
Eloquent ORM. It provides a simple and intuitive way to work with data.

Getting ready
For this recipe, we'll be using the table created in the Creating data tables using migrations
and schemas recipe.

How to do it...
To complete this recipe, follow these steps:

1.	 In the command prompt, create a migration so we can add some data:
php artisan migrate:make add_data_to_shows_table

2.	 In our app/database/migrations directory, find a file similar to
2012_01_01_222551_add_data_to_shows_table.php, and add some data
using the Fluent query builder:
class AddDataToShowsTable {

 /**
 * Make changes to the database.
 *
 * @return void
 */
 public function up()
 {
 $data1 = array('name' => 'Doctor Who',
 'rating' => 9, 'actor' => 'Matt Smith');
 $data2 = array('name' => 'Arrested Development',
 'rating' => 10, 'actor' => 'Jason Bateman');

Chapter 4

81

 $data3 = array('name' => 'Joanie Loves Chachi',
 'rating' => 3, 'actor' => 'Scott Baio');
 DB::table('shows')->insert(array($data1, $data2,
 $data3));
 }

 /**
 * Revert the changes to the database.
 *
 * @return void
 */
 public function down()
 {
 DB::table('shows')
 ->where('name', 'Doctor Who')
 ->orWhere('name', 'Arrested Development')
 ->orWhere('name', 'Joanie Loves Chachi')
 ->delete();
 }
}

3.	 Run the migration to add the data:
php artisan migrate

4.	 In our app/models directory, create a file named Show.php that extends
Eloquent:
class Show extends Eloquent{
 public function getTopShows() {
 return $this->where('rating', '>', 5)
 ->orderBy('rating', 'DESC')->get();
 }
}

5.	 In our routes.php file, create a show route to display the information from
the model:
Route::get('shows', function()
{
 $shows = Show::all();
 echo '<h1>All Shows</h1>';
 foreach ($shows as $show)
 {
 echo $show->name . ' - ' . $show->rating . ' - '
 . $show->actor . '
';
 }

Storing and Using Data

82

 $show_object = new Show();
 $top_shows = $show_object->getTopShows();
 echo '<h1>Top Shows</h1>';
 foreach ($top_shows as $top_show)
 {
 echo $top_show->name . ' - ' . $top_show->rating
 . ' - ' . $top_show->actor . '
';
 }

});

How it works...
To populate some data in our shows table, we first need to create a migration using the
Artisan command-line tool. In the migration file's up method, we create three arrays that hold
our values, using the column names as keys. Those arrays are then put into an array and
passed to the Fluent insert function. The down method uses the where() and orWhere()
functions to locate records by their name, and deletes them. Once we run the migration, our
data will populate into the table.

Next, we create a model to interact with the database in the frontend. For this recipe, all we
need to do is extend Eloquent and the ORM will automatically take care of everything else.
We also add in a method that will return all of the top shows.

Our route calls the all() method for our Show ORM object; this will put all the data into
the $shows variable. Then we do a simple loop through the records and display the fields
we want. Next, we get a filtered list by calling the method in the Show model, by only getting
records with a rating greater than 5 and ordered by rating.

There's more...
In this recipe, we're displaying all the data inside the route. Ideally, we'd pass the data into a
view and display it there.

See also
ff The Creating data tables using migrations and schemas recipe

Using automatic validation in models
When validating data that's being sent to the database, ideally we should put the rules and
validation in our model. In this recipe we'll see one way to accomplish this.

Chapter 4

83

Getting ready
For this recipe, we need a standard Laravel installation with a configured MySQL database.
We also need our migrations table set up by running the Artisan command php artisan
migrate:install.

How to do it...
To complete this recipe, follow these steps:

1.	 In the command prompt, create a migration for a simple users table:
php artisan migrate:make create_users_table

2.	 Create the schema in the migration file. The file is located in the app/database/
migrations directory and will be named something like 2012_01_01_222551_
create_users_table.php:
use Illuminate\Database\Migrations\Migration;

class CreateUsersTable extends Migration {

 /**
 * Make changes to the database.
 *
 * @return void
 */
 public function up()
 {
 Schema::create('users', function($table)
 {
 $table->increments('id');
 $table->string('username', 100);
 $table->string('email', 100);
 $table->timestamps();
 });
 }

 /**
 * Revert the changes to the database.
 *
 * @return void
 */
 public function down()
 {
 Schema::drop('users');
 }
}

Storing and Using Data

84

3.	 Run the migration:
php artisan migrate

4.	 Create a file named User.php in our app/models directory. If there's already a file
named User.php, we can just rename it:
<?php
class User extends Eloquent {

 protected $table = 'users';

 private $rules = array(
 'email' => 'required|email',
 'username' => 'required|min:6'
);

 public function validate($input) {
 return Validator::make($input, $this->rules);
 }
}

5.	 Make a route that loads the ORM and tries to save some data:
$user = new User();
 $input = array();

 $input['email'] = 'racerx@example.com';
 $input['username'] = 'Short';
 $valid = $user->validate($input);
 if ($valid->passes()) {
 echo 'Everything is Valid!';
 // Save to the database
 } else {
 var_dump($valid->messages());
 }

How it works...
To begin, we create a migration for a basic users table. In our schema, we set up a table
with an ID, username, e-mail ID, and timestamps. Then run the migration to create the table
in the database.

Next, we set up our User model and extend Eloquent. We need to create our rules, using a
private variable named as $rules that contains an array of the validation rules we want to
check. In our model, we create a validate method. This will run our input through Laravel's
Validator using the rules we have just set up.

Chapter 4

85

In our route, we create a new user and add some values. Before we save, we run the input
through the validate method; if it fails, we can loop through the validation error messages.
If it passes, we could then save the input to our database

There's more...
There are a few other ways to validate our data using models. One way is to use a package
that will handle most of the validation work for us. One great package to use is Ardent, which
can be found at https://github.com/laravelbook/ardent.

Using advanced Eloquent and relationships
One of the great things about using Laravel's Eloquent ORM is the ease with which we can
interact with multiple tables that have foreign keys and pivot tables. In this recipe, we'll see
how easy it is to set up our models and run queries against joined tables.

Getting ready
For this recipe, we'll be using the shows and users tables created in the previous
recipes Creating data tables using migrations and schemas and Using automatic
validation in models.

How to do it...
To complete this recipe, follow these steps:

1.	 In the command prompt, create a migration for a new pivot table:
php artisan migrate:make create_show_user

2.	 Open the migrations file in the app/database/migrations directory and add
the schema:
use Illuminate\Database\Migrations\Migration;

class CreateShowUser extends Migration {

 /**
 * Make changes to the database.
 *
 * @return void
 */
 public function up()
 {

Storing and Using Data

86

 Schema::create('show_user', function($table)
 {
 $table->increments('id');
 $table->integer('user_id');
 $table->integer('show_id');
 $table->timestamps();
 });
 }

 /**
 * Revert the changes to the database.
 *
 * @return void
 */
 public function down()
 {
 Schema::drop('show_user');
 }
}

3.	 Run the migration:
php artisan migrate

4.	 Create a User.php file in the app/model directory:
class User extends Eloquent {
 public function shows()
 {
 return $this->belongsToMany ('Show');
 }
}

5.	 Create a Show.php file in our app/model directory:
class Show extends Eloquent {
 public function users()
 {
 return $this->belongsToMany ('User');
 }
}

6.	 Make a route in routes.php to add a new user and attach two shows:
Route::get('add-show', function()
{
 // Create a new User
 $user = new User();

Chapter 4

87

 $user->username = 'John Doe';
 $user->email = 'johndoe@example.com';
 $user->save();

 // Attach two Shows
 $user->shows()->attach(1);
 $user->shows()->attach(3);

 foreach($user->shows()->get() as $show) {
 var_dump($show->name);
 }
});

7.	 Make a route to get all the users attached to a show:
Route::get('view-show', function()
{
 $show = Show::find(1)->users;
 dd($show);
});

How it works...
Our first task is to create a pivot table that will join our users tables with our shows table. In
our migration's schema, we need to add columns for our user_id and a show_id. We then
run the migration to get the table set up in our database.

To set up our models, we need to create a function that will return our many-to-many
relationship. In our User model, we create the shows() function that points to our Show model
for the relationship. In the Show model, we create a function named users() that points to
our User model. With this set up, we can now run queries against both tables with ease.

Next, we create a route that will add in a new user. Once we save the user, we create the
relationship with the shows by using the attach() method, and pass in the ID of the
show we want to attach. After this, if we were to look in our show_user table, we'd see two
records—one with our new user's ID and the show ID 1, and another with the show ID of 3. By
running the get() method in our route, we can loop through the records and see which show
names are joined to our user.

Our next route will take a show and get all the users that are joined. In our case, we get the
show with the ID of 1, and then get all of the users. Using Laravel's dd() helper, we can see
our results.

Storing and Using Data

88

There's more...
Database relationships can get fairly complicated and this recipe merely scratches the surface
of what can be done. To learn more about how Laravel's Eloquent ORM uses relationships, view
the documentation at http://laravel.com/docs/eloquent#many-to-many.

Creating a CRUD system
To interact with our database, we might need to create a CRUD (create, read, update, and
delete) system. That way, we add and alter our data without needing a separate database
client. This recipe will be using a RESTful controller for our CRUD system.

Getting ready
For this recipe, we'll be building on the User tables created in the recipe Using automatic
validation in models.

How to do it...
To complete this recipe, follow these steps:

1.	 In the app/controllers directory, create a file named as UsersController.
php and add the following code:
<?php

class UsersController extends BaseController {

 public function getIndex()
 {
 $users = User::all();
 return View::make('users.index')->with('users',
 $users);
 }

 public function getCreate()
 {
 return View::make('users.create');
 }

Chapter 4

89

 public function postCreate()
 {
 $user = new User();
 $user->username = Input::get('username');
 $user->email = Input::get('email');
 $user->save();
 return Redirect::to('users');
 }

 public function getRecord($id)
 {
 $user = User::find($id);
 return View::make('users.record')->with('user',
 $user);
 }

 public function putRecord()
 {
 $user = User::find(Input::get('user_id'));
 $user->username = Input::get('username');
 $user->email = Input::get('email');
 $user->save();
 return Redirect::to('users');
 }

 public function deleteRecord()
 {
 $user = User::find(Input::get('user_id'))
 ->delete();
 return Redirect::to('users');
 }
}

2.	 In our routes.php file, add a route to the controller:
Route::controller('users', 'UsersController');

3.	 In the app/views directory, create another directory named as users, create a file
named index.php in that, and add the following code:
<style>
table, th, td {
 border:1px solid #444
}
</style>
<table>
 <thead>
 <tr>
 <th>User ID</th>

Storing and Using Data

90

 <th>User Name</th>
 <th>Email</th>
 <th>Actions</th>
 </tr>
 </thead>
 <tbody>
 <?php foreach($users as $user): ?>
 <tr>
 <td><?php echo $user->id ?></td>
 <td><?php echo $user->username ?></td>
 <td><?php echo $user->email ?></td>
 <td>
 <a href="users/record/<?php echo $user
 ->id ?>">Edit
 <form action="users/record"
 method="post">
 <input type="hidden" name="_method"
 value="DELETE">
 <input type="hidden" name="user_id"
 value="<?php echo $user->id
 ?>">
 <input type="submit"
 value="Delete">
 </form>
 </td>
 </tr>
 <?php endforeach; ?>
 </tbody>
</table>
Add New User

4.	 In the app/views/users directory, create a new file named create.php and the
form as follows:
<form action="create" method="post">
 Username:

 <input name="username">

 Email

 <input name="email">

 <input type="submit">
</form>

5.	 In the app/views/users directory, add a file named record.php and use the
following form:
<form action="" method="post">
 <input type="hidden" name="_method" value="put">
 <input type="hidden" name="user_id" value="<?php echo
 $user->id ?>">

Chapter 4

91

 Username:

 <input name="username" value="<?php echo $user
 ->username ?>">

 Email

 <input name="email" value="<?php echo $user->email
 ?>">

 <input type="submit">
</form>

How it works...
In our controller, our method names can be prepended with the HTTP verb we want to use. We
then add in the route in our routes file, so it points to the correct place.

Our first method will generate a list of all our users. We pass the users to our view, and then
loop through them and display them in a simple table.

Under that table, we have a link to our second method to add a new user. Our getRreate()
method displays a simple form, and that form gets posted and saved. After saving, we're
redirected back to the list page.

To edit a record, we create a getRecord() method that gets the record's ID passed to it.
Our view is a form that is automatically filled in with the values of the user for the ID that
was passed in. Since we're doing an update, we want to use the put verb; to accomplish this,
we need a hidden field with the name _method and the value of the request we want to use.
When the form is submitted, Laravel will send it to the putRecord() method, and update
the information.

Finally, to delete a record, we create a simple form that has the hidden field named _method
and the value DELETE. When submitted, Laravel will send it to the deleteRecord()
method, and the user will be removed from the database.

There's more...
Please be aware that this is the most basic of CRUD systems. For a full system, we'd need to
add validation and error checking any time we add or edit our data.

Importing a CSV using Eloquent
When working with data, there are many different sources and file types that we may
encounter. A common type is a CSV, or comma separated value, file. In this recipe, we'll
take a CSV file's contents and insert them into our database.

Storing and Using Data

92

Getting ready
To get started, we need to have a standard Laravel installation that's configured with
a MySQL database. We also need to have our migrations table created by running the
Artisan command, php artisan migrate:install.

How to do it...
To complete this recipe, follow these steps:

1.	 In a text editor, create a file named scifi.csv, save it to your application's public
folder. Add in the following data:
Spock,Star Trek
Kirk,Star Trek
Luke,Star Wars
Lando,Star Wars
Deckard,Blade Runner
Dave,2001

2.	 In the command prompt, create a migration:
php artisan migrate:make create_scifi_table

3.	 Open the migration file that was just created and add in our schema:
use Illuminate\Database\Migrations\Migration;

class CreateScifiTable extends Migration {

 /**
 * Make changes to the database.
 *
 * @return void
 */
 public function up()
 {
 Schema::create('scifi', function($table)
 {
 $table->increments('id');
 $table->string('character');
 $table->string('movie');
 $table->timestamps();
 });
 }

Chapter 4

93

 /**
 * Revert the changes to the database.
 *
 * @return void
 */
 public function down()
 {
 Schema::drop('scifi');
 }
}

4.	 Run the migration to create the table:
php artisan migrate

5.	 Create a model in the app/models directory named as Scifi.php:
class Scifi extends Eloquent {
 protected $table = 'scifi';
}

6.	 Create a new route to process our CSV and save the results:
Route::get('csv', function()
{
 if (($handle = fopen(public_path() .. '/scifi.csv',
 'r')) !== FALSE)
 {
 while (($data = fgetcsv($handle, 1000, ',')) !==
 FALSE)
 {
 $scifi = new Scifi();
 $scifi->character = $data[0];
 $scifi->movie = $data[1];
 $scifi->save();
 }
 fclose($handle);
 }

 return Scifi::all();
});

How it works...
Our first step is to create a simple CSV file, with the names of some science fiction characters
and the movies in which they appeared. Then we create a migration and a schema that will
add a scifi table with fields we want to save.

Storing and Using Data

94

For our model, we extend Eloquent and add in a protected variable named $table that is
set to our table's name. Since we're not pluralizing scifi for our table's name, we need to let
Eloquent know which table to use.

In our route, we open the file and loop through the data using PHP's built-in functions
fopen() and fgetcsv() respectively. In each loop, we create a new Scifi object, then set
the values to the data we get from the CSV file. After looping, we close the file.

To see our data, we call the all() method on our Scifi object and return it to display all
the data.

Using RSS as a data source
Many blogs and news sites offer RSS feeds of their content. Using Laravel, we can get those
feeds and display them as a feed reader, or even save them in our own database.

Getting ready
For this recipe, we just need a standard Laravel installation, and RSS URL to use.

How to do it...
To complete this recipe, follow this step:

1.	 Create a new route in our routes.php file to read in the RSS:
Route::get('rss', function()
{
 $source = 'http://rss.cnn.com/rss/cnn_topstories.rss';

 $headers = get_headers($source);
 $response = substr($headers[0], 9, 3);
 if ($response == '404')
 {
 return 'Invalid Source';
 }

 $data = simplexml_load_string
 (file_get_contents($source));

 if (count($data) == 0)
 {
 return 'No Posts';
 }

Chapter 4

95

 $posts = '';
 foreach($data->channel->item as $item)
 {
 $posts .= '<h1>link . '">'
 . $item->title . '</h1>';
 $posts .= '<h4>' . $item->pubDate . '</h4>';
 $posts .= '<p>' . $item->description . '</p>';
 $posts .= '<hr><hr>';
 }
 return $posts;
});

How it works...
We create a route to hold our RSS reader. Then we set our $source variable to whichever
RSS feed we want to consume.

To make sure our source is still active, we use the PHP function get_headers(), and grab
the response code. If the code is 404, then the URL doesn't work.

Next, we get the contents from the URL, and use the simplexml_load_string() function
to process the XML in the feed. If that feed actually has data, we can loop through it and
display the information. We could also save it to our database as we loop.

Using attributes to change table
column names

Sometimes we may be working with a database that was created using less-than-logical
column names. In those cases, we can use Laravel's Eloquent ORM to allows us to interact
with the table using more standardized names, without having to make database changes.

Getting ready
For this recipe, we need a standard Laravel installation, a properly configured MySQL database,
and our migrations table set up by running the command php artisan migrate:install.

How to do it...
To complete this recipe, follow these steps:

1.	 Create a migration for our table with the column name odd, in the command prompt:
php artisan migrate:make create_odd_table --table=odd --create

Storing and Using Data

96

2.	 Create a migration to add some data to the table, in the command prompt:
php artisan migrate:make add_data_to_odd_table

3.	 In the app/database/migrations folder, open the create_odd_table
migration and add the schema:
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateOddTable extends Migration {

 /**
 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 Schema::create('odd', function(Blueprint $table)
 {
 $table->increments('MyIDcolumn');
 $table->string('MyUsernameGoesHere');
 $table->string('ThisIsAnEmail');
 $table->timestamps();
 });
 }

 /**
 * Reverse the migrations.
 *
 * @return void
 */
 public function down()
 {
 Schema::drop('odd');
 }
}

4.	 In the app/database/migrations directory, open the add_data_to_odd_
table file and add some data:
use Illuminate\Database\Migrations\Migration;

class AddDataToOddTable extends Migration {

 /**

Chapter 4

97

 * Make changes to the database.
 *
 * @return void
 */
 public function up()
 {
 $data1 = array('MyUsernameGoesHere' => 'John Doe',
 'ThisIsAnEmail' => 'johndoe@example.com');
 $data2 = array('MyUsernameGoesHere' => 'Jane Doe',
 'ThisIsAnEmail' => 'janedoe@example.com');
 DB::table('odd')->insert(array($data1, $data2));
 }

 /**
 * Revert the changes to the database.
 *
 * @return void
 */
 public function down()
 {
 DB::table('odd')->delete();
 }
}

5.	 In the command prompt, run the migration:
php artisan migrate

6.	 In the app/models directory, create a new file named as Odd.php and create
the getters:
class Odd extends Eloquent {
 protected $table = 'odd';

 public function getIdAttribute($value) {
 return $this->attributes['MyIDcolumn'];
 }

 public function getUsernameAttribute($value) {
 return $this->attributes['MyUsernameGoesHere'];
 }

 public function getEmailAttribute($value) {
 return $this->attributes['ThisIsAnEmail'];
 }
}

Storing and Using Data

98

7.	 Make a new route in routes.php to access the table using the regular column name:
Route::get('odd', function()
{
 $odds = Odd::all();
 foreach($odds as $odd)
 {
 echo $odd->MyIDcolumn . ' - ' . $odd
 ->MyUsernameGoesHere . ' - ' . $odd
 ->ThisIsAnEmail . '
';
 }
});

8.	 Make another route, using the more standard column names:
Route::get('notodd', function()
{
 $odds = Odd::all();
 foreach($odds as $odd)
 {
 echo $odd->id . ' - ' . $odd->username . ' - '
 . $odd->email . '
';
 }
});

How it works...
To begin, we create two migration files. One file will actually create the tables with the non-
standard column name, and the other will populate the data.

For our model, we extend Eloquent and add a few get methods. Inside each get method,
set our attributes, which tells Eloquent which column name we want to use. Now, since we
have the getUsernameAttribute() method in our model, whenever we try access the
username in our object, it will actually access the column name we defined.

Then, we create a route that will pull all of the records from our odd table, and loop through.
For our first route, we access the column using their real names. In our second route, we use
the new names. If we access both of these routes, we would see the exact same information.

Using a non-Eloquent ORM in Laravel
Laravel's Eloquent ORM is easy-to-use and very efficient. However, there are many different
PHP ORMs and we may decide we prefer another ORM. In this recipe, we'll install the RedBean
ORM and use it for our data.

Chapter 4

99

Getting ready
For this recipe, we'll be using the RedBean ORM. You'll need to download it from
http://www.redbeanphp.com/manual/installing, and unzip the file. Then
move the file rb.php to the app/libraries directory of your app.

How to do it...
To complete this recipe, follow these steps:

1.	 In the composer.json file, make our autoloader load our libraries directory.
The autoload section should look similar to this:
"autoload": {
 "classmap": [
 "app/commands",
 "app/controllers",
 "app/models",
 "app/database/migrations",
 "app/database/seeds",
 "app/tests/TestCase.php",
 "app/libraries"
],
}

2.	 In the command prompt, dump our autoloader:
php composer.phar dump-autoload

3.	 In our routes.php file, we'll add a simple configuration:
$db_setup = Config::get('database.connections.mysql');
R::setup('mysql:host=' . $db_setup['host'] . ';dbname='
 . $db_setup['database'], $db_setup['username'],
 $db_setup['password']);

4.	 Create a route that will add some data and then display it:
Route::get('orm', function()
{
 $superhero = R::dispense('superheroes');
 $superhero->name = 'Spiderman';
 $superhero->city = 'New York';
 $superhero->age = 24;

 $id1 = R::store($superhero);

Storing and Using Data

100

 $superhero = R::dispense('superheroes');
 $superhero->name = 'Superman';
 $superhero->city = 'Metropolis';
 $superhero->age = 50;

 $id2 = R::store($superhero);

 $superhero = R::dispense('superheroes');
 $superhero->name = 'Batman';
 $superhero->city = 'Gotham';
 $superhero->age = 36;

 $id3 = R::store($superhero);

 $heroes = R::batch('superheroes',array($id1, $id2,
 $id3));

 foreach ($heroes as $hero)
 {
 echo $hero->name . ' - ' . $hero->city . ' - '
 . $hero->age . '
';
 }
});

How it works...
After adding the RedBean file to our libraries directory, we need to update our composer
file's autoloader so that it will load the rb.php file.

Setting up the database configuration can be done in various places but, for this recipe, we'll
set it up at the top of our routes file. So we can keep our database information in one place,
we use Laravel's database configuration to get it set up.

Once all that is done, we're ready to use RedBean in our application. In our route, we're
creating three superheroes and adding them to the superheroes table. With RedBean, if
the table doesn't exist, it will automatically create it for you and add in the relevant columns.

Finally, we get three records and can loop through them to display the information.

There's more...
RedBeans has many features that might be useful as a replacement ORM. To see all the
features, visit its official manual at http://redbeanphp.com/manual/.

5
Using Controllers

and Routes for
URLs and APIs

In this chapter, we will cover:

ff Creating a basic controller

ff Creating a route using a closure

ff Creating a RESTful controller

ff Using advanced routing

ff Using a filter on the route

ff Using route groups

ff Building a RESTful API with routes

ff Using named routes

ff Using a subdomain in your route

Introduction
In this chapter, we'll go through some ways to use Laravel's routing system. There are two
basic ways to route our application: either setting the routes in the routes.php file with
closures or using controllers. We'll see the power that each of these methods holds and show
how they can be used in our application.

Using Controllers and Routes for URLs and APIs

102

Creating a basic controller
Model-View-Controller (MVC) patterns are very popular in PHP frameworks. In this recipe,
we'll create a simple controller that extends another base controller.

Getting ready
To start, we just need a standard Laravel installation.

How to do it...
To complete this recipe, follow these steps:

1.	 In the app/controllers directory, create a file named UsersController.php
and type the following code in to it:
<?php
class UsersController extends BaseController {

 public function actionIndex()
 {
 return "This is a User Index page";
 }

 public function actionAbout()
 {
 return "This is a User About page";
 }
}

2.	 Then, in the routes.php file, add the following lines:
Route::get('users', 'UsersController@actionIndex');
Route::get('users/about', 'UsersController@actionAbout');

3.	 Test the controller by going to http://your-server/users and
http://your-server/users/about, where your-server is the
URL to your app.

How it works...
In our User controller (and pretty much in any other controller that we create), we start by
extending the base controller. If we look in the BaseController.php file, we see only one
method, the setupLayout() method, which is used for our layout views. The base controller
could also be used if there's some code that we want to run on every page of the site.

Chapter 5

103

Back in the User controller, we define two methods for our Index and About page, with each
method prefixed by action. For our purposes, we're just returning a single string, but this would
be where all of our controller logic would go and where we would set the view to be displayed.

So that Laravel is able to parse the URL and determine which controller and methods to use,
we need to register the routes in our routes file. Now, in our browser, when we go to /users
(or /users/index), we'll be taken to our Index page, while /users/about will take us to
our About page.

Creating a route using a closure
If we decide not to use an MVC pattern, we can create our routes by using a closure, or
anonymous function.

Getting ready
For this recipe, we just need a standard Laravel installation.

How to do it...
To complete this recipe, follow these steps:

1.	 In the app/routes.php file, add a route as follows:
Route::get('hello/world', function()
{
 $hello = 'Hello ';
 $world = 'World!';
 return $hello . $world;
});

2.	 Open your browser and test the route by visiting http://your-server/hello/
world, where your-server is the URL to your app.

How it works...
Routes in Laravel are considered RESTful, which means they respond to various different
HTTP verbs. Most of the time, when simply viewing web pages, we use the GET verb, as in
Route::get. Our first parameter is the URL that we're using for the route, and it can be
pretty much any valid URL string. In our case, when a user goes to hello/world, it will use
this route. After that is our closure, or anonymous function.

In the closure, we can pull in any data from our model, do whatever logic we want, and call
the views we want to use. In our example case, we're just setting a couple of variables and
returning their concatenated value.

Using Controllers and Routes for URLs and APIs

104

Creating a RESTful controller
There may be a time when we want to have a RESTful web application, such as when building
an API. To accomplish this, we need our routes to respond to various HTTP requests. The
routes with closures are already set up this way, but in this recipe, we'll stay in the MVC
pattern and create a controller that is RESTful.

Getting ready
For this recipe, we need a standard Laravel installation and the code from the Creating a
basic controller recipe.

How to do it...
To complete this recipe, follow these steps:

1.	 In the User controller, replace the code with the following code:
<?php
class UsersController extends BaseController {

 public function getIndex()
 {
 $my_form = "<form method='post'>
 <input name='text' value='Testing'>
 <input type='submit'>
 </form>";
 return $my_form;

 }
 public function postIndex()
 {
 dd(Input::all());
 }

 public function getAbout()
 {
 return "This is a User About page";
 }
}

2.	 In routes.php, add the route to our controller:
Route::controller('users', 'UsersController');

3.	 In your browser, go to http://your-server/users (where your-server is the
URL of your web server) and click on the Submit button.

4.	 In the browser, go to http://your-server/users/about.

Chapter 5

105

How it works...
The two main differences between a RESTful and non-RESTful controller are renaming the
methods to have the HTTP request they respond to as a prefix and registering our routes with
Route::controller().

Our getIndex() method is the default method when we go to /users, since most page
views are GET requests. In this example, we're returning a very simple form that will post
the input back to itself. However, since the form is using a POST request, it will trigger the
postIndex() method, and that's where the form can be processed. In our example, we're
just using the dd() helper of Laravel to display the submitted form input.

Using advanced routing
When creating routes that require parameters, we may need to use more advanced features.
Using Laravel and regular expressions, we can make sure that our routes only respond to
certain URLs.

Getting ready
For this recipe, we need a standard Laravel installation.

How to do it…
To complete this recipe, follow these steps:

1.	 In our routes.php file, add the following code:
Route::get('tvshow/{show?}/{year?}', function($show = null, $year
= null)
{
 if (!$show && !$year)
 {
 return 'You did not pick a show.';
 }
 elseif (!$year)
 {
 return 'You picked the show ' . $show . '';
 }

 return 'You picked the show ' . $show .
 ' from the year ' . $year . '.';
})
->where('year', '\d{4}');

Using Controllers and Routes for URLs and APIs

106

2.	 Open a browser and test the route by typing something such as
http://your-server/tvshow/MASH/1981 (where your-server
is the URL for your server) in the address bar.

How it works...
We start by having our route respond to a GET request for tvshow. If we want to pass
parameters to the route, we need to set up wildcards. We can use as many parameters
as we'd like and name them whatever we'd like as long as we pass the same name to the
function. For this recipe, we want to get a show title, and to make this parameter optional,
we add the question mark at the end.

For our second parameter, we want a year. In this case, it has to be a four digit number.
To use a regular expression, we chain the where() method to our route with the name of the
parameter and the expression. In this example, we want only numbers, (\d), and there have to
be four of them, ({4}). The question mark in the route's parameter makes the field optional.

In our closure, we set variables for each wildcard using the same name we set. To make them
optional, we set each variable default to null. Then we check to see if the parameters were
set, and if so, return an appropriate message.

Using a filter on the route
A powerful feature of Laravel is adding filters that can run both before and after a request is
made to our application. In this recipe, we'll explore these filters.

Getting ready
For this recipe, we just need a standard Laravel installation.

How to do it...
To complete this recipe, follow these steps:

1.	 In our routes.php file, add a route only accessible to admins with filters attached:
Route::get('admin-only', array('before' => 'checkAdmin', 'after'
=> 'logAdmin', function()
{
 return 'Hello there, admin!';
}));

Chapter 5

107

2.	 Add in the two filters in our filters.php file:
Route::filter('checkAdmin', function()
{
 if ('admin' !== Session::get('user_type'))
 {
 return 'You are not an Admin. Go Away!';
 }
});

Route::filter('logAdmin', function()
{
 Log::info('Admin logged in on ' . date('m/d/Y'));
});

3.	 Create a route where we can set the admin session:
Route::get('set-admin', function()
{
 Session::put('user_type', 'admin');
 return Redirect::to('admin-only');
});

4.	 Test the route by going to http://your-server/admin-only (where your-
server is the URL for your server) and notice the results. Then, go to set-admin
and see those results.

5.	 Go to the app/storage/logs directory and view the logfiles.

How it works...
In our admin-only route, instead of just adding the closure, we add an array with the closure
as the last parameter. For our purposes, we want to check that the user_type session is set
to admin before accessing the route. We also want to log each time someone accesses the
route, but only after the page is processed.

In our before filter, we do a simple check of a session, and if that session doesn't equal
admin, we return a notice and stop the route from returning its message. If the session
does equal admin, the route proceeds as normal.

After the route is accessed, we create a log of the visit along with the date the route
was accessed.

At this point, if we went to admin-only in our browser, the before filter would kick in and
display the error message. Then, if we went to our logs directory and looked at the log, it
would show the time of the attempt, the name of the log message, and the response. For us,
it would show You are not an Admin. Go Away!.

Using Controllers and Routes for URLs and APIs

108

To make the route accessible, we create another route that simply sets the session we want
and redirect back to our admin-only page. If we visit set-admin, it should automatically
direct us to admin-only and display the success page. Also, if we look in our logs, we'll see
the line for our successful attempt.

There's more...
This is a very rudimentary authentication method simply to show the usefulness of filters.
For better authentication, use Laravel's built-in methods.

Using route groups
When creating a web app, we may find a few routes that need the same URL prefix or filter.
Using Laravel's route groups, we can easily apply these to multiple routes.

Getting ready
For this recipe, we just need a standard installation of Laravel.

How to do it…
To complete this recipe, follow these steps:

1.	 In our app/filters.php file, create a filter to check for a user:
Route::filter('checkUser', function()
{
 if ('user' !== Session::get('profile'))
 {
 return 'You are not Logged In. Go Away!';
 }
});

2.	 In the app/routes.php file, create a route that can set our profile session:
Route::get('set-profile', function()
{
 Session::set('profile', 'user');
 return Redirect::to('profile/user');
});

Chapter 5

109

3.	 In routes.php, create our route group:
Route::group(array('before' => 'checkUser', 'prefix' =>
'profile'), function()
{
 Route::get('user', function()
 {
 return 'I am logged in! This is my user
 profile.';
 });
 Route::get('friends', function()
 {
 return 'This would be a list of my friends';
 });
});

4.	 In our browser, we then go to http://path/to/our/server/profile/user,
where we will get an error. If we then go to http://path/to/our/server/set-
profile, it will redirect us and show the correct page.

How it works...
The first thing we need to do is create a filter. This simple filter will check a session name,
profile, to see if it equals user. If not, it won't let us proceed any further.

Back in our routes, we then create a route that will set the profile session for us and then
redirect us to the route group. Setting the session would normally be done after logging in, but
here we're just testing to make sure it works.

Finally, we create our route group. For this group, we want every route within it to run through
the checkUser filter before allowing access. We also want these routes to have profile/
come before them. We do this by adding them to the array just before we call the group's
closure. Now, any route we create inside this group must pass the filter and will be accessible
using the profile prefix.

Building a RESTful API with routes
A common need for a modern web application is having an API that third-parties can run
queries against. Since Laravel is built with RESTful patterns as a focus, it's quite easy to build
a full API with very little work.

Getting ready
For this recipe, we need a standard Laravel installation with a properly configured MySQL
database tied into our application.

Using Controllers and Routes for URLs and APIs

110

How to do it...
To complete this recipe, follow these steps:

1.	 Open the command line, go to the root directory of the Laravel installation, and create
a migration for our table using the following:
php artisan migrate:make create_shows_table

2.	 In the app/database/migrations directory, find the file similar to
2012_12_01_222821_create_shows_table.php and create the schema
for our table as follows:
<?php

use Illuminate\Database\Migrations\Migration;

class CreateShowsTable extends Migration {

 /**
 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 Schema::create('shows', function($table)
 {
 $table->increments('id');
 $table->string('name');
 $table->integer('year');
 $table->timestamps();
 });

 }

 /**
 * Reverse the migrations.
 *
 * @return void
 */
 public function down()
 {
 Schema::drop('shows');
 }
}

Chapter 5

111

3.	 Back in the command line, run the migration as follows:
php artisan migrate

4.	 Create another migration to add some test data:
php artisan migrate:make add_shows_data

5.	 In the app/database/migrations folder, open the add_shows_data file and
add the query as follows:
<?php

use Illuminate\Database\Migrations\Migration;

class AddShowsData extends Migration {

 /**
 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 $shows = array(
 array(
 'name' => 'Happy Days',
 'year' => 1981
),
 array(
 'name' => 'Seinfeld',
 'year' => 1998
),
 array(
 'name' => 'Arrested Development',
 'year' => 2006
)
);
 DB::table('shows')->insert($shows);
 }

 /**
 * Reverse the migrations.
 *
 * @return void
 */
 public function down()
 {
 DB::table('shows')->delete();
 }
}

Using Controllers and Routes for URLs and APIs

112

6.	 In the command line, run the migration as follows:
php artisan migrate

7.	 In the app/models directory, create a file named Show.php and add the following
code to it:
<?php
class Show extends Eloquent {
 protected $table = 'shows';
}

8.	 In routes.php, create a route to return a JSON of all the shows or a single show as
follows:
Route::get('show/{id?}', function($id = null)
{
 if (!$id)
 {
 return Show::all();
 }
 if ($show = Show::find($id))
 {
 return $show;
 }
});

9.	 Create a route that will add in new shows as follows:
Route::post('show', function()
{
 $show = new Show;
 $show->name = Input::get('name');
 $show->year = Input::get('year');
 $show->save();
 return $show;
});

10.	 Create a route that will delete a record:
Route::delete('show/{id}', function($id)
{
 if ($show = Show::find($id))
 {
 $show->delete();
 return json_encode(array('message' => 'Record ' . $id
 . ' deleted.'));
 }
});

Chapter 5

113

11.	 Create a route to update a record:
Route::put('show/{id}', function($id)
{
 if ($show = Show::find($id))
 {
 if (Input::get('name')) {
 $show->name = Input::get('name');
 }
 if (Input::get('year')) {
 $show->year = Input::get('year');
 }

 $show->save();
 return $show;
 }
});

12.	 Make a route to hold our add and edit show form:
Route::get('show-form/{id}', function($id = null)
{
 $data = array();

 if ($id)
 {
 if (!$show = Show::find($id))
 {
 return 'No show with that ID';
 }

 $data = array(
 'id' => $id,
 'method' => 'PUT',
 'name' => $show->name,
 'year' => $show->year
);
 }
 else
 {
 $data = array(
 'id' => '',
 'method' => 'POST',
 'name' => '',
 'year' => ''
);
 }
 return View::make('show-form', $data);
});

Using Controllers and Routes for URLs and APIs

114

13.	 Make a route to show a list so we can delete a show:
Route::get('show-delete', function()
{
 $shows = Show::all();
 return View::make('show-delete')->with('shows',
 $shows);
});

14.	 In our app/views folder, create a file named show-form.php and add the following
code to it:
<?php echo Form::open(array('url' => 'show/' . $id, 'method' =>
$method)) ?>
<?php echo Form::label('name', 'Show Name: ') . Form::text('name',
$name) ?>

<?php echo Form::label('year', 'Show Year: ') . Form::text('year',
$year) ?>

<?php echo Form::submit() ?>
<?php echo Form::close() ?>

15.	 Then, in app/views, create a file named show-delete.php and add the following
code to it:
<?php foreach ($shows as $show): ?>
 <?php echo Form::open(array('url' => 'show/' .
 $show->id, 'method' => 'DELETE')) ?>
 <?php echo Form::label('name', 'Show Name: ') .
 $show->name ?>
 <?php echo Form::submit('Delete') ?>
 <?php echo Form::close() ?>
<?php endforeach; ?>

16.	 Test it out by going to the show-form and show-delete routes in the browser.

How it works...
Our first step is to create our tables with the data we want to use. Using artisan and
migrations, we create a shows table and then add in some test data.

For our routes, we're going to respond to four different HTTP verbs, GET, POST, PUT, and
DELETE, but all at the same URL, show. The GET request will serve two purposes. First, if
no ID is passed in the URL, it will display the entire list from the database. Second, if there
is an ID, it will display the single record. By returning the eloquent object directly, it will
automatically take our object and display it as JSON.

Chapter 5

115

Our next route responds to the POST request and will add a new record in the database. It will
then display the record that was saved as JSON.

Then, we add a route that responds to the DELETE request. It takes the id parameter, deletes
the record, and displays JSON that the deletion was successful.

Lastly, we have a route responding to a PUT request with an id parameter. This route will load
in the record for the passed in ID and then edit the values. If it updates correctly, it displays a
JSON of the updated record.

To show the API in action, we need to create a form to add and update the records. Our
show-form route checks to see if an ID was passed in, and if so, it creates a form using the
PUT method and loads the record's values into the fields. If no ID is set, we create a blank
form using the POST method.

If we want to delete a record, our show-delete route will display a list of shows and a
delete button next to each one. Those buttons are actually part of a form that uses the
DELETE method.

We could also test the routes using curl in the command line. For example, to get the full list,
use the following line of code:

curl -X GET http://path/to/our/app/show

To post to the API, use the following line of code:

curl --data "name=Night+Court&year=1984" http://path/to/our/app/show

There's more...
Keep in mind that this API example is very basic. To make it better, we would need to add
in some validation whenever we add or update a record. It would also be a good idea to
add in some kind of authentication so that the public wouldn't be able to alter our table
and delete records.

We could also use Laravel's resourceful controllers to accomplish something similar. More
information about those can be found in the documentation at http://laravel.com/
docs/controllers#resource-controllers.

Using named routes
There may be times when we need to change our route's name. On a large site, this could
cause a lot of problems if we have multiple links to an incorrect route. Laravel provides an
easy-to-use way of assigning names to our routes, so we never have to worry if they change.

Using Controllers and Routes for URLs and APIs

116

Getting ready
For this recipe, we need a standard Laravel installation.

How to do it...
To complete this recipe, follow these steps:

1.	 In our routes.php file, create a named route as follows:
Route::get('main-route', array('as' => 'named', function()
{
 return 'Welcome to ' . URL::current();
}));

2.	 Create a route that performs a simple redirect to the named route:
Route::get('redirect', function()
{
 return Redirect::route('named');
});

3.	 Create a route that displays a link to the named route:
Route::get('link', function()
{
 return 'Link!';
});

4.	 In the browser, visit http://your-server/redirect and
http://your-server/link (where your-server is the URL for
the server) and notice that they send us to the main-route route.

5.	 Now, rename the main-route route to new-route:
Route::get('new-route', array('as' => 'named', function()
{
 return 'Welcome to ' . URL::current();
}));

6.	 In the browser, visit the redirect and link routes and see where they send us now.

How it works...
There may be times when your route will need to change; for example, if a client has a
blog but wants the route "posts" to become "articles". If we have links to the "posts" route
throughout our site, it would mean we need to find every file and make sure they're changed.
By using a named route, we can rename the route to anything we want, and as long as all our
links point to the name, everything will stay updated.

Chapter 5

117

In our example, we have route main-route and have it named named. Now, if we want to link
or redirect to the route, we can use route() pointing to the named route. Then, if we change
the route to new-route and recheck those links, it will automatically go to the changed route.

Using a subdomain in your route
Many modern web applications offer customized content to their users, including giving
them a custom subdomain where they can access their content. For example, instead of
a user's profile page being http://example.com/users/37, we might want to offer
http://username.example.com. By changing some DNS and Apache settings, we
can easily provide the same functionality in Laravel.

Getting ready
For this recipe, we need access to our DNS settings and our server's Apache configurations.
We'll also need a properly configured MySQL database and a standard Laravel installation.
Throughout the recipe, we'll be using example.com as the domain name.

How to do it...
To complete this recipe, follow these steps:

1.	 In the DNS for our domain name, we need to add an "A" record using a wildcard for the
subdomain, such as *.example.com, and then point it to our server's IP address.

2.	 Open up Apache's httpd.conf file and add a virtual host to it as follows:
<VirtualHost *:80>
 ServerName example.com
 ServerAlias *.example.com
</VirtualHost>

3.	 In the command line, go to our application route and create a migration for our
names table:
php artisan migrate:make create_names_table

4.	 In the migrations directory, open the create_names_table file and add
our schema:
<?php

use Illuminate\Database\Migrations\Migration;

class CreateNamesTable extends Migration {

 /**

Using Controllers and Routes for URLs and APIs

118

 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 Schema::create('users', function($table)
 {
 $table->increments('id');
 $table->string('name');
 $table->string('full_name');
 $table->timestamps();
 });
 }

 /**
 * Reverse the migrations.
 *
 * @return void
 */
 public function down()
 {
 Schema::drop('name');
 }
}

5.	 Back in the command line, create another migration to add some test data:
php artisan migrate:make add_names_data

6.	 Open the add_names_data file in the migrations directory:
<?php

use Illuminate\Database\Migrations\Migration;

class AddNamesData extends Migration {

 /**
 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 $names = array(

Chapter 5

119

 array(
 'name' => 'bob',
 'full_name' => 'Bob Smith'
),
 array(
 'name' => 'carol',
 'full_name' => 'Carol Smith'
),
 array(
 'name' => 'ted',
 'full_name' => 'Ted Jones'
)
);
 DB::table('name')->insert($names);
 }

 /**
 * Reverse the migrations.
 *
 * @return void
 */
 public function down()
 {
 DB::table('name')->delete();
 }
}

7.	 In the command line, run the migration as follows:
php artisan migrate

8.	 Create a route to get information from the names table based on the subdomain:
Route::get('/', function()
{
 $url = parse_url(URL::all());
 $host = explode('.', $url['host']);
 $subdomain = $host[0];

 $name = DB::table('name')->where('name',$subdomain)-
 >get();

 dd($name);
});

9.	 In the browser, visit our domain with a relevant subdomain such as
http://ted.example.com.

Using Controllers and Routes for URLs and APIs

120

How it works...
To start off, we need to update our DNS and our server. In our DNS, we create a wildcard
subdomain and create a virtual host in our Apache configuration. This makes sure that any
subdomains used will go to our main application.

For our default route, we use the parse_url function of PHP to get the domain name,
explode it into an array, and use only the first element. We can then query the database using
the subdomain and create a customized experience for the user.

There's more...
This recipe allows for a single route to process the subdomains, but if we would like to use
more routes with a subdomain, we could use a route group similar to the following:

Route::group(array('domain' => '{subdomain}.myapp.com'), function()
{
 Route::get('/', function($subdomain)
 {
 $name = DB::table('name')->where('name', $subdomain)-
 >get();
 dd($name);

 });
});

6
Displaying Your Views

In this chapter, we will cover:

ff Creating and using a basic view

ff Passing data into a view

ff Loading a view into another view/nested views

ff Adding assets

ff Creating a view using Blade

ff Using TWIG templates

ff Utilizing advanced Blade usage

ff Creating localization of content

ff Creating menus in Laravel

ff Integrating with Bootstrap

ff Using named views and view composers

Introduction
In a Model-View-Controller setup, our views hold all the HTML and styles so we can display
our data. In Laravel, our views can use either regular PHP files or we can use Laravel's Blade
templating. Laravel is also extensible enough to allow us to use any templating engine we may
want to include.

Displaying Your Views

122

Creating and using a basic view
In this recipe, we'll see some basic view functionality and how we can include views in
our app.

Getting ready
For this recipe, we need a standard Laravel installation.

How to do it...
Follow these steps to complete the recipe:

1.	 In the app/views directory, create a folder name myviews.

2.	 In the new myviews directory, create two files: home.php and second.php.

3.	 Open home.php and add the following code in HTML:
<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Home Page</title>
 </head>
 <body>
 <h1>Welcome to the Home page!</h1>
 <p>
 Go to Second Page
 </p>
 </body>
</html>

4.	 Open the second.php file and add the following code in HTML:
<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Second Page</title>
 </head>
 <body>
 <h1>Welcome to the Second Page</h1>
 <p>
 Go to Home Page
 </p>
 </body>
</html>

Chapter 6

123

5.	 In our app/routes.php file, add the routes that will return these views:
Route::get('home', function()
{
 return View::make('myviews.home');
});
Route::get('second', function()
{
 return View::make('myviews.second');
});

6.	 Test the views by going to http://{your-server}/home (where your-server is
our URL) and clicking on the link.

How it works...
All of the views in Laravel are kept in the app/views directory. We start by creating two files
that will hold our HTML. In this example, we're creating static pages, with each view holding its
own full HTML markup.

In our routes file, we then return View::make(), with the name of the view passed in. Since
our views are in a subdirectory of the views directory, we use the dot notation.

Passing data into a view
In our web app, we will usually need to display some kind of data from our database or other
data store. In Laravel, we can easily pass that data into our views.

Getting ready
For this recipe, we need to have completed the Creating and using a basic view recipe .

How to do it…
To complete this recipe, follow these steps:

1.	 Open the routes.php and replace our home and second routes to include the
following data:
Route::get('home', function()
{
 $page_title = 'My Home Page Title';
 return View::make('myviews.home')->with('title',
 $page_title);
});

Displaying Your Views

124

Route::get('second', function()
{
 $view = View::make('myviews.second');
 $view->my_name = 'John Doe';
 $view->my_city = 'Austin';
 return $view;
});

2.	 In the view/myviews directory, open home.php and replace the code with the
following code:
<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Home Page : <?= $title ?></title>
 </head>
 <body>
 <h1>Welcome to the Home page!</h1>
 <h2><?= $title ?></h2>
 <p>
 Go to Second Page
 </p>
 </body>
</html>

3.	 In the views/myviews directory, open the second.php file and replace the code
with the following code:
<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Second Page</title>
 </head>
 <body>
 <h1>Welcome to the Second Page</h1>
 <p> You are <?= $my_name ?>, from <?= $my_city ?>
 </p>
 <p>
 Go to Home Page
 </p>
 </body>
</html>

4.	 Test the views by going to http://{your-server}/home (where your-server is
our URL) and then clicking on the link.

Chapter 6

125

How it works...
If we want to get data into our views, Laravel offers various ways to accomplish this. We start
by updating our first route by passing a single variable to the view, by chaining the with()
method to View::make(). Then, in the view file, we can access the variable by using
whichever name we chose.

In our next route, we assign View::make() to a variable, and then assign values as the
object's properties. We can then access those properties as variables in our view. To display
the view, we simply return the object variable.

There's more...
One other way to add data to our views is similar to the way in our second route; however we
use an array instead of an object. So our code would look similar to the following:

$view = View::make('myviews.second');
$view['my_name'] = 'John Doe';
$view['my_city'] = 'Austin';
return $view;

Loading a view into another view/nested
views

Very often, our web pages will have a similar layout and HTML structure. To help separate out
the repeated HTML, we can use nested views in Laravel.

Getting ready
For this recipe, we need to have completed the Creating and using a basic view recipe.

How to do it...
To complete this recipe, follow these steps:

1.	 In the app/view directory, add a new folder named common.

2.	 In the common directory, create a file named header.php and add the following
code to it:
<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">

Displaying Your Views

126

 <title>My Website</title>
 </head>
 <body>

3.	 In the common directory, create a file named footer.php and add the following
code to it:
<footer>© 2013 MyCompany</footer>
 </body>
</html>

4.	 In the common directory, create a file named userinfo.php and add the following
code to it:
<p>You are <?= $my_name ?>, from <?= $my_city ?></p>

5.	 In the routes.php file, update the home and second route to include the following
nested views:
Route::get('home', function()
{
 return View::make('myviews.home')
 ->nest('header', 'common.header')
 ->nest('footer', 'common.footer');
});
Route::get('second', function()
{
 $view = View::make('myviews.second');
 $view->nest('header', 'common.header')->nest('footer',
 'common.footer');
 $view->nest('userinfo', 'common.userinfo',
 array('my_name' => 'John Doe', 'my_city' => 'Austin'));
 return $view;
});

6.	 In the views/myviews directory, open the home.php file and add the following
code to it:
<?= $header ?>
 <h1>Welcome to the Home page!</h1>
 <p>
 Go to Second Page
 </p>
<?= $footer ?>

Chapter 6

127

7.	 In the views/myviews directory, open the second.php file and add the following
code to it:
<?= $header ?>
<h1>Welcome to the Second Page</h1>
 <?= $userinfo ?>
<p>
 Go to Home Page
</p>
<?= $footer ?>

8.	 Test the views by going to http://{your-server}/home (where your-server is
our URL) and then clicking on the link.

How it works...
To begin, we need to separate out our header and footer code from our views. Since these will
be the same on every page, we create a subdirectory in our views folder to hold our common
files. The first file is our header, which will hold everything up until the <body> tag. Our second
file is our footer, which will hold the HTML at the bottom of our page.

Our third file is a userinfo view. Very often, if we have user accounts with profiles, we may
want to include the user's data in a sidebar or header. So that we can keep that one piece of
our view separate, we create the userinfo view with some data that we will pass to it.

For our home route, we will use our home view and nest in the header and footer. The first
parameter in the nest() method is the name we will use in the main view and the second
parameter is the location of the view. For this example, our views are on the common
subdirectory, so we use the dot notation to reference them.

In our home view, to display the nested views, we print out the variable name we used in
our route.

For our second route, we nest in the header and footer as well but we also want to add in the
userinfo view. For this, we pass in a third parameter to the nest() method, which is an
array of the data we want to send to the view. Then, in our main view, when we print out the
userinfo view, it will automatically have the variables included.

See also
ff The Passing data into a view recipe

Displaying Your Views

128

Adding assets
A dynamic website almost requires the use of CSS and JavaScript. Using a Laravel asset
package provides an easy way to manage these assets and include them in our views.

Getting ready
For this recipe, we'll need to use the code created in the Loading a view into another view/
nested views recipe.

How to do it...
To complete this recipe, follow these steps:

1.	 Open the composer.json file and add the asset package to the require section,
so it looks similar to the following:
"require": {
 "laravel/framework": "4.0.*",
 "teepluss/asset": "dev-master"
 },

2.	 In the command line, run composer update to download the package as follows:
php composer.phar update

3.	 Open the app/config/app.php file and add ServiceProvider to the end of the
providers array as follows:
'Teepluss\Asset\AssetServiceProvider',

4.	 In the same file, in the aliases array, add the alias for the package as follows:
'Asset' => 'Teepluss\Asset\Facades\Asset'

5.	 In the app/filters.php file, add a custom filter for our assets as follows:
Route::filter('assets', function()
{
 Asset::add('jqueryui', 'http://ajax.googleapis.com/ajax
 /libs/jqueryui/1.10.2/jquery-ui.min.js', 'jquery');
 Asset::add('jquery', 'http://ajax.googleapis.com/ajax
 /libs/jquery/1.10.2/jquery.min.js');
 Asset::add('bootstrap', 'http://netdna.bootstrapcdn.com
 /twitter-bootstrap/2.3.2/css/
 bootstrap-combined.min.css');
});

Chapter 6

129

Update the home and second routes to use the filter
Route::get('home', array('before' => 'assets', function()
{
 return View::make('myviews.home')
 ->nest('header', 'common.header')
 ->nest('footer', 'common.footer');
}));
Route::get('second', array('before' => 'assets', function()
{
 $view = View::make('myviews.second');
 $view->nest('header', 'common.header')->nest
 ('footer', 'common.footer');
 $view->nest('userinfo', 'common.userinfo', array
 ('my_name' => 'John Doe', 'my_city' => 'Austin'));
 return $view;
}));

6.	 In the views/common directory, open header.php and use this code as follows:
<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>My Website</title>
 <?= Asset::styles() ?>
 </head>
 <body>

7.	 In the views/common directory, open footer.php and use the following code:
<footer>© 2013 MyCompany</footer>
<?= Asset::scripts() ?>
 </body>
</html>

8.	 Test the views by going to http://{your-server}/home (where your-server
is our URL), clicking on the link, and viewing the source of the page to see the assets
included.

How it works...
The asset package makes it very easy to add CSS and JavaScript files to our HTML. To begin,
we need to "register" each asset with the routes. To make things a bit simpler, we'll add the
assets in a filter that will be called before our routes. That way, we only have the code in one
place and making changes will be easy. For our purposes, we'll use jQuery, jQueryUI, and
bootstrap CSS from a CDN source.

Displaying Your Views

130

The first parameter of the add() method is the name we're giving the asset. The second
parameter is the URL of the asset; it could either be a relative path or a full URL. The third,
optional parameter is the dependency of the asset. In our example, jQueryUI requires that
jQuery already be loaded, so we pass in the name of our jQuery asset in the third parameter.

We then update our routes to add the filter. If we add or remove any assets in our filter, it will
automatically be reflected in each of our routes.

Since we're using nested views, we only need to add the assets to our header and footer
views. Our CSS files are called by the styles() method and the JavaScript is called by the
scripts() method. Laravel checks the file extensions of the assets and automatically puts
them in the right place. If we look at the source code, we'll notice that Laravel has also made
sure to add the jQuery script before jQueryUI, since we set it as a dependency.

See also
ff The Using a filter on the route recipe in Chapter 5, Using Controllers and Routes for

URLs and APIs

Creating a view using Blade
PHP has many templating libraries available and Laravel's Blade is one of the best. This recipe
will show an easily extendable way to get up-and-running with Blade templates, and quickly.

Getting ready
For this recipe, we need a standard Laravel installation.

How to do it...
To complete this recipe, follow these steps:

1.	 In the routes.php file, create new routes for our pages as follows:
Route::get('blade-home', function()
{
 return View::make('blade.home');
});
Route::get('blade-second', function()
{
 return View::make('blade.second');
});

2.	 In the views directory, create a new folder named layout.

Chapter 6

131

3.	 In the views/layout directory, create a file named index.blade.php and add
the following code to it:
<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>My Site</title>
 </head>
 <body>
 <h1>
 @section('page_title')
 Welcome to
 @show
 </h1>
 @yield('content')
 </body>
</html>

4.	 In the views directory, create a folder named blade.

5.	 In the views/blade directory, create a file named home.blade.php and add the
following code to it:
@extends('layout.index')

@section('page_title')
 @parent
 Our Blade Home
@endsection

@section('content')
 <p>
 Go to {{ HTML::link('blade-second',
 'the Second Page.') }}
 </p>
@endsection

6.	 In the views/blade directory, create a file named second.blade.php, and add
the following code to it:
@extends('layout.index')

@section('page_title')
 @parent
 Our Second Blade Page
@endsection

Displaying Your Views

132

@section('content')
 <p>
 Go to {{ HTML::link('blade-home', 'the Home Page.')
 }}
 </p>
@endsection

7.	 Test the views by going to http://{your-server}/blade-home (where your-
server is our URL) and then clicking on the link, and viewing the source of the page
to see the Blade layout included.

How it works...
To start, we create two simple routes that will return our Blade views. By using the dot notation,
we can see that we'll be putting the files in the blade subdirectory of our views folder.

Our next step is to create a Blade layout view. This will be the skeleton of our pages and will
be put in the layout subdirectory of our views folder, and it must have blade.php as the file
extension. This view is simple HTML, with two exceptions: the @section() and @yield()
areas. This content is what will be replaced or added to in our views.

In our routes' views, we begin the file by declaring which Blade layout to use, which for our
case is @extends('layout.index'). Then we can add and alter the content sections we
declared in our layout. For the page_title section, we want to display the text in the layout,
but we want to add in some extra text to the end. To accomplish that, we call @parent as the
first thing in that content area, and then put in any of our own content.

In @section('content'), there was no default text in the layout, so everything will be
added. Using Blade, we can also use the {{ }} braces to print out any PHP we need. In our
case, we're using the HTML::link() of Laravel to display a link. Now, when we go to the
page, all the content area is put in the correct place in the layout.

Using TWIG templates
Laravel's Blade templates may be nice but there are times when we need another PHP
template library. A popular one is Twig. This recipe will show how to incorporate Twig templates
into our Laravel application.

Getting ready
For this recipe, we'll just need a standard Laravel installation.

Chapter 6

133

How to do it…
Follow these steps to complete this recipe:

1.	 Open the composer.json file and add the following line to the require section:
"rcrowe/twigbridge": "0.4.*"

2.	 In the command line, update composer to install the package:
php composer.phar update

3.	 Open the app/config/app.php file and, in the providers array, add Twig
ServiceProvider at the end as follows:
'TwigBridge\TwigServiceProvider'

4.	 In the command line, run the following command to create our config file:
php artisan config:publish rcrowe/twigbridge

5.	 In routes.php, create a route as follows:
Route::get('twigview', function()
{
 $link = HTML::link('http://laravel.com',
 'the Laravel site.');
 return View::make('twig')->with('link', $link);
});

6.	 In the views directory, create a file named twiglayout.twig and add the
following code to it:
<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>My Site</title>
 </head>
 <body>
 <h1>
 {% block page_title %}
 Welcome to
 {% endblock %}
 </h1>
 {% block content %}{% endblock %}
 </body>
</html>

Displaying Your Views

134

7.	 In the views directory, create a file named twig.twig, and add the following code
to it:
{% extends "twiglayout.twig" %}

{% block page_title %}
	 {{ parent() }}
	 My Twig Page
{% endblock %}

{% block content %}
 <p>
		 Go to {{ link|raw }}
	 </p>
{% endblock %}

8.	 Test the views by going to http://your-server/twigview (where your-server
is our URL) and view the source of the page to see the twig layout included.

How it works...
To start, we're going to install the TwigBranch package into our application. This package
also installs the Twig library. After the package is installed, we create its configuration file
using artisan, and add its service provider.

In our route, we'll use the same syntax as Laravel's built-in view library, and call view. We're
also creating a simple link, saving it to a variable, and passing that variable into the view.

Next, we create our layout. All Twig view files must have the .twig extension, so our layout
is named twiglayout.twig. Inside the layout is a standard HTML skeleton, but we've
added two Twig content blocks. The page_title block has some default content, while the
content block is empty.

For our route's view, we begin by extending the layout view. For our page_title block,
we start by printing out the default by using {{ parent()}} and then adding in our own
content. Then our content block is added and will display the link we passed in as a variable.
Using Twig, we don't need to use $ for our variables, and if we pass in HTML, Twig will
automatically escape it. So in our view, since we want to display the link, we need to make
sure to add in the raw parameter.

Now, if we go to our page in the browser, we'll see all our content in its correct place.

Chapter 6

135

Utilizing advanced Blade usage
Using Laravel's Blade templating system, we have access to some powerful features that
make our development much quicker. For this recipe, we'll pass some data to our blade
views and loop through it, along with some conditionals.

Getting ready
For this recipe, we'll need the code created in the Creating a view using Blade recipe .

How to do it...
Follow these steps to complete this recipe:

1.	 Open the routes.php file and update the blade-home and blade-second routes
as follows:
Route::get('blade-home', function()
{
 $movies = array(
 array('name' => 'Star Wars', 'year' => '1977', 'slug'
 => 'star-wars'),
 array('name' => 'The Matrix', 'year' => '1999',
 'slug' => 'matrix'),
 array('name' => 'Die Hard', 'year' => '1988', 'slug'
 => 'die-hard'),
 array('name' => 'Clerks', 'year' => '1994', 'slug'
 => 'clerks')
);
 return View::make('blade.home')->with('movies',
 $movies);
});
Route::get('blade-second/(:any)', function($slug)
{
 $movies = array(
 'star-wars' => array('name' => 'Star Wars', 'year'
 => '1977', 'genre' => 'Sci-Fi'),
 'matrix' => array('name' => 'The Matrix', 'year'
 => '1999', 'genre' => 'Sci-Fi'),
 'die-hard' => array('name' => 'Die Hard', 'year'
 => '1988', 'genre' => 'Action'),
 'clerks' => array('name' => 'Clerks', 'year'
 => '1994', 'genre' => 'Comedy')
);
 return View::make('blade.second')->with('movie'
 , $movies[$slug]);
});

Displaying Your Views

136

2.	 In the views/blade directory, update the home.blade.php file with the
following code:
@extends('layout.index')

@section('page_title')
 @parent
 Our List of Movies
@endsection

@section('content')

 @foreach ($movies as $movie)
 {{ HTML::link('blade-second/' . $movie['slug'],
 $movie['name']) }} ({{ $movie['year'] }})
 @if ($movie['name'] == 'Die Hard')

 Main character: John McClane

 @endif
 @endforeach

@endsection

3.	 In the views/blade directory, update the second.blade.php file with the
following code:
@extends('layout.index')

@section('page_title')
 @parent
 Our {{ $movie['name'] }} Page
@endsection

@section('content')
 @include('blade.info')
 <p>
 Go to {{ HTML::link('blade-home', 'the Home Page.')
 }}
 </p>
@endsection

4.	 In the views/blade directory, create a new file named info.blade.php and add
the following code to it:
<h1>{{ $movie['name'] }}</h1>
<p>Year: {{ $movie['year'] }}</p>
<p>Genre: {{ $movie['genre'] }}</p>

5.	 Test the views by going to http://{your-server}/blade-home (where
your-server is our URL) and click on the links to see the views work.

Chapter 6

137

How it works...
For this recipe, we'll be passing some data to our Blade views, looping through it, and adding
in some conditionals. Typically, we would use this with results from a database but, for our
purposes, we'll create a simple data array in our routes.

Our first route contains an array of movies, with their year and a slug that we can use for the
URL. Our second route will create an array with the slug as a key and accept the slug in the
URL. We then pass in the details of a single movie into the view, by calling the movie that has
the slug as a key.

In our first view, we create a @foreach loop, to run through also the data in the array. We've
also included a simple @if statement that checks for a specific movie and then prints out
some extra information. As we loop through, we display links to the second route, with the slug
added on.

The second view displays the name of the movie, but all includes another Blade view by using
@include() in the content block. This way, all the data is also available in the included view;
thus, for our info view, we can just use the same variables that we set in our route.

Creating localization of content
If our app is going to be used by people in different countries, or who speak different
languages, we'll need to localize the content. Laravel provides an easy way to do this.

Getting ready
For this recipe, we just need a standard installation of Laravel.

How to do it...
For this recipe, follow these steps:

1.	 In the app/lang directory, add three new directories (if they aren't already there) :
en, es, and de.

2.	 In the en directory, create a file named localized.php and add the following code
to it:
<?php

return array(
 'greeting' => 'Good morning :name',
 'meetyou' => 'Nice to meet you!',
 'goodbye' => 'Goodbye, see you tomorrow.',
);

Displaying Your Views

138

3.	 In the es directory, create a file named localized.php and add the following code
to it:
<?php

return array(
 'greeting' => 'Buenos días :name',
 'meetyou' => 'Mucho gusto!',
 'goodbye' => 'Adiós, hasta mañana.',
);

4.	 In the de directory, create a file named localized.php and add the following code
to it:
<?php

return array(
 'greeting' => 'Guten morgen :name',
 'meetyou' => 'Es freut mich!',
 'goodbye' => 'Tag. Bis bald.',
);

5.	 In our routes.php file, create four routes as follows:
Route::get('choose', function()
{
 return View::make('language.choose');
});
Route::post('choose', function()
{
 Session::put('lang', Input::get('language'));
 return Redirect::to('localized');
});
Route::get('localized', function()
{
 $lang = Session::get('lang', function() { return 'en';
 });
 App::setLocale($lang);
 return View::make('language.localized');
});
Route::get('localized-german', function()
{
 App::setLocale('de');
 return View::make('language.localized-german');
});

6.	 In the views directory, create a folder named language.

Chapter 6

139

7.	 In views/language, create the file choose.php and add the following code to it:
<h2>Choose a Language:</h2>
<?= Form::open() ?>
<?= Form::select('language', array('en' => 'English', 'es' =>
'Spanish')) ?>
<?= Form::submit() ?>
<?= Form::close() ?>

8.	 In the views/language directory, create a file named localized.php and add
the following code to it:
<h2>
 <?= Lang::get('localized.greeting', array('name' =>
 'Lindsay Weir')) ?>
</h2>
<p>
 <?= Lang::get('localized.meetyou') ?>
</p>
<p>
 <?= Lang::get('localized.goodbye') ?>
</p>
<p>
 <?= HTML::link('localized-german', 'Page 2') ?>
</p>

9.	 In the views/language directory, create a file named localized-german.php
and add the following code to it:
<h2>
 <?= Lang::get('localized.greeting', array('name' =>
 'Lindsay Weir')) ?>
</h2>
<p>
 <?= Lang::get('localized.meetyou') ?>
</p>
<p>
 <?= Lang::get('localized.goodbye') ?>
</p>

10.	 In the browser, go to http://{your-server}/choose (where your-server is
our URL), submit the form, and test the localization.

How it works...
For this recipe, we begin by setting up our language directories in the app/lang directory.
We'll be using en for our English files, es for our Spanish files, and de for our German files.
Inside each directory, we create a file using the exact same name, and add in an array, using
the exact same keys.

Displaying Your Views

140

Our first route is going to be a language selector page. On this page, we can choose either
English or Spanish. When we submit, it will POST to the route, create a new session, add the
choice, and redirect to the page to display the text in the chosen language.

Our localized route takes the session and passes the choice to App::setLocale(). We also
have a default value of English if there was no session set.

In our localized view, we print out the text using Lang::get(). In the first line of our
language file, we also included the :name placeholder, so we can pass in an array with the
placeholder name as the key when we call the language file.

Our last route shows how we can statically set the language default in our route.

Creating menus in Laravel
Menus are a common facet of most websites. In this recipe, we'll create menus using
Laravel's nested views and change the default "state" of the menu item, depending on
which page we're on.

Getting ready
For this menu, we need a standard installation of Laravel.

How to do it...
We need to follow these steps to complete the recipe:

1.	 In the routes.php file, create three routes as follows:
Route::get('menu-one', function()
{
 return View::make('menu-layout')
 ->nest('menu', 'menu-menu')
 ->nest('content', 'menu-one');
});
Route::get('menu-two', function()
{
 return View::make('menu-layout')
 ->nest('menu', 'menu-menu')
 ->nest('content', 'menu-two');
});
Route::get('menu-three', function()
{
 return View::make('menu-layout')
 ->nest('menu', 'menu-menu')
 ->nest('content', 'menu-three');
});

Chapter 6

141

2.	 In the views directory, create a file named menu-layout.php and add the following
code to it:
<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Menu Example</title>
 <style>
 #container {
 width: 1024px;
 margin: 0 auto;
 border-left: 2px solid #ddd;
 border-right: 2px solid #ddd;
 padding: 20px;
 }
 #menu { padding: 0 }
 #menu li {
 display: inline-block;
 border: 1px solid #ddf;
 border-radius: 6px;
 margin-right: 12px;
 padding: 4px 12px;
 }
 #menu li a {
 text-decoration: none;
 color: #069;
 }
 #menu li a:hover { text-decoration: underline
 }
 #menu li.active { background: #069 }
 #menu li.active a { color: #fff }
 </style>
 </head>
 <body>
 <div id="container">
 <?= $menu ?>
 <?= $content ?>
 </div>
 </body>
</html>

3.	 In the views directory, create a file named menu-menu.php and add the following
code to it:
<ul id="menu">
 <li class="<?= Request::segment(1) == 'menu-one' ?
 'active' : '' ?>">

Displaying Your Views

142

 <?= HTML::link('menu-one', 'Page One') ?>

 <li class="<?= Request::segment(1) == 'menu-two' ?
 'active' : '' ?>">
 <?= HTML::link('menu-two', 'Page Two') ?>

 <li class="<?= Request::segment(1) == 'menu-three' ?
 'active' : '' ?>">
 <?= HTML::link('menu-three', 'Page Three') ?>

4.	 In the views directory, create three view files with the names menu-one.php,
menu-two.php, and menu-three.php.

5.	 For menu-one.php, use the following code:
<h2>Page One</h2>
<p>
 Lorem ipsum dolor sit amet.
</p>

6.	 For menu-two.php, use the following code:
<h2>Page Two</h2>
<p>
 Suspendisse eu porta turpis
</p>

7.	 For menu-three.php, use the following code:
<h2>Page Three</h2>
<p>
 Nullam varius ultrices varius.
</p>

8.	 In the browser, go to http://{your-server}/menu-one (where your-server is
our URL) and click through the menu links.

How it works...
We begin by making three routes to hold our three pages. Each route will use a single layout
view, and nest in a menu view and a content view that are specific to the route.

Our layout view is a basic HTML skeleton with some on-page CSS. Since we want to highlight
the menu item of the current page, one of the class selectors is named active and will be
added to our menu list item.

Chapter 6

143

Next, we create our menu view. We're using an unordered list, with links to each page. To add
in the active class to our current page item, we use Request::segment(1) of Laravel to
get the route we're on. If it's the same as the list item, we add the active class and otherwise
leave it blank. Then we use the HTML::link() of Laravel to add in the links to our pages.

The other three views are just very simple content, with a header and a few words. Now, when
we go to the page in our browser, we'll see the menu item of the page we're on is highlighted,
while the others are not. If we click on a link, that item will then be highlighted and the others
will not.

Integrating with Bootstrap
The Bootstrap CSS framework has become very popular recently. This recipe will show how we
can use the framework with Laravel.

Getting ready
For this recipe, we need a standard Laravel installation. We'll also need to have the assets
package installed, as demonstrated in the Adding assets recipe. Optionally, we could
download the Bootstrap files and save them locally.

How to do it...
To complete this recipe, follow these steps:

1.	 In the routes.php file, create a new route as follows:
Route::any('boot', function()
{
 Asset::add('jquery', 'http://ajax.googleapis.com/ajax
 /libs/jquery/1.10.2/jquery.min.js');
 Asset::add('bootstrap-js', 'http://
 netdna.bootstrapcdn.com/twitter-
 bootstrap/2.3.2/js/bootstrap.min.js', 'jquery');
 Asset::add('bootstrap-css', 'http://
 netdna.bootstrapcdn.com/twitter-
 bootstrap/2.3.2/css/bootstrap-combined.min.css');
 $superheroes = array('Batman', 'Superman', 'Wolverine',
 'Deadpool', 'Iron Man');
 return View::make('boot')->with('superheroes',
 $superheroes);
});

Displaying Your Views

144

2.	 In the views directory, create a file named boot.php add the following code to it:
<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>My Bootstrap Page</title>
 <?= Asset::styles() ?>
 </head>
 <body>
 <div class="container">
 <h1>Using Bootstrap with Laravel</h1>
 <ul class="nav nav-tabs">
 <li class="active"><a href="#welcome" data-
 toggle="tab">Welcome

 About Us

 Contact

 <div class="tab-content">
 <div class="tab-pane active" id="welcome">
 <h4>Welcome to our site</h4>
 <p>Here's a list of Superheroes:</p>

 <?php foreach($superheroes as $hero): ?>
 <li class="badge badge-info">
 <?= $hero ?>
 <?php endforeach; ?>

 </div>
 <div class="tab-pane" id="about">
 <h4>About Us</h4>
 <p>Cras at dui eros. Ut imperdiet
 pellentesque mi faucibus dapibus.
 Phasellus vitae lacus at massa viverra
 condimentum quis quis augue. Etiam
 pharetra erat id sem pretium egestas.
 Suspendisse mollis, dolor a sagittis
 hendrerit, urna velit commodo dui, id
 adipiscing magna magna ac ligula. Nunc
 in ligula nunc.</p>
 </div>
 <div class="tab-pane" id="contact">
 <h3>Contact Form</h3>
 <?= Form::open('boot', 'POST') ?>
 <?= Form::label('name', 'Your Name') ?>
 <?= Form::text('name') ?>

Chapter 6

145

 <?= Form::label('email', 'Your Email') ?>
 <?= Form::text('email') ?>

 <?= Form::button('Send', array('class' =>
 'btn btn-primary')) ?>

 <?= Form::close() ?>
 </div>
 </div>
 </div>
 <?= Asset::scripts() ?>
 </body>
</html>

3.	 In the browser, go to http://your-server/boot (where your-server is our
URL) and click through the tabs.

How it works...
For this recipe, we'll be creating a single route and switch content using Bootstrap tabs. To get
our route to respond to any request, we use Route::any() and pass in our closure. To add
in the CSS and JavaScript, we could use a filter as with in the one in the Adding assets recipe;
however, for a single route, we'll just include it in the closure. So we don't have to download
them, we'll just use the CDN versions of Bootstrap and jQuery.

Next in our route, we need some data. This would be a good place to tie in a database but, for
our purposes, we'll use a simple array, with the names of some super heroes. We then pass
that array into our view.

We start the view with an HTML skeleton and include our styles in the head and the scripts
just before the closing </body> tag. At the top of the page, we use Bootstrap's navigation
styles and data attributes to create our tab links. Then in our body, we use three different tab
panes, with IDs that correspond to the <a href> tag in our menu.

When we view the page, we'll see the first pane showing and everything else hidden. By
clicking on the other tabs, we switch which tab pane is shown.

See also
ff The Adding assets recipe

Displaying Your Views

146

Using named views and view composers
This recipe will show how to use Laravel's named views and view composers to simplify some
of our routes' code.

Getting ready
For this recipe, we'll be using the code created in the Creating menus in Laravel recipe.
We'll also need the assets package installed in the Adding assets recipe.

How to do it...
To complete this recipe, follow these steps:

1.	 In the routes.php file, add a file named view, and add the following code to it:
View::name('menu-layout', 'layout');

2.	 In routes.php, add a view composer as follows:
View::composer('menu-layout', function($view)
{
 Asset::add('bootstrap-css',
 'http://netdna.bootstrapcdn.com/twitter-
 bootstrap/2.2.2/css/bootstrap-combined.min.css');
 $view->nest('menu', 'menu-menu');
 $view->with('page_title', 'View Composer Title');
});

3.	 In routes.php, update the menu routes as follows:
Route::get('menu-one', function()
{
 return View::of('layout')->nest('content', 'menu-one');
});
Route::get('menu-two', function()
{
 return View::of('layout')->nest('content', 'menu-two');
});
Route::get('menu-three', function()
{
 return View::of('layout')->nest('content', 'menu-three');
});

Chapter 6

147

4.	 In the views directory, update the menu-layout.php file with the following code:
<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title><?= $page_title ?></title>
 <?= Asset::styles() ?>
 <style>
 #container {
 width: 1024px;
 margin: 0 auto;
 border-left: 2px solid #ddd;
 border-right: 2px solid #ddd;
 padding: 20px;
 }
 #menu { padding: 0 }
 #menu li {
 display: inline-block;
 border: 1px solid #ddf;
 border-radius: 6px;
 margin-right: 12px;
 padding: 4px 12px;
 }
 #menu li a {
 text-decoration: none;
 color: #069;
 }
 #menu li a:hover { text-decoration: underline }
 #menu li.active { background: #069 }
 #menu li.active a { color: #fff }
 </style>
 </head>
 <body>
 <div id="container">
 <?= $menu ?>
 <?= $content ?>
 </div>
 </body>
</html>

5.	 In the browser, go to http://{your-server}/menu-one (where your-server is
our URL) and click through the menu links.

Displaying Your Views

148

How it works...
We begin the recipe by creating a name for one of our views. If we have views with long or
complicated filenames or directory structures, this will allow us to create a simple alias in our
routes. It will also let us change our view filename in the future; additionally, if we're using it in
more than one place, we only need to change one line.

Next, we create a view composer. Any code in the composer will automatically be called when
you create the view. In our example, we're including three things every time our view is created:
an asset containing a Bootstrap CSS file, a nested view, and a variable to pass to the view.

For our three routes, instead of View::make('menu-layout'), we'll use the name we
created, call View::of('layout'), and nest it in our content. Since our layout view has
a composer, it will automatically nest in our menu, add the CSS, and pass in a page title.

See also
ff The Creating menus in Laravel recipe

7
Creating and Using

Composer Packages

In this chapter, we will cover:

ff Downloading and installing packages

ff Using the Generators package to set up an app

ff Creating a Composer package in Laravel

ff Adding your Composer package to Packagist

ff Adding a non-Packagist package to Composer

ff Creating a custom artisan command

Introduction
One of the great features in Laravel is the ease in which we can include the class libraries that
others have made using bundles. On the Laravel site, there are already many useful bundles,
some of which automate certain tasks while others easily integrate with third-party APIs.

A recent addition to the PHP world is Composer, which allows us to use libraries (or packages)
that aren't specific to Laravel.

In this chapter, we'll get up-and-running with using bundles, and we'll even create our own
bundle that others can download. We'll also see how to incorporate Composer into our Laravel
installation to open up a wide range of PHP libraries that we can use in our application.

Creating and Using Composer Packages

150

Downloading and installing packages
One of the best features of Laravel is how modular it is. Most of the framework is built
using libraries, or packages, that are well tested and widely used in other projects. By
using Composer for dependency management, we can easily include other packages and
seamlessly integrate them into our Laravel app.

For this recipe, we'll be installing two popular packages into our app: Jeffrey Way's Laravel 4
Generators and the Imagine image processing packages.

Getting ready
For this recipe, we need a standard installation of Laravel using Composer.

How to do it...
For this recipe, we will follow these steps:

1.	 Go to https://packagist.org/.

2.	 In the search box, search for way generator as shown in the following screenshot:

Chapter 7

151

3.	 Click on the link for way/generators:

4.	 View the details at https://packagist.org/packages/way/generators and
take notice of the require line to get the package's version. For our purposes, we'll
use "way/generators": "1.0.*".

5.	 In our application's root directory, open up the composer.json file and add in the
package to the require section so it looks like this:
"require": {
 "laravel/framework": "4.0.*",
 "way/generators": "1.0.*"
},

Creating and Using Composer Packages

152

6.	 Go back to http://packagist.org and perform a search for imagine as shown
in the following screenshot:

7.	 Click on the link to imagine/imagine and copy the require code for dev-master:

Chapter 7

153

8.	 Go back to our composer.json file and update the require section to include the
imagine package . It should now look similar to the following code:
"require": {
 "laravel/framework": "4.0.*",
 "way/generators": "1.0.*",
 "imagine/imagine": "dev-master"
},

9.	 Open the command line, and in the root of our application, run the Composer update
as follows:
php composer.phar update

10.	 Finally, we'll add the Generator Service Provider, so open the app/config/app.php
file and in the providers array, add the following line:
'Way\Generators\GeneratorsServiceProvider'

How it works...
To get our package, we first go to packagist.org and search for the package we want. We
could also click on the Browse packages link. It will display a list of the most recent packages
as well as the most popular. After clicking on the package we want, we'll be taken to the detail
page, which lists various links including the package's repository and home page. We could
also click on the package's maintainer link to see other packages they have released.

Underneath, we'll see the various versions of the package. If we open that version's detail
page, we'll find the code we need to use for our composer.json file. We could either choose
to use a strict version number, add a wildcard to the version, or use dev-master, which will
install whatever is updated on the package's master branch. For the Generators package,
we'll only use Version 1.0, but allow any minor fixes to that version. For the imagine package,
we'll use dev-master, so whatever is in their repository's master branch will be downloaded,
regardless of version number.

We then run update on Composer and it will automatically download and install all of the
packages we chose. Finally, to use Generators in our app, we need to register the service
provider in our app's config file.

Using the Generators package to set up
an app
Generators is a popular Laravel package that automates quite a bit of file creation. In
addition to controllers and models, it can also generate views, migrations, seeds,
and more, all through a command-line interface.

Creating and Using Composer Packages

154

Getting ready
For this recipe, we'll be using the Laravel 4 Generators package maintained by Jeffrey Way
that was installed in the Downloading and installing packages recipe. We'll also need a
properly configured MySQL database.

How to do it…
Follow these steps for this recipe:

1.	 Open the command line in the root of our app and, using the generator, create a
scaffold for our cities as follows:
php artisan generate:scaffold cities --fields="city:string"

2.	 In the command line, create a scaffold for our superheroes as follows:
php artisan generate:scaffold superheroes --fields="name:string,
city_id:integer:unsigned"

3.	 In our project, look in the app/database/seeds directory and find a file named
CitiesTableSeeder.php. Open it and add some data to the $cities array
as follows:
<?php

class CitiesTableSeeder extends Seeder {

 public function run()
 {
 DB::table('cities')->delete();

 $cities = array(
 array(
 'id' => 1,
 'city' => 'New York',
 'created_at' => date('Y-m-d g:i:s',
 time())
),
 array(
 'id' => 2,
 'city' => 'Metropolis',
 'created_at' => date('Y-m-d g:i:s',
 time())
),
 array(
 'id' => 3,
 'city' => 'Gotham',
 'created_at' => date('Y-m-d g:i:s',
 time())

Chapter 7

155

)
);

 DB::table('cities')->insert($cities);
 }
}

4.	 In the app/database/seeds directory, open SuperheroesTableSeeder.php
and add some data to it:
<?php

class SuperheroesTableSeeder extends Seeder {

 public function run()
 {
 DB::table('superheroes')->delete();

 $superheroes = array(
 array(
 'name' => 'Spiderman',
 'city_id' => 1,
 'created_at' => date('Y-m-d g:i:s',
 time())
),
 array(
 'name' => 'Superman',
 'city_id' => 2,
 'created_at' => date('Y-m-d g:i:s',
 time())
),
 array(
 'name' => 'Batman',
 'city_id' => 3,
 'created_at' => date('Y-m-d g:i:s',
 time())
),
 array(
 'name' => 'The Thing',
 'city_id' => 1,
 'created_at' => date('Y-m-d g:i:s',
 time())
)
);

 DB::table('superheroes')->insert($superheroes);
 }
}

Creating and Using Composer Packages

156

5.	 In the command line, run the migration then seed the database as follows:
php artisan migrate

php artisan db:seed

6.	 Open up a web browser and go to http://{your-server}/cities. We will see
our data as shown in the following screenshot:

7.	 Now, navigate to http://{your-server}/superheroes and we will see our data
as shown in the following screenshot:

Chapter 7

157

How it works...
We begin by running the scaffold generator for our cities and superheroes tables. Using the
--fields tag, we can determine which columns we want in our table and also set options
such as data type. For our cities table, we'll only need the name of the city. For our superheroes
table, we'll want the name of the hero as well as the ID of the city where they live.

When we run the generator, many files will automatically be created for us. For example, with
cities, we'll get City.php in our models, CitiesController.php in controllers, and a
cities directory in our views with the index, show, create, and edit views. We then get a
migration named Create_cities_table.php, a CitiesTableSeeder.php seed file,
and CitiesTest.php in our tests directory. We'll also have our DatabaseSeeder.php
file and our routes.php file updated to include everything we need.

To add some data to our tables, we opened the CitiesTableSeeder.php file and updated
our $cities array with arrays that represent each row we want to add. We did the same
thing for our SuperheroesTableSeeder.php file. Finally, we run the migrations and seeder
and our database will be created and all the data will be inserted.

The Generators package has already created the views and controllers we need to
manipulate the data, so we can easily go to our browser and see all of our data. We can also
create new rows, update existing rows, and delete rows.

Creating a Composer package in Laravel
Using Laravel's Workbench, we can easily create a package that can be used and installed by
Composer. We can also add functionality so that the package integrates seamlessly into our
Laravel app. In this recipe, we'll be creating a simple package that will display a list of Vimeo
videos for a specified user.

Getting ready
For this recipe, we'll need a standard Laravel installation.

Creating and Using Composer Packages

158

How to do it…
To complete this recipe, follow these steps:

1.	 In the app/config directory, open the workbench.php file and update it with the
following information:
<?php

return array(

 'name' => 'Terry Matula',

 'email' => 'terrymatula@gmail.com',

);

2.	 In the command line, use artisan to set up our package:
php artisan workbench matula/vimeolist --resources

3.	 Find the directory that will hold our source files and create a file named Vimeolist.
php. In this example, we would put the file in workbench/matula/vimeolist/
src/Matula/Vimeolist/:
<?php namespace Matula\Vimeolist;

class Vimeolist
{
 private $base_url =
 'http://vimeo.com/api/v2/{username}/videos.json';
 private $username;

 public function __construct($username = 'userscape') {
 $this->setUser($username);
 return $this;
 }

 /**
 * Set the username for our list
 *
 * @return void
 */
 public function setUser($username = NULL) {
 $this->username = is_null($username) ? $this-
 >username : urlencode($username);
 return $this;
 }

Chapter 7

159

 /**
 * Set up the url and get the contents
 *
 * @return json
 */
 private function getFeed() {
 $url = str_replace('{username}', $this->username,
 $this->base_url);
 $feed = file_get_contents($url);
 return $feed;
 }

 /**
 * Turn the feed into an object
 *
 * @return object
 */
 public function parseFeed() {
 $json = $this->getFeed();
 $object = json_decode($json);
 return $object;
 }

 /**
 * Get the list and format the return
 *
 * @return array
 */
 public function getList() {
 $list = array();
 $posts = $this->parseFeed();
 foreach ($posts as $post) {
 $list[$post->id]['title'] = $post->title;
 $list[$post->id]['url'] = $post->url;
 $list[$post->id]['description'] = $post-
 >description;
 $list[$post->id]['thumbnail'] = $post-
 >thumbnail_small;
 }
 return $list;
 }
}

Creating and Using Composer Packages

160

4.	 In the same directory as the file we just created, open the file named
VimeolistServiceProvider.php and update it:
<?php namespace Matula\Vimeolist;

use Illuminate\Support\ServiceProvider;

class VimeolistServiceProvider extends ServiceProvider {

 /**
 * Indicates if loading of the provider is deferred.
 *
 * @var bool
 */
 protected $defer = false;

 /**
 * Bootstrap the application events.
 *
 * @return void
 */
 public function boot()
 {
 $this->package('matula/vimeolist');
 }

 /**
 * Register the service provider.
 *
 * @return void
 */
 public function register()
 {
 $this->app['vimeolist'] = $this->app-
 >share(function($app)
 {
 return new Vimeolist;
 });
 }

 /**
 * Get the services provided by the provider.
 *
 * @return array
 */
 public function provides()
 {
 return array('vimeolist');
 }
}

Chapter 7

161

5.	 Open the app.php file in the app/config directory, and in the providers array,
add our service provider as follows:
'Matula\Vimeolist\VimeolistServiceProvider',

6.	 In the command line, run the following command:
php composer.phar dump-autoload

7.	 In routes.php, add a route to display the data as follows:

Route::get('vimeo/{username?}', function($username = null) use
($app)
{
 $vimeo = $app['vimeolist'];
 if ($username) {
 $vimeo->setUser($username);
 }
 dd($vimeo->getList());
});

How it works...
Our first step is to update our workbench's configuration file to hold our name and e-mail
address. This will then be used for any other packages that we create in Laravel.

Next, we run the artisan command to create the files we need for our package. By using
the --resources flag, it will also generate other files and directories that can be used
specifically for Laravel. Once it's completed, there will be a new folder in our workbench
directory that holds all our package's files. After drilling down into the directories, we'll get
to a directory that holds our service provider file, and in this directory, we'll add our class file.

This example class will simply get a list of videos for a user from the Vimeo API. We have
methods that will allow us to set a username, get the contents of the API endpoint, turn the
JSON into a PHP object, and then create and return a formatted array. As a best practice, we
should also make sure our code is tested and that we can put those files in the test directory.

To better integrate with Laravel, we need to update the service provider. We first update
the register method and set the name we want to pass to Laravel's app variable and
then we update the provides method to return the package name. Next, we need to update
our app configuration file to actually register the service provider. Then, once we run the
dump-autoload command in Composer, our new package will be available to use.

Finally, we create a route to interact with the package. We'll have one optional parameter, that
is, the username. We also need to make sure the $app variable is available in our route. Then,
when we call $app['vimeolist'], the service provider will automatically instantiate our
class and allow us to access the Vimeo list. For our purposes, we're only using the dd() helper
function of Laravel to display the data, but we could also pass it to a view and make it look nicer.

Creating and Using Composer Packages

162

There's more...
Laravel also has the option to create a facade for our package, so we could call it using
something similar to $vimeo = Vimeolist::setUser(). There are also many other
options for packages that can be found in the documentation at http://laravel.com/
docs/packages.

Adding your Composer package to Packagist
To make it easier to distribute our packages, we should submit them to the website
packagist.org. In this recipe, we'll see how to set up our package on GitHub and
add it to Packagist.

Getting ready
For this recipe, we'll need to have completed the Creating a Composer package in Laravel
recipe, and we'll also need an active GitHub account.

How to do it...
To complete this recipe, follow these steps:

1.	 In the command line, move to the workbench/matula/vimeolist directory and
set up our git repository as follows:
git init
git add -A
git commit –m 'First Package commit'

2.	 Create a new GitHub repository at https://github.com/new and give it the name
vimeolist.

3.	 Add our package to GitHub:
git remote add origin git@github.com:{username}/vimeolist.git

git push –u origin master

4.	 Go to https://packagist.org/login/ and log in using your GitHub account.

5.	 Click on the green Submit Package button shown in the following screenshot:

Chapter 7

163

6.	 In the Repository URL text field, add the Git read-only URL from GitHub as shown in
the following screenshot:

7.	 Click on Check, and if everything works, click on Submit.

How it works...
We begin by creating a git repository in our package's main directory. We then create
a repository in GitHub for our files, add that remote to our local repository, and then push our
local repository to GitHub.

On the Packagist site, we log in using our GitHub account and allow the packagist.org
access. Then, we submit our packages at https://packagist.org/packages/submit
using the GitHub URL from our repository. After clicking on Check, Packagist will look through
the code and format it for use with Composer. If there are any errors, we will be prompted with
what we need to do to fix them.

If everything checks out and we click on Submit, our package will then be listed on the
Packagist website.

See also
ff The Creating a Composer package in Laravel recipe

Creating and Using Composer Packages

164

Adding a non-Packagist package
to Composer

Adding a single line to our composer.json file and having Composer automatically download
and install a package is great, but it requires the package to be available on packagist.
org. In this recipe, we'll see how to install packages that aren't available on Packagist.

Getting ready
For this recipe, we'll need a standard Laravel installation.

How to do it...
To complete this recipe, follow these steps:

1.	 On GitHub, we'll need to find a package we want to use. For this example, we'll use
the UniversalForms package found at https://github.com/wesleytodd/
Universal-Forms-PHP.

2.	 Open our main composer.json file and update the require section as follows:
"require": {
 "laravel/framework": "4.0.*",
 "wesleytodd/universal-forms": "dev-master"
 },

3.	 In composer.json, under the require section, add the repository we want to use:
"repositories": [
 {
 "type": "vcs",
 "url": "https://github.com/wesleytodd/Universal-Forms-
PHP"
 }
],

4.	 In the command line, update Composer as follows:
php composer.phar update

5.	 Open the app/config/app.php file and update the providers array with the
following line:
'Wesleytodd\UniversalForms\Drivers\Laravel\
UniversalFormsServiceProvider',

Chapter 7

165

6.	 In routes.php, instantiate the class and use it on our routes as follows:
$form_json = '{
 "action" : "uform",
 "method" : "POST",
 "fields" : [
 {
 "name" : "name",
 "type" : "text",
 "label" : "Name",
 "rules" : ["required"]
 },
 {
 "name" : "email",
 "type" : "email",
 "label" : "Email",
 "value" : "myemail@example.com",
 "rules" : ["required", "email"]
 },
 {
 "name" : "message",
 "type" : "textarea",
 "label" : "Message",
 "rules" : ["required", "length[30,0]"]
 }
]
}';

$uform = new Wesleytodd\UniversalForms\Drivers\Laravel\Form($form_
json);

Route::get('uform', function() use ($uform)
{
 return $uform->render();
});

Route::post('uform', function() use ($uform)
{
 // validate
 $valid = $uform->valid(Input::all());
 if ($valid) {
 // Could also save to database
 dd(Input::all());
 } else {
 // Could redirect back to form
 dd($uform->getErrors());
 }
});

Creating and Using Composer Packages

166

How it works...
Our first step is to add in the line for the required packages just like with other Composer
packages. However, since this package isn't available on packagist.org, it will throw
an error if we try to update Composer. To get it to work, we need to add in a repository for
Composer to use. Composer has many different options for using other repositories, and they
can be found at http://getcomposer.org/doc/05-repositories.md#vcs.

Next, we update Composer and it will install the package for us. Since this package comes
with a Laravel service provider, we then update our configuration file to register it.

Now we're able to use the package in our app. For our purposes, we'll instantiate the class
outside of the routes and pass it into the routes' closure. Then we can use the library like
normal. This particular package will take a JSON string or file and automatically create our
form output for us.

Creating a custom artisan command
Laravel's artisan command-line tool makes many tasks easy to accomplish. If we want to
make our own tasks and use artisan to run them, the process is quite simple. In this recipe,
we'll see how to make an artisan task that automatically creates an HTML5 skeleton in our
views directory.

Getting ready
For this recipe, we'll need a standard Laravel installation.

How to do it...
To complete this recipe, follow these steps:

1.	 In the command line, run the artisan command to create our needed files:
php artisan command:make SkeletonCommand

2.	 In the app/commands directory, open the SkeletonCommand.php file and update
the code as follows:
<?php

use Illuminate\Console\Command;
use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Input\InputArgument;
use Illuminate\Filesystem\Filesystem as File;

class SkeletonCommand extends Command {

Chapter 7

167

 /**
 * The console command name.
 *
 * @var string
 */
 protected $name = 'skeleton:make';

 /**
 * The console command description.
 *
 * @var string
 */
 protected $description = 'Creates an HTML5 skeleton
 view.';

 /**
 * File system instance
 *
 * @var File
 */
 protected $file;

 /**
 * Create a new command instance.
 *
 * @return void
 */
 public function __construct()
 {
 parent::__construct();
 $this->file = new File();
 }

 /**
 * Execute the console command.
 *
 * @return void
 */
 public function fire()
 {
 $view = $this->argument('view');
 $file_name = 'app/views/' . $view;
 $ext = ($this->option('blade')) ? '.blade.php' :
 '.php';
 $template = '<!DOCTYPE html>
 <html>
 <head>

Creating and Using Composer Packages

168

 <meta charset=utf-8 />
 <title></title>
 <link rel="stylesheet" type="text/css"
 media="screen" href="css/style.css" />
 <script type="text/javascript"
 src="http://ajax.googleapis.com/
 ajax/libs/jquery/2.0.3/jquery.min.js">
 </script>
 <!--[if IE]>
 <script src="http://html5shiv.
 googlecode.com/svn/trunk
 /html5.js"></script>
 <![endif]-->
 </head>
 <body>
 </body>
 </html>';

 if (!$this->file->exists($file_name)) {
 $this->info('HTML5 skeleton created!');
 return $this->file->put($file_name . $ext,
 $template) !== false;
 } else {
 $this->info('HTML5 skeleton created!');
 return $this->file->put($file_name . '-' .
 time() . $ext, $template) !== false;
 }

 $this->error('There was a problem creating your
 HTML5 skeleton');
 return false;
 }

 /**
 * Get the console command arguments.
 *
 * @return array
 */
 protected function getArguments()
 {
 return array(
 array('view', InputArgument::REQUIRED,
 'The name of the view.'),
);
 }

Chapter 7

169

 /**
 * Get the console command options.
 *
 * @return array
 */
 protected function getOptions()
 {
 return array(
 array('blade', null, InputOption::VALUE_OPTIONAL,
 'Use Blade templating?', false),
);
 }

}

3.	 In the app/start directory, open the artisan.php file and add the following line:
Artisan::add(new SkeletonCommand);

4.	 In the command line, test out the new command:
php artisan skeleton:make MyNewView --blade=true

How it works...
Our first step is to use the command:make function of artisan and pass in the name of the
command we want to use. After this runs, we'll find a new file in our app/commands directory
with the same name as the name we chose.

In our SkeletonCommand file, we start by adding in a name. This will be the command to
which artisan will respond. Next, we set a description, which will display when we list out all
the artisan commands.

For this command, we'll be accessing the filesystem, so we need to make sure to add
Laravel's Filesystem class and that we instantiate it in our constructor. Then, we come to
the fire() method. This is where all the code we want to run should go. For our purpose,
we use a single argument to determine what our view file name will be, and if the --blade
parameter is set to true, we'll make it a blade file. Then, we create a string that holds our
HTML5 skeleton, though we could also make this a separate file and pull in the text.

We then create the new file using the template as our HTML and display a success message
in the console.

8
Using Ajax and jQuery

In this chapter, we will cover:

ff Getting data from another page

ff Setting up a controller to return JSON data

ff Creating an Ajax search function

ff Creating and validating a user using Ajax

ff Filtering data based on checkbox selection

ff Making an Ajax newsletter sign-up box

ff Sending an e-mail using Laravel and jQuery

ff Creating a sortable table using jQuery and Laravel

Introduction
Many modern web applications rely on JavaScript to add dynamic user interactions. Using the
jQuery library and Laravel's built-in functions, we can create these interactions with ease in
our own application.

We'll begin by receiving data asynchronously from other pages and proceed to send data that
can be saved in a database.

Using Ajax and jQuery

172

Getting data from another page
In our application, there may be times when we need to access some HTML from another
page. Using Laravel and jQuery, we can accomplish this easily.

Getting ready
For this recipe, we just need a standard Laravel installation.

How to do it...
To complete this recipe, follow the given steps:

1.	 Open the routes.php file:
Route::get('getting-data', function()
{
 return View::make('getting-data');
});

Route::get('tab1', function()
{
 if (Request::ajax()) {
 return View::make('tab1');
}
 return Response::error('404');
});

Route::get('tab2', function()
{
 if (Request::ajax()) {
 return View::make('tab2');
}
 return Response::error('404');
});

2.	 In the views directory, create a file named tab1.php:
<h1>CHAPTER 1 - Down the Rabbit-Hole</h1>
<p>
 Alice was beginning to get very tired of sitting by her
 sister on the bank,
 and of having nothing to do: once or twice she had peeped
 into the book her sister
 was reading, but it had no pictures or conversations in
 it, 'and what is the
 use of a book,' thought Alice 'without pictures or
 conversation?'

Chapter 8

173

</p>
<p>
 So she was considering in her own mind (as well as she
 could, for the
 hot day made her feel very sleepy and stupid), whether
 the pleasure of making
 a daisy-chain would be worth the trouble of getting up
 and picking the daisies,
 when suddenly a White Rabbit with pink eyes ran close by
 her.
</p>

3.	 In the views directory, create a file named tab2.php:
<h1>Chapter 1</h1>
<p>"TOM!"</p>
<p>No answer.</p>
<p>"TOM!"</p>
<p>No answer.</p>
<p>"What's gone with that boy, I wonder? You TOM!"</p>
<p>No answer.</p>
<p>
 The old lady pulled her spectacles down and looked over them
 about the room;
 then she put them up and looked out under them. She seldom
 or never looked
 through them for so small a thing as a boy; they were her
 state pair,
 the pride of her heart, and were built for "style," not
 service—she could
 have seen through a pair of stove-lids just as well. She
 looked perplexed
 for a moment, and then said, not fiercely, but still loud
 enough for the
 furniture to hear:
</p>
<p>"Well, I lay if I get hold of you I'll—"</p>
<p>
 She did not finish, for by this time she was bending down
 and punching
 under the bed with the broom, and so she needed breath to
 punctuate
 the punches with. She resurrected nothing but the cat.
</p>

Using Ajax and jQuery

174

4.	 In the views directory, create a file named getting-data.php:
<!DOCTYPE html>
<html>
<head>
 <meta charset=utf-8 />
 <title>Getting Data</title>
 <script type="text/javascript"
 src="//ajax.googleapis.com/ajax/libs/jquery
 /1.9.0/jquery.min.js"></script>
</head>
<body>

 Alice In
 Wonderland
 Tom Sawyer

<h1 id="title"></h1>
<div id="container"></div>
<script>
 $(function() {
 $(".tabs").on("click", function(e) {
 e.preventDefault();
 var tab = $(this).attr("id");
 var title = $(this).html();
 $("#container").html("loading…");
 $.get(tab, function(data) {
 $("#title").html(title);
 $("#container").html(data);
});
});
});
</script>
</body>
</html>

5.	 View the page at http://{yourserver}/getting-data and click on the links to
load the content.

How it works...
We start by setting up our routes. Our first route is going to display links, and when we click
on them, content will be loaded into the page. Our next two routes will hold the actual content
to display on the main page. To make sure that these pages can't be accessed directly, we
use the Request::ajax() method to make sure that only Ajax requests are accepted. If
someone tries to access the page directly, it will send them to an error page.

Chapter 8

175

Our two view files will hold a couple of excerpts from books. Since this will be loaded into
another page, we don't need the full HTML. Our main page, however, is a full HTML page. We
begin by loading jQuery using the Content Delivery Network (CDN) from Google. Then, we
have a list of the books we want to use. To make things a little easier, the ID of the link will
correspond to the routes we created.

When someone clicks on the link, the script will use the ID and get the content from the route
with the same name. The results will be loaded into our container div.

Setting up a controller to return JSON data
When we access data using JavaScript, one of the easiest ways is to use JSON-formatted data.
In Laravel, we can return JSON from one of our controllers to be used by our JavaScript on
another page.

Getting ready
For this recipe, we need a standard Laravel installation.

How to do it...
For this recipe, follow the given steps:

1.	 In the controllers directory, create a file named BooksController.php:
<?php

 class BooksController extends BaseController {

 public function getIndex()
{
 return View::make('books.index');
}

 public function getBooks()
{
 $books = array(
 'Alice in Wonderland',
 'Tom Sawyer',
 'Gulliver\'s Travels',
 'Dracula',
 'Leaves of Grass'
);
 return Response::json($books);
}
}

Using Ajax and jQuery

176

2.	 In routes.php, register the books controller
Route::controller('books', 'BooksController');

3.	 In the views directory, create a folder named books, and in that folder, create a file
named index.php:
<!DOCTYPE html>
<html>
<head>
 <meta charset=utf-8 />
 <title>Show Books</title>
 <script type="text/javascript"
 src="//ajax.googleapis.com/ajax/libs/jquery/1.9.0/
 jquery.min.js"></script>
</head>
<body>
Load Books
<div id="book-list"></div>
<script>
$(function() {
$('#book-button').on('click', function(e) {
 e.preventDefault();
$('#book-list').html('loading...');
$.get('books/books', function(data) {
 var book_list = '';
$.each(data, function(){
 book_list += this + '
';
})
$("#book-list").html(book_list);
$('#book-button').hide();
});
});
});
</script>
</body>
</html>

Chapter 8

177

How it works...
We begin by creating a RESTful controller for our book list which extends our
BaseController class. Our controller has two methods: one to display the list and one to
return the formatted list. Our getBooks() method uses an array as our data source, and we
use Laravel's Response::json() method to automatically do the correct formatting for us.

On our main page, we do a get request to the page in JavaScript, receive the JSON, and loop
through the results. As we loop, we add the books to a JavaScript variable and then add the
list to our book-list div.

There's more...
Our list could come from any data source. We could add in database functionality or even call
an API. When we use the JSON response from Laravel, that value is correctly formatted with
the correct headers.

Creating an Ajax search function
If we want to search for information in our application, it might be useful to perform the search
asynchronously. That way, the user won't have to be taken to a new page and have all the assets
refreshed. Using Laravel and JavaScript, we can perform this search in a very simple manner.

Getting ready
For this recipe, we'll need a working installation of Laravel.

How to do it...
To complete this recipe, follow these steps:

1.	 In the controllers directory, create a file named SearchController.php:
<?php

class SearchController extends BaseController {

 public function getIndex()
{
 return View::make('search.index');
}

 public function postSearch()
{
 $return = array();

Using Ajax and jQuery

178

 $term = Input::get('term');

 $books = array(
 array('name' => 'Alice in Wonderland', 'author' => 'Lewis
Carroll'),
 array('name' => 'Tom Sawyer', 'author' => 'Mark
 Twain'),
 array('name' => 'Gulliver\'s Travels', 'author' =>
 'Jonathan Swift'),
 array('name' => 'The Art of War', 'author' => 'Sunzi'),
 array('name' => 'Dracula', 'author' => 'Bram Stoker'),
 array('name' => 'War and Peace', 'author' =>
 'LeoTolstoy'),
);

foreach ($books as $book) {
if (stripos($book['name'], $term) !== FALSE) $return[] =
 $book;
}

return Response::json($return);
}
}

2.	 In the routes.php file, register the controller:
 Route::controller('search', 'SearchController');

3.	 In the views directory, create a folder named search, and in that folder, create a file
named index.php:
<!DOCTYPE html>
<html>
<head>
<meta charset=utf-8 />
<title>AJAX Search</title>
<script type="text/javascript"
 src="//ajax.googleapis.com/ajax/libs/jquery/
 1.9.0/jquery.min.js"></script>
</head>
<body>
<h1>Search</h1>
<form id="search-form">
<input name="search" id="term"> <input type="submit">
</form>
<div id="results"></div>
<script>
 $(function() {
 $("#search-form").on("submit", function(e) {
 e.preventDefault();

Chapter 8

179

 var search_term = $("#term").val();
 var display_results = $("#results");
 display_results.html("loading...");
 var results = '';
 $.post("search/search", {term: search_term}, function(data)
 {
 if (data.length == 0) {
 results = 'No Results';
 } else {
 $.each(data, function() {
 results += this.name + ' by ' + this.author + '
';
});
}
display_results.html(results);
});
})
});
</script>
</body>
</html>

How it works...
We first create a RESTful controller that holds two methods: one for our main page and one
to process the search. On our main page, we have a single text field and a submit button.
When the form is submitted, our JavaScript will post the form to our search page. If there are
results, it will loop through them and display them in our results div.

For our postSearch() method, we use an array as our data source. When a search is
posted, we then loop through the array to see if the string matches any of our titles. If so,
the value is added to an array and that array is returned as a JSON.

Creating and validating a user using Ajax
When a user comes to our application, we may want them to register or login without the need
to navigate to another page. Using Ajax within Laravel, we can submit the user's form and run
the validation asynchronously.

Using Ajax and jQuery

180

Getting ready
For this recipe, we'll need a working installation of Laravel as well as a properly configured
MySQL database. We also need to add a user table to our database, which we can do with
the following code:

CREATE TABLE users (
 id int(10) unsigned NOT NULL AUTO_INCREMENT,
 email varchar(255) DEFAULT NULL,
 password char(60) DEFAULT NULL,
 PRIMARY KEY (id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

How to do it...
To complete this recipe, follow the given steps:

1.	 In the controllers directory, create a UsersController.php file:
<?php
class UsersController extends BaseController {
 public function getIndex()
 {
 return View::make('users.index');
 }

 public function postRegister()
 {
 $rules = array(
 'email' => 'required|email',
 'password' => 'required|min:6'
);

 $validation = Validator::make(Input::all(), $rules);

 if ($validation->fails())
 {
 return Response::json($validation->errors()->toArray());
}
else
{
DB::table('users')->insert(array(
 'email' => Input::get('email'),
 'password' => Hash::make(Input::get('password'))
));
return Response::json(array('Registration is complete!'));
}
}
}

Chapter 8

181

2.	 Register the controller in routes.php:
 Route::controller('users', 'UsersController');

3.	 In the views directory, create a folder named users, and in that folder, create a file
named index.php:

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>User Register</title>
 <script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/
 1.9.0/jquery.min.js"></script>
 </head>
 <body>
 <form id="register">
 <label for="email">Your email:</label>
 <input type="email" name="email" id="email">

 <label for="password">Your password:</label>
 <input type="password" name="password" id="password">

 <input type="submit">
 </form>
 <div id="results"></div>
 <script>
 $(function(){
 $("#register").on("submit", function(e) {
 e.preventDefault();
 var results = '';
 $.post('users/register',
 {email: $("#email").val(), password:
 $("#password").val()}, function(data) {
 $.each(data, function(){
 results += this + '
';
});
 $("#results").html(results);
});
});
});
</script>
 </body>
</html>

Using Ajax and jQuery

182

How it works...
To begin this recipe, we create our main page which will hold our user registration form. When
the form is submitted, it will post to our postRegister() method and return any results to
the results div.

The postRegister() method begins by setting up the rules for our validation. In this case,
we want to make sure both fields have a value, the e-mail must be valid, and the password
must be at least 6 characters. If the validation fails, we send the error back as a JSON-encoded
string and our main page will display the error. If everything is valid, we then save everything to
the database and return a success message.

There's more...
If we don't want any other pages to post data to our method, we could add a
Request::ajax() conditional. This would mean that only Ajax calls would be
processed by our method.

Filtering data based on checkbox selection
When displaying data to a user, it could be convenient to allow them to filter the data. So we
don't have to make the user click on submit and reload the page every time, we can do all the
filtering using Ajax. For this recipe, we'll make a book list and allow the user to filter it based
on the genre.

Getting ready
For this recipe, we need a standard Laravel installation that's configured to work with a
database. We'll need to set up a table to use by running this SQL statement:

DROP TABLE IF EXISTS books;
CREATE TABLE books (
 id int(10) unsigned NOT NULL AUTO_INCREMENT,
 name varchar(255) DEFAULT NULL,
 author varchar(255) DEFAULT NULL,
 genre varchar(255) DEFAULT NULL,
 PRIMARY KEY (id)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

 INSERT INTO books VALUES ('1', 'Alice in Wonderland',
 'Lewis Carroll', 'fantasy');
 INSERT INTO books VALUES ('2', 'Tom Sawyer', 'Mark
 Twain', 'comedy');
 INSERT INTO books VALUES ('3', 'Gulliver\'s Travels',
 'Jonathan Swift', 'fantasy');

Chapter 8

183

 INSERT INTO books VALUES ('4', 'The Art of War', 'Sunzi',
 'philosophy');
 INSERT INTO books VALUES ('5', 'Dracula', 'Bram Stoker',
 'horror');
 INSERT INTO books VALUES ('6', 'War and Peace', 'Leo
 Tolstoy', 'drama');
 INSERT INTO books VALUES ('7', 'Frankenstein', 'Mary
 Shelley', 'horror');
 INSERT INTO books VALUES ('8', 'The Importance of Being
 Earnest', 'Oscar Wilde', 'comedy');
 INSERT INTO books VALUES ('9', 'Peter Pan', 'J. M.
 Barrie', 'fantasy');

How to do it...
To complete this recipe, follow these steps:

1.	 In the controllers directory, create a new file named BooksController.php:
<?php
class BooksController extends BaseController {
 public function getIndex()
{
 return View::make('books.index');
}

 public function postBooks()
{
 if (!$genre = Input::get('genre')) {
 $books = Book::all();
 } else {
 $books = Book::whereIn('genre', $genre)->get();
}
return $books;
}
}

2.	 Register the books controller in the routes.php file:
 Route::controller('books', 'BooksController');

3.	 In the views directory, create a new folder named books, and in that folder, create a
file named index.php:
<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">

Using Ajax and jQuery

184

 <title>Books filter</title>
 <scriptsrc="//ajax.googleapis.com/ajax/libs/jquery
 /1.10.2/jquery.min.js"></script>
 </head>
 <body>
 <form id="filter">
 Comedy: <input type="checkbox" name="genre[]"
 value="comedy">

 Drama: <input type="checkbox" name="genre[]"
 value="drama">

 Fantasy: <input type="checkbox" name="genre[]"
 value="fantasy">

 Horror: <input type="checkbox" name="genre[]"
 value="horror">

 Philosophy: <input type="checkbox" name="genre[]"
 value="philosophy">

 </form>
 <hr>
 <h3>Results</h3>
 <div id="books"></div>
 <script>
 $(function(){
 $("input[type=checkbox]").on('click', function() {
 var books = '';
 $("#books").html('loading...');
 $.post('books/books', $("#filter").serialize(),
 function(data){
 $.each(data, function(){
 books += this.name + ' by ' + this.author + ' (' +
 this.genre + ')
';
});
$("#books").html(books);
});
});
});
</script>
</body>
</html>

4.	 In the models directory, create a file named Book.php:
<?php
class Book extends Eloquent {
}

5.	 In the browser, go to http://{my-server}/books and click on a few checkboxes
to see the result.

Chapter 8

185

How it works...
With our database set up, we begin with our main list page. This page has a number of
checkboxes, with the value of each corresponding to a genre in our books table. When a box
is checked, the form is submitted asynchronously to our postBooks() method. We use those
results, loop through them, and display them in our books div.

Our postBooks() method begins by making sure a genre was actually submitted. If not, that
means everything is unchecked and it will return all the books. If something is checked, we
get everything from the database that matches the checked values. Since Laravel provides us
with the raw returned data in JSON format, we then return the results, and in our index, the
results are displayed correctly.

Making an Ajax newsletter sign-up box
One way to have users added to our e-mail list is to have them sign-up through our website.
In this recipe, we'll be using MailChimp's API and a modal window to show a sign-up form and
have it sent through an Ajax call.

Getting ready
For this recipe, we'll need a standard Laravel installation. We'll also be using the MailChimp API
for the newsletter; a free account and API key can be created at www.mailchimp.com.

How to do it…
To complete this recipe, follow the given steps:

1.	 Open the composer.json file and update the require section to resemble the
following code:
 "require": {
 "laravel/framework": "4.0.*",
 "rezzza/mailchimp": "dev-master"
}

2.	 In the command-line window, where the artisan file is located, update Composer with
the following command:
 php composer.phar update

Using Ajax and jQuery

186

3.	 In the app/config directory, create a file named mailchimp.php:
<?php

return array(
 'key' => '12345abcde-us1',
 'list' => '123456789'
);

4.	 In the views directory, create a file named signup.php:
<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Newsletter Signup</title>
 <link href="//netdna.bootstrapcdn.com/twitter-
 bootstrap/2.2.2/css/bootstrap-combined.min.css"
 rel="stylesheet">
 <script src="//ajax.googleapis.com/ajax/libs/jquery/
 1.9.0/jquery.min.js"></script>
 <script src="//netdna.bootstrapcdn.com/twitter-
 bootstrap/2.2.2/js/bootstrap.min.js"></script>
 </head>
 <body>
 <p>
 <a href="#signupModal" role="button" class="btn btn-info"
 data-toggle="modal">Newsletter Signup
 </p>
 <div id="results"></div>
 <div id="signupModal" class="modal hide fade">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal"
 aria-hidden="true">×</button>
 <h3>Sign-up for our awesome newsletter!</h3>
 </div>
 <div class="modal-body">
 <p>
 <form id="newsletter_form">
 <label>Your First Name</label>
 <input name="fname">

 <label>Last Name</label>
 <input name="lname">

 <label>Email</label>
 <input name="email">
 </form>
 </p>
 </div>
 <div class="modal-footer">

Chapter 8

187

 <a href="#" class="btn close" data-
 dismiss="modal">Close
 <a href="#" class="btn btn-primary"
 id="newsletter_submit">Signup
 </div>
 </div>
 <script>
 $(function(){
 $("#newsletter_submit").on('click', function(e){
 e.preventDefault();
 $("#results").html("loading...");
 $.post('signup-submit',
 $("#newsletter_form").serialize(),
 function(data){
 $('#signupModal').modal('hide');
 $("#results").html(data);
});
});
});
 </script>
 </body>
</html>

5.	 In the routes.php file, add the routes we need with the following code:
Route::get('signup', function()
{
 return View::make('signup');
});

Route::post('signup-submit', function()
{
 $mc = new MCAPI(Config::get('mailchimp.key'));

 $response = $mc->listSubscribe(
 '{list_id}',
 Input::get('email'),
 array(
 'FNAME' => Input::get('fname'),
 'LNAME' => Input::get('lname')
)
);

if ($mc->errorCode){
return 'There was an error: ' . $mc->errorMessage;
} else {
return 'You have been subscribed!';
}
});

Using Ajax and jQuery

188

How it works...
We start by installing the MailChimp package into our application using a composer version of
the MailChimp SDK. We then need to create a configuration file to hold our API key and the list
ID we want to use.

Our sign-up page will utilize jQuery and Bootstrap for our processing and display. Since we
only want to display the form when the user wants to sign-up, we have a single button that,
when clicked on, will display a modal window with our form. The form will take out first name,
last name, and e-mail address.

When the sign-up form is submitted, we serialize the data and send it to our signup-submit
route. Once we get a response, we hide the modal and display the results on our page.

In our signup-submit route, we attempt to subscribe the user with the information entered.
If we get a response, we check if the response includes an error. If there is an error, we display
that to the user, and if not, we show our success message.

There's more...
Our signup-submit route isn't doing any validation on the form input. To include that, look
at the an example in the Creating and validating a user using Ajax recipe.

See also
ff The Creating and validating a user using Ajax recipe

Sending an e-mail using Laravel and jQuery
When creating a contact form, we may choose to let the user send the form asynchronously.
Using Laravel and jQuery, we can have the form submitted without needing the user to go to a
different page.

Getting ready
For this recipe, we need a standard Laravel installation and our mail client properly
configured. We can update our mail configuration in the app/config/mail.php file.

Chapter 8

189

How to do it...
To complete this recipe, follow the given steps:

1.	 In the views directory, create a file named emailform.php as shown in the
following code:
 <!doctype html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 <script src="//ajax.googleapis.com/ajax/libs
 /jquery/1.10.2/jquery.min.js"></script>
 </head>
 <body>
 <div id="container">
 <div id="error"></div>
 <form id="email-form">
 <label>To: </label>
 <input name="to" type="email">

 <label>From: </label>
 <input name="from" type="email">

 <label>Subject: </label>
 <input name="subject">

 <label>Message:</label>

 <textarea name="message"></textarea>

 <input type="submit" value="Send">
 </form>
 </div>
 <script>
 $(function(){
 $("#email-form").on('submit', function(e){
 e.preventDefault();
 $.post('email-send', $(this).serialize(), function(data){
 if (data == 0) {
 $("#error").html('<h3>There was an error</h3>');
 } else {
 if (isNaN(data)) {
 $("#error").html('<h3>' + data + '</h3>');
 } else {
 $("#container").html('Your email has been sent!');
}
}
});
});
});
</script>
</body>
</html>

Using Ajax and jQuery

190

2.	 In the views folder, create our e-mail template view file named ajaxemail.php
with the following code:
<!DOCTYPE html>
<html lang="en-US">
<head>
<meta charset="utf-8">
</head>
<body>
<h2>Your Message:</h2>
<div><?= $message ?></div>
</body>
</html>

3.	 In the routes.php file, create the routes as given in the following code snippet:
 Route::get('email-form', function()
{
 return View::make('emailform');
});
 Route::post('email-send', function()
{
 $input = Input::all();

 $rules = array(
 'to' => 'required|email',
 'from' => 'required|email',
 'subject' => 'required',
 'message' => 'required'
);

 $validation = Validator::make($input, $rules);

 if ($validation->fails())
{
 $return = '';
 foreach ($validation->errors()->all() as $err) {
 $return .= $err . '
';
}
 return $return;
}

 $send = Mail::send('ajaxemail', array('message' =>
 Input::get('message')), function($message)
{
 $message->to(Input::get('to'))
 ->replyTo(Input::get('from'))
 ->subject(Input::get('subject'));
});

 return $send;
});

Chapter 8

191

How it works...
For this recipe, we need to have our e-mail client properly configured. We have many options
to choose from, including PHP's mail() method, sendmail, and SMTP. We could even use a
third-party e-mail service such as mailgun or postmark.

Our e-mail form is a regular HTML form with four fields: the to and from e-mail addresses,
the subject line, and the actual e-mail message. When the form is submitted, the fields are
serialized and posted to our email-send route.

The email-send route first validates all of the posted input. If there are any validation
errors, they are returned back as a string. If everything checks out, we send our values to the
Mail::send method and then send it.

Back in our e-mail-form route JavaScript, we check if email-send returned FALSE, and
if so, we display an error. If not, we need to check if the response was a number or not. If
it wasn't a number, that means there were validation errors and we display them. If it is a
number, that means the e-mail was sent successfully, so we display a success message.

Creating a sortable table using jQuery and
Laravel

When handling large amounts of data, it can be helpful to display it in a table view. To manipulate
the data, such as for sorting or searching, we can use the data tables JavaScript library. This way,
we don't need to keep making database calls every time we want to change the view.

Getting ready
For this recipe, we need a standard installation of Laravel and a properly configured
MySQL database.

How to do it...
Follow the given steps to complete this recipe:

1.	 In our database, create a new table and add some example data using the
following commands:
DROP TABLE IF EXISTS bookprices;
CREATE TABLE bookprices (
 id int(10) unsigned NOT NULL AUTO_INCREMENT,
 price float(10,2) DEFAULT NULL,
 book varchar(100) DEFAULT NULL,
 PRIMARY KEY (id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Using Ajax and jQuery

192

 INSERT INTO bookprices VALUES ('1', '14.99', 'Alice in
 Wonderland');
 INSERT INTO bookprices VALUES ('2', '24.50',
 'Frankenstein');
 INSERT INTO bookprices VALUES ('3', '29.80', 'War and
 Peace');
 INSERT INTO bookprices VALUES ('4', '11.08', 'Moby
 Dick');
 INSERT INTO bookprices VALUES ('5', '19.72', 'The Wizard
 of Oz');
 INSERT INTO bookprices VALUES ('6', '45.00', 'The
 Odyssey');

2.	 In the app/models directory, create a file named Bookprices.php with the
following code snippet:
<?php
class Bookprices extends Eloquent {
}

3.	 In the routes.php file, add our route as given in the following code:
Route::get('table', function()
{
 $bookprices = Bookprices::all();
 return View::make('table')->with('bookprices',
 $bookprices);
});

4.	 In the views directory, create a file named table.php with the following code:
<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 <script src="//ajax.googleapis.com/ajax/libs/jquery
 /1.10.2/jquery.min.js"></script>
 <script src="//ajax.aspnetcdn.com/ajax/jquery.dataTables
 /1.9.4/jquery.dataTables.min.js"></script>
 <link rel="stylesheet" type="text/css" href="
 //ajax.aspnetcdn.com/ajax/jquery.dataTables/
 1.9.4/css/jquery.dataTables.css">
 </head>
 <body>
 <h1>Book List</h1>
 <table>
 <thead>
 <tr>

Chapter 8

193

 <th>Price</th>
 <th>Name</th>
 </tr>
 </thead>
 <tbody>
 <?php foreach ($bookprices as $book): ?>
 <tr>
 <td><?php echo $book['price'] ?></td>
 <td><?php echo $book['book'] ?></td>
 </tr>
 <?php endforeach; ?>
 </tbody>
 </table>
 <script>
 $(function(){
 $("table").dataTable();
});
 </script>
 </body>
 </html>

How it works...
To start this recipe, we create a table to hold our book price data. We then insert the data into
the table. Next, we create an Eloquent model so we can interact with the data. We then pass
that data into our view.

In our view, we load in jQuery and the dataTables plugin. Then, we create a table to hold
our data and then loop through the data, putting each record into a new row. When we add
the dataTable plugin to our table, it will automatically add sorting to our table for each of
our columns.

There's more...
Datatables is a powerful jQuery plugin to manipulate tabular data. For much more
information, view the documentation at http://www.datatables.net.

9
Using Security and

Sessions Effectively

In this chapter, we will cover:

ff Encrypting and decrypting data

ff Hashing passwords and other data

ff Using CSRF tokens and filters in forms

ff Using advanced validation in forms

ff Building a shopping cart

ff Using Redis to save sessions

ff Using basic sessions and cookies

ff Creating a secure API server

Introduction
Security is one of the most important things we need to consider when building web
applications, especially if we're dealing with sensitive user information. Laravel provides
many ways for us to keep our application secure.

In this chapter, we'll look at various ways to mask sensitive data, how to secure our forms
from cross-site attacks, and how to secure an API. We'll also see how we can use sessions
for building a shopping cart and using Redis to store session data.

Using Security and Sessions Effectively

196

Encrypting and decrypting data
When writing applications that deal with sensitive data, we may often want to encrypt any
data that we store in our database. Laravel provides us with a solution to do just that.

Getting ready
For this recipe, we need a standard installation of Laravel, as well as a properly set-up and
configured MySQL database.

How to do it...
This is how we'll complete the recipe using the following steps:

1.	 In the app/config directory, open the app.php file and make sure the key
is empty
 'key' => '',

2.	 In the command line, go to the root of the application and generate a new key using
the following command:
 php artisan key:generate

3.	 Create a table in the database to hold our sensitive information using this
following command:
CREATE TABLE accounts(
 id int(11) unsigned NOT NULL AUTO_INCREMENT,
 business varchar(255) DEFAULT NULL,
 total_revenue varchar(255) DEFAULT NULL,
 projected_revenue varchar(255) DEFAULT NULL,
 PRIMARY KEY (id))
 ENGINE=InnoDB DEFAULT CHARSET=utf8;

4.	 In our app/models directory, create a file named as Account.php by entering the
following code:
<?php

class Account extends Eloquent {
 protected $table = 'accounts';
 public $timestamps = false;
 public function setBusinessAttribute($business) {
 $this->attributes['business'] =
 Crypt::encrypt($business);
}

Chapter 9

197

public function setTotalrevenueAttribute($total_revenue)
 {$this->attributes['total_revenue'] =
 Crypt::encrypt($total_revenue);
}

 public function
 setProjectedrevenueAttribute($projected_revenue)
{
 $this->attributes['projected_revenue'] =
 Crypt::encrypt($projected_revenue);
}

public function getBusinessAttribute()
{
 return Crypt::decrypt($this->attributes['business'])
}

public function getTotalrevenueAttribute()
{
 return number_format(Crypt::decrypt($this
 >attributes['total_revenue'])) ;
}

public function getProjectedrevenueAttribute()
{
 return number_format(Crypt::decrypt($this
 >attributes['projected_revenue']));
}
}

5.	 In our routes.php file, create the routes to view and submit information by adding
the following code:
Route::get('accounts', function()
{
 $accounts = Account::all();
 return View::make('accounts')->with('accounts',
 $accounts);
});

Route::post('accounts', function()
{
 $account = new Account();
 $account->business = Input::get('business');
 $account->total_revenue = Input::get('total_revenue');
 $account->projected_revenue =
 Input::get('projected_revenue');
 $account->save();
 return Redirect::to('accounts');
});

Using Security and Sessions Effectively

198

6.	 In our views directory, create a file named as accounts.php

 <form action="accounts" method="post">
 <label for="business">Business:</label>

 <input name="business">

 <label for="total_revenue">Total Revenue ($):</label>

 <input name="total_revenue">

 <label for="projected_revenue">Projected Revenue
 ($):</label>

 <input name="projected_revenue">

 <input type="submit">
 </form>
 <hr>
 <?php if ($accounts): ?>
 <table border="1">
 <thead>
 <tr>
 <th>Business</th>
 <th>Total Revenue</th>
 <th>Projected Revenue</th>
 </tr>
 </thead>
 <tbody>
 <?php foreach ($accounts as $account): ?>
 <tr>
 <td><?= $account->business ?></td>
 <td>$<?= $account->total_revenue ?></td>
 <td>$<?= $account->projected_revenue ?></td>
 </tr>
 <?php endforeach; ?>
 </tbody>
 </table>
 <?php endif; ?>

How it works...
We begin by removing the default key that comes with Laravel. Then, we use the artisan
command to generate a new key for us and it's automatically saved in the correct file. The
artisan command creates a fairly strong key, so we don't have to worry about coming up
with one on our own.

After you have created a key for an application, make sure it doesn't get changed, as that will
break your application if you've already used some encryption.

Chapter 9

199

Then we set up a database table that will hold our sensitive data. In this example, we'll be
storing business names along with some of their financial data.

Our next step is to set up our model, using the Eloquent model. To make things a little
easier, we'll use the getters and setters in the model, so that whenever a value is set in our
Account model, it will automatically get encrypted using the Laravel Crypt::encrypt
class. Also, to get the information back out of the database, our model will automatically
decrypt it for us.

Next, we create a couple of routes. The first route will show a form to add in information, as
well as display anything already saved in the database. The next route simply takes the form
input and saves it to a new row in our accounts table. After adding the information, we'll be
redirected back to the account list and form page and the new data will be displayed at the
bottom of the page.

However, if we look at the database itself, the information we're storing is unreadable text.
This way, if someone happens to hack into our database, they won't get much information.

Hashing passwords and other data
It's common practice to hash a user's password when we store it in a database. This helps
prevent anyone who gets unauthorized access to the database from seeing people's
passwords. However, we may also want to hide our user's e-mail address or other information,
so no one will be able to access them as well. We can use Laravel's Hash to do this easily.

Getting ready
For this recipe, we need a standard installation of Laravel, as well as a properly set-up and
configured MySQL database.

How to do it...
Here are the steps for this recipe…

1.	 Set up the database table by using the following commands:
CREATE TABLE register (
 id int(10) unsigned NOT NULL AUTO_INCREMENT,
 username varchar(255) DEFAULT NULL,
 email char(60) DEFAULT NULL,
 password char(60) DEFAULT NULL,
 PRIMARY KEY (id)
) ENGINE=InnoDB AUTO_INCREMENT=1

Using Security and Sessions Effectively

200

2.	 In the views directory, create a file named as register.php with the help of the
following code:
 <!doctype html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Register</title>
 </head>
 <body>
 <p>
 <h3>Register</h3>
 <form method="post" action="register">
 <label>User Name</label>
 <input name="username">

 <label>Email</label>
 <input name="email">

 <label>Password</label>
 <input name="password">

 <input type="submit">
 </form>
 </p>
 <p style="border-top:1px solid #555">
 <h3>Login</h3>
 <form method="post" action="login">
 <label>User Name</label>
 <input name="username">

 <label>Email</label>
 <input name="email">

 <label>Password</label>
 <input name="password">

 <input type="submit">
 </form>
 </p>
 <hr>
 <table border='1'>
 <?php if ($users): ?>
 <tr>
 <th>User Name</th>
 <th>Email</th>
 <th>Password</th>
 </tr>
 <?php foreach ($users as $user): ?>
 <tr>
 <td><?= $user->username ?></td>
 <td><?= $user->email ?></td>
 <td><?= $user->password ?></td>

Chapter 9

201

 </tr>
 <?php endforeach; ?>
 <?php endif; ?>
 </table>
 </body>
 </html>

3.	 In our routes.php file, create our routes by adding the following code:
Route::get('register', function()
{
 $users = DB::table('register')->get();
 return View::make('register')->with('users', $users);
});

Route::post('register', function()
{
 $data = array(
 'username' => Input::get('username'),
 'email' => Hash::make(Input::get('email')),
 'password' => Hash::make(Input::get('password')));

 DB::table('register')->insert($data);

 return Redirect::to('register');
});

Route::post('login', function()
{
 $user = DB::table('register')->where('username', '=',
 Input::get('username'))->first();
 if (!is_null($user) and Hash::check(Input::get('email'),
 $user->email) and Hash::check(Input::get('password'),
 $user->password)) {
 echo "Log in successful";
 } else {
 echo "Not able to login";
}
});

How it works...
To start this recipe, we first set up a basic users table to hold a username, e-mail address, and
password. In this example, the username is the only thing that will need to be in regular text.

In our view, we'll create two forms—one for registering, and one for logging in. Just to show the
raw data from the database, we'll also display a list of all the users, as well as the way their
e-mail and password will look in the table.

Using Security and Sessions Effectively

202

When we submit the registration form, the information is posted to our register route and put
into an array. For the e-mail and password, we use Laravel's Hash::make() function to hash
it. We then insert the array into our register table and redirect back to the form and list page.

After redirecting, we'll see the new row added, our e-mail and password hashed, and an
unrecognizable string. Interestingly, with the way hashing works, we could add two rows using
the exact same data, and the hashes would be totally different.

Next, we can try to log in using the username, e-mail, and password. That route will grab a
row from our table that corresponds with the username, then run Laravel's Hash::check()
function on the input values and the database results. If it passes, it returns TRUE and we can
proceed to our application.

There's more...
To use this recipe in a production environment, we'd need some validation on the input. We
might also want to utilize the Eloquent ORM to make hashing a little easier.

If we don't need to hide our users' emails, we could also use Laravel's built in
Auth::attempt() method. More information about that can be found on the Laravel
website: http://laravel.com/docs/security#authenticating-users

Using CSRF tokens and filters in forms
Web forms are notorious for hackers trying to access a website or user's information. To make
our forms a little more secure, we can use a Cross-Site Request Forgery (CSRF) strategy
that's built into Laravel. This will stop form submissions from outside the user's session.

Getting ready
For this recipe, we need a standard installation of Laravel.

How to do it...
The following are the steps to complete this recipe:

1.	 In the routes.php file, create routes to hold and process the form by the code
given below:
Route::get('cross-site', function()
{
 return View::make('cross-site');
});

Chapter 9

203

Route::post('cross-site', array('before' => 'csrf',
 function()
{
 echo 'Token: ' . Session::token() . '
';
 dd(Input::all());
}));

2.	 In the filters.php file, make sure the filter for the csrf token is present as
given in the following code:
Route::filter('csrf', function()
{
 if (Session::token() != Input::get('_token'))
{
 throw new Illuminate\Session\TokenMismatchException;
}
});

3.	 In our views directory, create a file named as cross-site.php, and add two forms
for testing as given in the following code:
 <!doctype html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <title>CSRF Login</title>
 </head>
 <body>
 <p>
 <h3>CSRF Login</h3>
 <?= Form::open(array('url' => 'cross-site', 'method' =>
 'post')) ?>
 <?= Form::token() ?>
 <?= Form::label('email', 'Email') ?>
 <?= Form::text('email') ?>
 <?= Form::label('password', 'Password') ?>
 <?= Form::password('password') ?>
 <?= Form::submit('Submit') ?>
 <?= Form::close() ?>
 </p>
 <hr>
 <p>
 <h3>CSRF Fake Login</h3>
 <?= Form::open(array('url' => 'cross-site', 'method' =>
 'post')) ?>
 <?= Form::hidden('_token', 'smurftacular') ?>
 <?= Form::label('email', 'Email') ?>

Using Security and Sessions Effectively

204

 <?= Form::text('email') ?>
 <?= Form::label('password', 'Password') ?>
 <?= Form::password('password') ?>
 <?= Form::submit('Submit') ?>
 <?= Form::close() ?>
 </p>
 </body>
 </html>

4.	 In the browser, go to http://{your-server}/cross-site
(where {your-server} is the name of the server we're working on),
and then submit each form to see the results.

How it works...
Our first step is to create the route for our CSRF form. In the form, all we need to do is add the
Form::token() function; this will insert a hidden field with the name _token, and the value
of our user session ID. For the route where the form is submitted, we add the csrf before filter
to our route. If the request is determined to be forged, the page will return with a server error.

Our next form is an example of what would happen if a request was trying to be forged. For
this form, instead of the Form::token() function, we manually add the hidden field and add
some random value. Then when we submit the form, the page will display a fail message with
a TokenMismatchException error.

There's more...
Laravel will also generate a csrf token automatically when you use the Form::open()
function, so you don't need to add it manually.

Using advanced validation in forms
There might be times when we need to validate our forms for something that's not part of the
framework. This recipe will show you how to build a custom validation rule and apply it.

Getting ready
For this recipe, we need a standard installation of Laravel.

Chapter 9

205

How to do it...
The following are the steps to complete this recipe:

1.	 In the views directory, create a file named valid.php to hold our form using the
following code:
 <!doctype html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Custom Validation</title>
 </head>
 <body>
 <p>
 <?php if ($errors): ?>
 <?php echo $errors->first('email') ?>
 <?php echo $errors->first('captain') ?>
 <?php endif; ?>
 </p>
 <p>
 <h3>Custom Validation</h3>
 <?= Form::open(array('url' => 'valid', 'method' => 'post'))
 ?>
 <?= Form::label('email', 'Email') ?>
 <?= Form::text('email') ?>

 <?= Form::label('captain', 'Your favorite captains (choose
 three)') ?>

 <?= 'Pike: ' . Form::checkbox('captain[]', 'Pike') ?>

 <?= 'Kirk: ' . Form::checkbox('captain[]', 'Kirk') ?>

 <?= 'Picard: ' . Form::checkbox('captain[]', 'Picard')
 ?>

 <?= 'Sisko: ' . Form::checkbox('captain[]', 'Sisko') ?>

 <?= 'Janeway: ' . Form::checkbox('captain[]', 'Janeway')
 ?>

 <?= 'Archer: ' . Form::checkbox('captain[]', 'Archer')
 ?>

 <?= 'Crunch: ' . Form::checkbox('captain[]', 'Crunch')
 ?>

 <?= Form::submit('Submit') ?>
 <?= Form::close() ?>
 </p>
 </body>
 </html>

Using Security and Sessions Effectively

206

2.	 In the routes.php file, create our routes with the following code:
Route::get('valid', function()
{
 return View::make('valid');
});
Route::post('valid', function()
{
 $rules = array('email' => 'required|email',
 'captain' => 'required|check_three');
 $messages = array(
 'check_three' => 'Thou shalt choose three captains. No
 more. No less. Three shalt be the number thou shalt
 choose, and the number of the choosing shall be
 three.',);
 $validation = Validator::make(Input::all(), $rules,
 $messages);
 if ($validation->fails())
 {
 return Redirect::to('valid')->withErrors($validation);
}
 echo "Form is valid!";
});

3.	 Also in the routes.php file, create our custom validation as given in the
following code:

 Validator::extend('check_three', function($attribute,
 $value, $parameters)
{
 return count($value) == 3;
});

How it works...
To begin, we create the form in our view. We ask for a valid e-mail and exactly three of the
checkboxes to be checked. Since there's no Laravel validation method for exactly three
checkboxes, we need to create a custom validation.

Our custom validation takes the input array and does a simple count. If it comes up to three, it
returns TRUE. If not, it returns FALSE and fails the validation.

Back in our form processing route, all we then need to do is add the name of the custom
validator we created to our validation rules. If we want to set a custom message, we can add
that as well.

Chapter 9

207

There's more...
The additional validators for this recipe are in the routes.php file for simplicity. If we were
to have multiple custom validators, it might be a better idea to put them in their own validator
files. To do this, we should create a file named validator.php in our app directory and add
in any code we want. Then, open up the global.php file in the app/start directory and, at
the very end of the file, add the require app_path().'/validator.php' function. This
will load all of our validators automatically.

Building a shopping cart
E-commerce is a huge business on the web. An integral part of most e-commerce sites is the
use of a shopping cart system. This recipe will walk through how to use Laravel sessions to
store items for sales and build a shopping cart.

Getting ready
For this recipe, we need a standard installation of Laravel, as well as a properly set up and
configured MySQL database.

How to do it...
To complete this recipe, follow these given steps:

1.	 In our database, create a table and add some data with this SQL code:
CREATE TABLE items (
 id int(10) unsigned NOT NULL AUTO_INCREMENT,
 name varchar(255) DEFAULT NULL,
 description text,
 price int(11) DEFAULT NULL,
 PRIMARY KEY (id)
) ENGINE=InnoDB;

 INSERT INTO items VALUES ('1', 'Lamp', 'This is a Lamp.','14');
 INSERT INTO items VALUES ('2', 'Desk', 'This is a Desk.','75');
 INSERT INTO items VALUES ('3', 'Chair', 'This is a
 Chair.', '22');
 INSERT INTO items VALUES ('4', 'Sofa', 'This is a
 Sofa/Couch.', '144');
 INSERT INTO items VALUES ('5', 'TV', 'This is a
 Television.', '89');

Using Security and Sessions Effectively

208

2.	 In the routes.php file, create the routes for our cart with the following code:
Route::get('items', function()
{
 $items = DB::table('items')->get();
 return View::make('items')->with('items', $items)
 >nest('cart', 'cart', array('cart_items' =>
 Session::get('cart')));
});

Route::get('item-detail/{id}', function($id)
{
 $item = DB::table('items')->find($id);
 return View::make('item-detail')->with('item', $item)
 >nest('cart', 'cart', array('cart_items' =>
 Session::get('cart')));
});

Route::get('add-item/{id}', function($id)
{
 $item = DB::table('items')->find($id);
 $cart = Session::get('cart');
 $cart[uniqid()] = array ('id' => $item->id, 'name' =>
 $item >name, 'price' => $item->price);
 Session::put('cart', $cart);
 return Redirect::to('items');
});

Route::get('remove-item/{key}', function($key)
{
 $cart = Session::get('cart');
 unset($cart[$key]);
 Session::put('cart', $cart);
 return Redirect::to('items');
});

Route::get('empty-cart', function()
{
 Session::forget('cart');
 return Redirect::to('items');
});

3.	 In the views directory, create a file named items.php with the following code:
 <!doctype html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Item List</title>

Chapter 9

209

 </head>
 <body>
 <div>
 <?php foreach ($items as $item): ?>
 <p>
 <a href="item-detail/<?= $item->id ?>">
 <?= $item->name ?>
 --
 <a href="add-item/<?= $item->id ?>">Add to Cart
 </p>
 <?php endforeach; ?>
 </div>
 <?php $cart_session = Session::get('cart') ?>
 <?php if ($cart_session): ?>
 <?= $cart ?>
 <?php endif; ?>
 </body>
 </html>

4.	 In the views directory, create a file named item-detail.php by the given code:
 <!doctype html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Item: <?= $item->name ?></title>
 </head>
 <body>
 <div>
 <h2><?= $item->name ?></h2>
 <p>Price: <?= $item->price ?></p>
 <p>Description: <?= $item->description ?></p>
 <p>
 <a href="../add-item/<?= $item->id ?>">Add to Cart
 </p>
 <p>Item list</p>
 </div>
 <? if (Session::has('cart')): ?>
 <?= $cart ?>
 <? endif; ?>
 </body>
 </html>

5.	 In the views directory, create a file named cart.php with the following code:
 <div class="cart" style="border: 1px solid #555">
 <?php if ($cart_items): ?>
 <?php $price = 0 ?>

Using Security and Sessions Effectively

210

 <?php foreach ($cart_items as $cart_item_key =>
 $cart_item_value): ?>
 <?php $price += $cart_item_value['price']?>

 <?= $cart_item_value['name'] ?>:
 <?= $cart_item_value['price'] ?> (<a href="remove-item/<?=
 $cart_item_key ?>">remove)

 <?php endforeach; ?>

 <p>Total: <?= $price ?></p>
 <?php endif; ?>
 </div>

6.	 Now, we can go in our browser to http://{your-server}/items to view the list
of items from our database, links to their detail pages, and an option to add them to
a cart. When added to the cart, they will show at the bottom of the page.

How it works...
To begin this recipe, we need to set up a database table that will hold items that we want to
add to the cart. We'll also add in a few test items, so we have some data to work with.

In our first route, we get all of the existing items in our table and display them. We're also
nesting in a cart view that will show the items we already added. In that nested view, we also
send in our cart session, so the list can populate.

Our next route does something similar but it accepts only one item and displays the full
information.

The next route actually adds the items. First, we get the item from the database based on its
ID. Then we save the existing cart session to a variable, so we can manipulate it. We add the
item to the array, using php's uniqid() function as our key. Then we put the cart array back
into the Session and redirect it.

If we want to remove an item, we first make a way to get the item's ID and remove it from the
cart array. The other way is to just delete all the session and start over.

In our view, we'll also notice that we are only allowing the cart list to show if there actually is
anything in the cart.

There's more...
This recipe can easily be extended to be more full-featured. For example, instead of adding a
new record if we click on the same item multiple times, we could store a total number along
with each item. That way, we could add a form field asking for the quantity next to the item.

Chapter 9

211

Using Redis to save sessions
Redis is a popular key/value data store and is quite fast. Laravel includes Redis support, and
makes it easy to interact with the Redis data.

Getting ready
For this recipe, we'll need to have a Redis server properly configured and running. More
information on that can be found at http://redis.io/.

How to do it...
Follow these steps to complete this recipe:

1.	 In our routes.php file, create the routes as given in the following code:
Route::get('redis-login', function()
{
 return View::make('redis-login');
});

Route::post('redis-login', function()
{
 $redis = Redis::connection();
 $redis->hset('user', 'name', Input::get('name'));
 $redis->hset('user', 'email', Input::get('email'));
 return Redirect::to('redis-view');
});

Route::get('redis-view', function()
{
 $redis = Redis::connection();
 $name = $redis->hget('user', 'name');
 $email = $redis->hget('user', 'email');
 echo 'Hello ' . $name . '. Your email is ' . $email;
});

2.	 In the views directory, create a file named redis-login.php with the
following code:
 <!doctype html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Redis Login</title>
 </head>
 <body>

Using Security and Sessions Effectively

212

 <p>
 <h3>Redis Login</h3>
 <?= Form::open(array('url' => 'redis-login', 'method' =>
 'post')) ?>
 <?= Form::label('name', 'Your Name') ?>
 <?= Form::text('name') ?>
 <?= Form::label('email', 'Email') ?>
 <?= Form::text('email') ?>
 <?= Form::submit('Submit') ?>
 <?= Form::close() ?>
 </p>
 </body>
 </html>

3.	 Now, we can open our browser and go to http://{your-server}/redis-login
and fill in the form. After submitting, we will display the information from Redis.

How it works...
Our first step is to create a simple form that we will use to input data to Redis. In our redis-
login route, we use a view that will ask for a name and e-mail address and, when submitted,
will post to the redis-login route.

After posting, we create a new Redis instance using the Redis::connection() function,
which will use the default settings found in our app/config/database.php file. To store
the information in Redis, we're using a hash and setting the data using the hset() function.
Our Redis instance can use any command that Redis accepts, so we could easily choose
between functions such as set() or sadd().

Once the data is in Redis, we redirect to a route that will display the data. For that, we just
need to call the hget() function with the key and the field we added.

Using basic sessions and cookies
There will be times when we want to pass data from one page of our app to another page
without needing to store the information in a database. To accomplish this, we can use the
various Session and Cookie methods that Laravel provides us.

Getting ready
For this recipe, we need a standard Laravel installation.

Chapter 9

213

How to do it…
For this recipe, follow the given steps:

1.	 In the views folder, create a file named session-one.php with the following code:
 <!DOCTYPE html>
 <html>
 <head>
 <title>Laravel Sessions and Cookies</title>
 <meta charset="utf-8">
 </head>
 <body>
 <h2>Laravel Sessions and Cookies</h2>
 <?= Form::open() ?>
 <?= Form::label('email', 'Email address: ') ?>
 <?= Form::text('email') ?>

 <?= Form::label('name', 'Name: ') ?>
 <?= Form::text('name') ?>

 <?= Form::label('city', 'City: ') ?>
 <?= Form::text('city') ?>

 <?= Form::submit('Go!') ?>
 <?= Form::close() ?>
 </body>
 </html>

2.	 In the routes.php file, create our routes as given in the following code:
Route::get('session-one', function()
{
 return View::make('session-one');
});

Route::post('session-one', function()
{
 Session::put('email', Input::get('email'));
 Session::flash('name', Input::get('name'));
 $cookie = Cookie::make('city', Input::get('city'), 30);
 return Redirect::to('session-two')->withCookie($cookie);
});

Route::get('session-two', function()
{
 $return = 'Your email, from a Session, is '
 Session::get('email') . '.
';

Using Security and Sessions Effectively

214

 $return .= 'You name, from flash Session, is '
 Session::get('name') . '.
';
 $return .= 'You city, from a cookie, is ' .
 Cookie::get('city') . '.
';
 $return .= 'Next page';
 echo $return;
});

Route::get('session-three', function()
{
 $return = '';

 if (Session::has('email')) {
 $return .= 'Your email, from a Session, is ' .
 Session::get('email') . '.
';
} else {
$return .= 'Email session is not set.
';
}

if (Session::has('name')) {
 $return .= 'Your name, from a flash Session, is ' .
 Session::get('name') . '.
';
} else {
$return .= 'Name session is not set.
';
}

if (Cookie::has('city')) {
 $return .= 'Your city, from a cookie, is ' .
 Cookie::get('city') . '.
';
} else {
 $return .= 'City cookie is not set.
';
}
 Session::forget('email');
 $return .= 'Reload';
 echo $return;
});

How it works...
To begin, we create a simple form that we will use to submit information to the sessions and
cookies. After posting the values, we take the email field and add it to a regular session. The
name field will be added to a flash session and the city will be added to a cookie. Also, we'll
set the cookie to expire after 30 minutes. Once they're all set, we redirect to our second page,
and make sure we pass the cookie to the return value.

Chapter 9

215

Our second page simply takes the values we set and displays them to verify that they were set
correctly. At this point, once the request is complete, our flash session, the name, should no
longer be available.

When we click on through to our third page, we add in some checks to make sure the sessions
and cookies still exist, using the has() method on both. Our email and city should still
display, but the name session should not. We then remove the email session using the
forget() method. When we reload the page, we'll notice that the only thing that is still
displayed is the city cookie.

There's more...
Flash data is only available on the next request we make, and then it is removed. However, if
we'd like to keep our flash data, we can use the Session::reflash() command and it will
send the data to our next request as well. If we have multiple flash data, we can also choose
specific sessions to keep for the next request using the Session::keep(array('your-
session-key', 'your-other-session')) function.

Creating a secure API server
In this recipe, we'll create a simple API to display some information from our database. To control
who has access to the data, we allow users to create keys and use that key in their API request.

Getting ready
For this recipe, we need a standard installation of Laravel and a configured MySQL database.

How to do it...
To complete this recipe, we'll follow these given steps:

1.	 In our database, create a table to hold the API keys as given in the following code:
CREATE TABLE api (
 id int(10) unsigned NOT NULL AUTO_INCREMENT,
 name varchar(255) DEFAULT NULL,
 api_key varchar(255) DEFAULT NULL,
 status tinyint(1) DEFAULT NULL,
 PRIMARY KEY (id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Using Security and Sessions Effectively

216

2.	 In the database, create a table for some example data to access as shown in the
following code:
CREATE TABLE shows (
 id int(10) unsigned NOT NULL AUTO_INCREMENT,
 name varchar(200) NOT NULL,
 year int(11) NOT NULL,
 created_at datetime NOT NULL,
 updated_at datetime NOT NULL,
 PRIMARY KEY (id)
) ENGINE=InnoDB CHARSET=utf8;

 INSERT INTO shows VALUES ('1', 'Happy Days', '1979',
 '2013-01-01 00:00:00', '2013-01-01 00:00:00');
 INSERT INTO shows VALUES ('2', 'Seinfeld', '1999',
 '2013-01-01 00:00:00', '2013-01-01 00:00:00');
 INSERT INTO shows VALUES ('3', 'Arrested Development',
 '2006', '2013-01-01 00:00:00', '2013-01-01 00:00:00');
 INSERT INTO shows VALUES ('4', 'Friends', '1997',
 '2013-01-01 00:00:00', '2013-01-01 00:00:00');

3.	 In the models directory, create a file named as Api.php
 <?php

class Api extends Eloquent {

 public $table = 'api';
 public $timestamps = FALSE;
}

4.	 In the models directory, create a file named as Show.php
 <?php
class Show extends Eloquent {
}

5.	 In the views directory, create a file named api-key.php
 <!DOCTYPE html>
 <html>
 <head>
 <title>Create an API key</title>
 <meta charset="utf-8">
 </head>
 <body>
 <h2>Create an API key</h2>
 <?php echo Form::open() ?>
 <?php echo Form::label('name', 'Your Name: ') ?>
 <?php echo Form::text('name') ?>

 <?php echo Form::submit('Go!') ?>
 <?php echo Form::close() ?>

Chapter 9

217

 </body>
 </html>

6.	 In the routes.php file, create the routes to allow for the api-key registration
Route::get('api-key', function() {
 return View::make('api-key');
});

Route::post('api-key', function() {
 $api = new Api();
 $api->name = Input::get('name');
 $api->api_key = Str::random(16);
 $api->status = 1;
 $api->save();
 echo 'Your key is: ' . $api->api_key;
});

7.	 In the routes.php, create the routes for accessing the api by the following code:
Route::get('api/{api_key}/shows', function($api_key)
{
 $client = Api::where('api_key', '=', $api_key)->where('status',
'=', 1)->first();
 if ($client) {
 return Show::all();
 } else {
 return Response::json('Not Authorized', 401);
 }
});
Route::get('api/{api_key}/show/{show_id}', function($api_key,
$show_id)
{
 $client = Api::where('api_key', '=', $api_key)->where('status',
'=', 1)->first();
 if ($client) {
 if ($show = Show::find($show_id)) {
 return $show;
 } else {
 return Response::json('No Results', 204);
 }
 } else {
 return Response::json('Not Authorized', 401);
 }
});

8.	 To test it out, in the browser, go to http://{your-server}/api-key (where
{your-server} is the name of the development server) and fill in the form. On the
next page, copy the key that was generated. Then, go to http://{your-server}/
api/{your-copied-key}/shows and a list of shows should appear in the
json format.

Using Security and Sessions Effectively

218

How it works...
We begin by setting up our tables and models. Our API table will be used to check for the key
and the show table will be the test data we will use the key to access.

Our next task is to create a way to generate keys for our application. In this example, we'll only
take a name value. After submitting, we create a random, 16-character string that will be the
user's key. We then save the information to the table and display the key to the user.

To use this key, we create two routes to display the information. The first route uses the
{api_key} wildcard in the URL, and passes that value to our function. We then query the
database for that key and make sure the status is still active. This way, if we decide to revoke
a user's key, we can set the status to false and they won't be able to use the API. If they don't
exist or the status is false, we respond with the HTTP code of 401, to show that they aren't
authorized. Otherwise, we return the Eloquent object that will allow us to display the records in
the json format.

Our second route will display the records of a single show. For that URL, we use the {api_
key}wildcard for the key and the {show_id} wildcard for the ID of the show. We pass those
to the functions, and then check the key as before. If the key is valid, we make sure a show
with that ID exists, and use the Eloquent object again to display only the show with the given
ID in the json format.

There's more...
We also have the option of using a Laravel filter, if we'd rather have the api keys posted
instead. To do that, we'd create a new filter in the filters.php file

Route::filter('api', function()
{
 if ($api_key = Input::get('api_key')) {
 $client = Api::where('api_key', '=', $api_key)-
 >where('status', '=', 1)->first();
 if (!$client) {
 return Response::json('Not Authorized', 401);
}
 } else {
 return Response::json('Not Authorized', 401);
}
});

And then, for our shows routes, we respond to a post request and add the before filter as
shown in the following code:

Route::post('api/shows', array('before' => 'api', function()
{
 return Show::all();
}));

10
Testing and

Debugging Your App

In this chapter, we will cover:

ff Setting up and configuring PHPUnit

ff Writing and running a test case

ff Using Mockery to test controllers

ff Writing acceptance tests using Codeception

ff Debugging and profiling your app

Introduction
As web applications grow more complex, we need to make sure that any changes or updates
we make to the existing code won't negatively affect other parts of code. One way to check for
this is to create unit tests. Laravel provides very helpful ways for us to include unit tests with
our app.

Setting up and configuring PHPUnit
In this recipe, we'll see how to install and setup the popular PHPUnit testing package: PHPUnit.

Getting ready
For this recipe, we need a working installation of Laravel 4. We'll also need the Composer
dependency tool installed from http://getcomposer.org.

Testing and Debugging Your App

220

How to do it...
To complete this recipe, follow the given steps:

1.	 In the root directory of the application, add the following line to the
composer.json file:
 "require-dev": {
 "phpunit/phpunit": "3.7.*"
 },

2.	 Open the command line window, navigate to the root directory, and run an update on
the Composer tool with the following line:
 php composer update

3.	 After it is installed, run a quick test in the command line window with the command:
 vendor/bin/phpunit

How it works...
Our composer.json file tells the Composer tool which packages it should install. So our
first task is to add the phpunit package as a requirement. After saving that file, we'll run an
update command and phpunit will be added to our vendor directory.

After it's installed, we can run the command to test out phpunit and make sure it was
installed correctly. Laravel comes with an example test case in the app/tests directory,
and it should pass all tests.

Writing and running a test case
In this recipe, if we already have the PHPUnit installed and working, we can write a test case
and use PHPUnit to check if it is valid or not.

Getting ready
To run a test case, we'll need a working installation of Laravel. We'll also need to have
installed PHPUnit from the previous recipe, Setting up and configuring PHPUnit.

Chapter 10

221

How to do it...
To complete this recipe, follow the given steps:

1.	 In the app/tests directory, create a file named MyAppTest.php with the
following code:
 <?php
class MyAppTest extends TestCase {

 /**
 * Testing the MyApp route
 *
 * @return void
 */
 public function testMyAppRoute()
{
 $response = $this->call('GET', 'myapp');
 $this->assertResponseOk();
 $this->assertEquals('This is my app', $response
 >getContent());
}
}

2.	 Run the tests in the command line window, and we should get failing tests on
entering the following command:
 vendor/bin/phpunit

3.	 In our routes.php file, add a new route with the following code:
 Route::get('myapp', function()
{
 return 'This is my app';
});

4.	 Run the test again to get a passing unit test
 vendor/bin/phpunit

How it works...
When we run our PHPUnit tests, Laravel will automatically look in the app/tests directory.
We begin by creating a new file in that directory to hold the test named as MyAppTest and
extend TestCase.

Testing and Debugging Your App

222

For this simple test, we use the call method and do a GET request on the myapp route.
The first thing we check for is that we receive an Ok or a 200 status code, and then that the
content returned is the string This is my app. At this point, when we run the test, it will fail
because we haven't created the route yet.

Next, we create our myapp route and return the string This is my app. Finally, we re-run
the test and we should get a successful result.

See also
ff The Setting up and configuring PHPUnit recipe

Using Mockery to test controllers
Sometimes, we need to test the code that uses our database. The commonly accepted
practice is that we shouldn't actually do live queries on the database while running a unit test.
To get around this, we can use the Mockery package to fake our data.

Getting ready
For this recipe, we need to have Laravel installed and working, as well as PHPUnit from the
Setting up and configuring PHPUnit recipe.

How to do it...
To complete this recipe, follow the given steps:

1.	 Open up our composer.json file, and make sure the following code is included:
 "require-dev":
{
 "phpunit/phpunit": "3.7.*",
 "mockery/mockery": "dev-master"
},

2.	 Open the command line terminal and run the Composer update with the
following command:
 php composer.phar update

3.	 After the update, in the app/controllers directory, create the
ShipsController.php file using the following code:
<?php

class ShipsController extends BaseController {

Chapter 10

223

 protected $ships;
 public function __construct(Spaceship $ships)
{
 $this->ships = $ships;
}

 public function showShipName()
{
 $ship = $this->ships->first();
 return $ship->name;
}
}

4.	 In routes.php file, add a route to this controller using the following command line:
 Route::get('ship', 'ShipsController@showShipName');

5.	 In the app/tests directory, create a file named as SpaceshipTest.php as shown
in the following code:
<?php

class SpaceshipTest extends TestCase {

 public function testFirstShip ()
{
 $this->call('GET', 'ship');
 $this->assertResponseOk();
}
}

6.	 Back in the command line window, run our tests with the following command:
 vendor/bin/phpunit

7.	 At this point, we will get a failing test that displays the following message:
ReflectionException: Class Spaceship does not exist

8.	 Since the Spaceship class is going to be our model, we'll use Mockery to mock it.
Update the SpaceshipTest class with the following code:
<?php

class SpaceshipTest extends TestCase {

 public function testFirstShip()
{
 $ship = new stdClass();
 $ship->name = 'Enterprise';

Testing and Debugging Your App

224

 $mock = Mockery::mock('Spaceship');
 $mock->shouldReceive('first')->once()->andReturn($ship);

 $this->app->instance('Spaceship', $mock);
 $this->call('GET', 'ship');
 $this->assertResponseOk();
}

 public function tearDown()
{
 Mockery::close();
}
}

9.	 Now, back in the command line window, run the test again and it should pass.

How it works...
We begin by installing the Mockery package using the Composer. This will allow us to use it
throughout our application. Next, we create a controller with one method that will display the
name of a single ship. In the controller's constructor, we pass in the model we want to use,
and in this case it's going to be named Spaceship and use Laravel's Eloquent ORM.

In the showShipName method, we'll get the first record from the ORM, then do a simple
return of the record's name. We then need to make a route that points to the controller and
the showShipName method.

When we first create the test, we simply make a GET request and see if it sends back an OK
response. At this point, since we haven't made out the Spaceship model yet, it will display
an error when we run the test. We could add the needed tables to the database and create
the model, and the test would pass. However, when testing controllers, we don't want to worry
about the database and should only be testing whether the controller code is working. For
that, we can now use Mockery.

When we call the first method on the Spaceship class, it will give us an object holding all
the returned fields, so we first create a generic object and assign it to the $ship controller.
Then, we create our mock object for the Spaceship class and, when our controller asks for
the first method, the mock object will return our previously created generic object.

Next, we need to tell Laravel that whenever the Spaceship instance is requested, it should
use our mock object instead. And finally, call GET on our ship route and make sure it returns
an OK response.

See also
ff The Setting up and configuring PHPUnit recipe

Chapter 10

225

Writing acceptance tests using Codeception
Acceptance testing is a useful way to test that your application is outputting the correct
information to the browser. Using a package such as Codeception, we can automate
these tests.

Getting ready
For this recipe, we'll need a working copy of Laravel installed.

How to do it...
To complete this recipe, follow the given steps:

1.	 Open the composer.json file, and add the following line to our
require-dev section:
 "codeception/codeception": "dev-master",

2.	 Open the command line window, and update the app with the following command:
 php composer.phar update

3.	 After it is installed, we need to run the bootstrap command in the terminal, as
shown in the following command:
 vendor/bin/codecept bootstrap app

4.	 In the app/tests/acceptance directory, create a file named as AviatorCept.
php using the following code:
<?php

$I = new WebGuy($scenario);
$I->wantTo('Make sure all the blueprints are shown');
$I->amOnPage('/');
$I->see('All The Blueprints');

5.	 In our main routes.php file, update the default route using the following code:
Route::get('/', function()
{
return 'Way of the future';
});

6.	 Open the command line window and run the acceptance test with the
following command:
 vendor/bin/codecept run –c app

Testing and Debugging Your App

226

7.	 At this point, we should see it failing. To make it pass, update the default route once
more by entering the following code:
Route::get('/', function()
{
return 'All The Blueprints';
});

8.	 In the command line window, run the test again using the following command:
 vendor/bin/codecept run –c app

9.	 This time, it should pass.

How it works...
We start by installing the Codeception package through the Composer. Once it's downloaded,
we run the bootstrap command that will create all the needed files and directories.
Codeception automatically adds the files and folders to a tests directory; thus, to make
sure they are added into Laravel's test directory, we add the app directory to the end of the
bootstrap command.

Next, we create the file to hold our test in the acceptance directory. We start by creating
a new WebGuy object, which is Codeceptions class to run acceptance tests. The next line is
describing what we want to do, which in this case is to see all the blueprints. The next line tells
the test which page we need to be on, which will correspond to our routes. For our purposes,
we're just checking the default route. Finally, we tell the test what we want to see on the page.
Any text we put here should be displayed somewhere on the page.

Our first pass at the default route will display Way of the future; thus, when the
Codeception test is run, it will fail. To run the tests, we use the run command and make
sure we use the –c flag and specify the app as the path to the tests, since we installed the
bootstrap files inside the app/tests directory.

Then, we can update the route to display the text All The Blueprints and re-run the test.
This time, it will pass.

There's more...
Codeception is a very powerful testing suite with many different options. To fully understand
everything it can do, go to http://codeception.com/.

Chapter 10

227

Debugging and profiling your app
If we want to know how our application is working behind the scenes, we'll need to profile it.
This recipe will show how to add in a profiler to our Laravel app.

Getting ready
For this recipe, we'll need a working copy of Laravel with a MySQL database properly configured.

How to do it...
To complete this recipe, follow the given steps:

1.	 Open up the command line window and use the artisan command to create our
migrations as given in the following code:
 php artisan migrate::make create_spaceships_table –create –
table="spaceships"

2.	 In the app/database/migrations folder, open the file whose name begins with
the date and ends with create_spaceships_table.php, and use this for our
database table
<?php

 use Illuminate\Database\Schema\Blueprint;
 use Illuminate\Database\Migrations\Migration;

class CreateSpaceshipsTable extends Migration {

 /**
 * Run the migrations.
 *
 * @return void
 */
public function up()
{
 Schema::create('spaceships', function(Blueprint $table)
{
 $table->increments('id');
 $table->string('name');
 $table->string('movie');
 $table->timestamps();
});
}

Testing and Debugging Your App

228

 /**
 * Reverse the migrations.
 *
 * @return void
 */
public function down()
{
 Schema::drop('spaceships');
}

}

3.	 In the app/database/seeds folder, create a file named SpaceshipSeeder.php
as shown in the following code:
<?php

class SpaceshipSeeder extends Seeder {

 /**
 * Run the database seeds.
 *
 * @return void
 */
 public function run()
{
 DB::table('spaceships')->delete();

 $ships = array(
 array(
 'name' => 'Enterprise',
 'movie' => 'Star Trek'
),
 array(
 'name' => 'Millenium Falcon',
 'movie' => 'Star Wars'
),
 array(
 'name' => 'Serenity',
 'movie' => 'Firefly'
),
);

 DB::table('spaceships')->insert($ships);
}
}

Chapter 10

229

4.	 In the same directory, open the DatabaseSeeder.php file and make sure the
run() method looks like the following snippet:
public function run()
{
 Eloquent::unguard();
 $this->call('SpaceshipSeeder');
}

5.	 Back in the command line window, install the migration and run the seeder with the
following code:
 php artisan migrate

 php artisan db:seed

6.	 In the app/models directory, create a file named as Spaceship.php as shown in
the following snippet:
<?php

class Spaceship extends Eloquent{

 protected $table = 'spaceships';
}

7.	 In the app/controllers directory, create a file named as ShipsController.php
<?php

class ShipsController extends BaseController {

 protected $ships;

 public function __construct(Spaceship $ships)
 {
 $this->ships = $ships;
}

 public function showShipName()
{
 $ships = $this->ships->all();
 Log::info('Ships loaded: ' . print_r($ships, TRUE));
 return View::make('ships')->with('ships', $ships);
}
}

Testing and Debugging Your App

230

8.	 In the routes.php file, register the route as shown in the following command:
 Route::get('ship', 'ShipsController@showShipName');

9.	 In the app/views directory, create a view named as ships.blade.php as shown
in the following code:
 @foreach ($ships as $s)
 {{ $s->name }} <hr>
 @endforeach

10.	 At this point, if we go to the http://{your-dev-url}/public/ship, we'll
see the list of ships. Next we need to open the composer.json file and add the
following line in the require-dev section:
 "loic-sharma/profiler": "dev-master"

11.	 Then in the command line window, update the Composer using the
following command:
 php composer.phar update

12.	 After everything is downloaded, in the app/config folder, open the app.php file.
In the providers array, add the following line to the end of the code:
 'Profiler\ProfilerServiceProvider',

13.	 In the same file, in the aliases array, add the following line:
 'Profiler' => 'Profiler\Facades\Profiler',

14.	 At the top of this file, make sure debug is set to true, then go back to
http://{your-dev-url}/public/ship in your browser. The profiler
will show up at the bottom of the browser window.

How it works...
Our first step is to create the page we want to profile. We start with using the artisan
command to create a migrations file, and then add in the Schema builder code to make
our spaceships table. When that's done, we can add some information to the table using the
seeder file.

With that complete, we can now run the migration and the seeder, and our table will be
created with all the information already populated.

Next we create a simple model and a controller for our data. In the controller, we'll simply get
all of the ships and pass the variable to our ships view. We'll also add a logging event in the
middle of the code. This will allow us to debug the code later, if we need to.

Once that's done, we can see the list of ships we created.

Chapter 10

231

Then, we need to install the profiler package, which is based on a previous version of Laravel's
profiler. After updating our Composer file, we then register the profiler so our app knows of its
existence; we also register the Façade if we want to do more with it later.

In our config file, if we have debug set to TRUE, the profiler will display on every page we
access. We can disable the profiler by simply setting debug to FALSE.

There's more...
We could also add timers to our app using the startTimer and endTimer methods as shown in
the following snippet:

 Profiler::startTimer('myTime');
 {some code}
 Profiler::endTimer('myTime');

11
Deploying and

Integrating Third-party
Services into

Your Application

In this chapter, we will cover:

ff Creating a queue and using Artisan to run it

ff Deploying a Laravel app to Pagoda Box

ff Using the Stripe payment gateway with Laravel

ff Doing a GeoIP lookup and setting custom routing

ff Gathering e-mail addresses and using them with a third-party e-mail service

ff Storing and retrieving cloud content from Amazon S3

Introduction
Web applications will often rely on third-party services to help our applications run. Using
Composer and Laravel, we can integrate existing code that will allow us to interact with these
services. In this chapter, we'll see how to deploy our app to Pagoda Box, use Stripe payments,
do GeoIP lookups, use a third-party e-mail service, and store the content to the cloud.

Deploying and Integrating Third-party Services into Your Application

234

Creating a queue and using Artisan to run it
There may be times when our app is required to do a lot of work behind the scenes to
accomplish a task. Instead of making a user wait until the tasks are complete, we can add
them to a queue and do the processing later. There are many queue systems available but
Laravel has a few that are very easy to implement. In this recipe, we'll be using IronMQ.

Getting ready
For this recipe, we'll need a working installation of Laravel 4, as well as API credentials for
IronMQ. A free account can be created at http://www.iron.io/.

How to do it...
To complete this recipe, follow the given steps:

1.	 In the app/config directory, open the queue.php file, set the default value to
iron and fill in the credentials from IronMQ.

2.	 Open Laravel's composer.json file and update the required section so it looks
resembles the following snippet:
"require": {
"laravel/framework": "4.0.*",
"iron-io/iron_mq": "dev-master"
}

3.	 In the command line window, update the composer file with the following command:
php composer.phar update

4.	 After everything is installed, open the routes.php file and create a route that hits
the queue:
Route::get('queueships', function() {
$ships = array(
 array(
 'name' => 'Galactica',
 'show' => 'Battlestar Galactica'),
 array(
 'name' => 'Millennium Falcon',
 'show' => 'Star Wars'),
 array(
 'name' => 'USS Prometheus',
 'show' => 'Stargate SG-1')
);

Chapter 11

235

$queue = Queue::push('Spaceship', array('ships' =>
$ships));
 return 'Ships are queued.';
});

5.	 Create a file in the app/models directory with the name Spaceship.php as shown
in the following code:
<?php

class Spaceship extends Eloquent{

 protected $table = 'spaceships';

 public function fire($job, $data)
{
// Could be added to database here!
 Log::info('We can put this in the database: ' .
 print_r($data, TRUE));
 $job->delete();
}
}

6.	 In your browser, go to http://{your-url}}/public/queueships, and refresh a
couple of times.

7.	 Check in the IronMQ window that new messages were added.

8.	 Open up the command line window and run the following command:
 php artisan queue:listen

9.	 After a few moments, look inside the folder app/storage/logs and find the file with
today's date in the name. It will have a print out of the array we added to the queue.

How it works...
We begin by making sure to use IronMQ as our default queue driver, in the config file. If
we wanted to use another queue system, we could set that here. Then we install the IronMQ
package into our application, using composer. This will add all the files we need, as well as
any dependencies that Iron needs to work.

Deploying and Integrating Third-party Services into Your Application

236

At this point, Laravel is already set up to use whatever queue system we choose, so we can
begin using it. We first create an array of data in our route. This could just as easily be form
input, so some other data we'd like to wait to process. We then use the Queue::push()
method, set the class that should be used (Spaceship), and then pass in the data to send to
that class.

If we now go to this route and then check the IronMQ queue, we'll see that there's one job
waiting to be processed. Our next task is to create a class to process the queue. For that, we
create a model named Spaceship. We need to create a fire() method to parse our data
from the queue. Here, we could save the information to a database or do some other heavy
processing. For now, we'll just send the data to a log file. At the end of the fire() method,
we make sure to delete the job.

If we go to our queueships route and refresh a few times, we'll see multiple jobs in our
queue, but we haven't processed them yet. Therefore, in the command line, we run artisan's
queue:listen command, and this will start processing our queues. Pretty soon, we
can go into our logs directory, and see the information that was sent from the queue.

There's more...
There are many reasons we might want a queue. Most often it's for things such as processing
images or doing heavy data parsing. It's also useful to queue any e-mails we want to send
from the site, and Laravel has a special way to do that using the Mail::queue() command.

Deploying a Laravel app to Pagoda Box
Pagoda Box is a popular cloud hosting service that makes creating a web app very easy. With
pre-made boxes for Laravel, we can create our own site in the cloud.

Getting ready
For this recipe, we need to have a free account with Pagoda Box, which is available at
https://dashboard.pagodabox.com/account/register. After signing up, we'll also
need to have an SSH key added to our account. More information about the SSH keys can be
found at http://help.pagodabox.com/customer/portal/articles/202068.

Chapter 11

237

How to do it...
To complete this recipe, follow the steps given:

1.	 After logging in to Pagodabox, click on the New Application tab as shown in the
following screenshot:

2.	 Make sure Quickstart is selected, then scroll down to find the laravel-4 quickstart.
The click on the Free button as shown in the following screenshot:

Deploying and Integrating Third-party Services into Your Application

238

3.	 On the next page, click on the Launch button as shown in the following screenshot:

4.	 Wait for a few minutes while everything gets installed.

Chapter 11

239

5.	 Once it's finished, click on the blue Manage Your App button as shown in the
following screenshot:

6.	 Copy the git clone URL as shown in the following screenshot:

7.	 In the command line window, go to the root of your server and run the git clone
command. In our case, it would be:
git clone git@git.pagodabox.com:erratic-eladia.git pagodaapp

8.	 After everything downloads, open the app/routes.php file and add a route so we
can test it out as given in the following code:
Route::get('cool', function()
{
 return 'Pagoda Box is awesome!';
});

Deploying and Integrating Third-party Services into Your Application

240

9.	 In the command line window, commit the following changes and send it back to the
Pagoda Box
 git commit –am 'Added route'

 git push origin master

10.	 After Pagoda Box has finished the changes, go to the new route to see if it works. In
our case, it will be http://erratic-eladia.gopagoda.com/cool.

How it works...
If we want to host our app and make sure it's scalable, we might want to look at a cloud
hosting service. This will let us increase its performance if we happen to get an influx of traffic,
and lower it when the traffic dies down. An excellent host that works well with PHP and Laravel
is Pagoda Box. Pagoda Box also has a very nice free option that will allow us to test it out and
create a full app without needing to pay.

To begin with, in the Pagoda Box dashboard, we create a new application and choose a
Quickstart package we want to use. In the list is a handy Laravel 4 installation; if we choose it,
everything will be installed for us, including all the dependencies.

After everything is set up, we can copy the git clone code and download the files to our local
server. Once it's downloaded, we can do any updates and commit them. After pushing it back
to Pagoda Box, our updated code will automatically be deployed and we will see the changes
on the live site.

There's more...
There are other cloud hosting providers that work well with Laravel. They tend to all have free
options so we can try them out. Some other hosts are as follows:

ff Engine Yard https://www.engineyard.com/

ff Digital Ocean https://www.digitalocean.com/

ff Heroku (there's hidden PHP support) https://www.heroku.com/

Using the Stripe payment gateway
with Laravel

E-commerce sites are a consistent staple in web development. In the past, things such as
credit card processing have been difficult and the learning curve very steep. With Laravel and
the Stripe service, offering credit card transactions is much easier.

Chapter 11

241

Getting ready
For this recipe, we'll need a working installation of Laravel 4 and the proper credentials for
Stripe. A free account with Stripe can be created at https://stripe.com/.

How to do it...
To complete this recipe, follow these steps:

1.	 Open the app's composer.json file and update the require section to resemble
the following snippet:
"require": {
 "laravel/framework": "4.0.*",
 "stripe/stripe-php": "dev-master"
},

2.	 In the command line window, run the composer update with the following command:
 php composer.phar update

3.	 In the app/config directory, create a new file named stripe.php with the
following code:
<?php

return array(
 'key' => 'fakeKey-qWerTyuuIo4f5'
);

4.	 In the routes.php file, add a Route to the payment form as shown in the
following code:
Route::get('pay', function()
{
 return View::make('pay');
});

5.	 In the app/views folder, create a file named pay.blade.php for our form using
the following snippet:
 {{ Form::open(array('url' => 'pay', 'method' => 'post')) }}
 Card Number: {{ Form::text('cc_number',
 '4242424242424242') }}

 Expiration (month):
 {{ Form::select('cc_exp_month', array(1 => '01', 2 =>
 '02', 3 => '03', 4 => '04', 5 => '05',6 => '06', 7 =>
 '07', 8 => '08', 9 => '09', 10 => '10', 11
 => '11', 12 => '12')) }}

Deploying and Integrating Third-party Services into Your Application

242

 Expiration (year):
 {{ Form::select('cc_exp_year', array(2013 => 2013,
 2014 => 2014, 2015 => 2015, 2016 => 2016)) }}

 {{ Form::submit('Charge $37 to my card') }}
 {{ Form::close() }}

6.	 Back in the routes.php, create a Route to accept the form post, and charge the
card as given in the following code:

Route::post('pay', function()
{
 Stripe::setApiKey(Config::get('stripe.key'));
 $chargeCard = array(
 'number' => Input::get('cc_number'),
 'exp_month' => Input::get('cc_exp_month'),
 'exp_year' => Input::get('cc_exp_year')
);
 $charge = Stripe_Charge::create(array('card' =>
 $chargeCard, 'amount' => 3700, 'currency' => 'usd'));

// Save returned info here
 var_dump($charge);
});

How it works...
We start with adding the Stripe package to our composer files and updating it. This will
install the Stripe code, as well as any dependencies if it requires. Then we need to create a
configuration file to hold our API key. Here we could create another directory that's the same
as our environment variable, and add that file there. So, if we have a development and a
production server, we could have a Stripe config file in the app/config/development
directory that holds our test API key, and then in the app/config/production directory a
file to hold our live API key.

Next, we need a form for the user to enter their credit card information. We create a pay route
that displays our pay view. In that view, we'll use the Blade template for creating the form. The
minimum that Stripe requires is the card number and the expiration date, though there might
be times we need to capture the card's CVV code or the user's address.

After that form is posted, we create an instance of Stripe with the API key. Then we add the
credit card information to an array. Finally, we send the amount (in cents), the card array, and
the currency to Stripe for processing.

The data returned from Stripe could then be added to a database, or otherwise tracked.

Chapter 11

243

There's more...
Stripe offers many, easy-to-use methods for managing credit card transactions, or even
things such as subscriptions. For more information, be sure to check out the documentation
available on: https://stripe.com/docs

Doing a GeoIP lookup and setting custom
routing

There might be times when our app needs to give people different pages depending on which
country they're in. Using Laravel and MaxMind's GeoIP data, we can lookup a person's country,
based on their IP address, and then redirect them to the page we need.

Getting ready
For this recipe, we'll just need a working Laravel 4 installation.

How to do it...
To complete this recipe, follow these steps:

1.	 Open the composer.json file and update the require section, so it looks like the
following snippet:
"require": {
 "laravel/framework": "4.0.*",
 "geoip/geoip": "dev-master"
},

2.	 In the command line window, run the composer update with the following command:
 php composer.phar update

3.	 Go to http://dev.maxmind.com/geoip/legacy/geolite/ and download the
latest GeoLite Country database. Unzip it and put the GeoIP.dat file in the root of
our app.

4.	 In the app/config directory, create a file named geoip.php with the
following code:
<?php

return array(
 'path' => realpath("path/to/GeoIP.dat")
);

Deploying and Integrating Third-party Services into Your Application

244

5.	 Open the app/filters.php file and add a filter for our geoip file with the
following code:
 Route::filter('geoip', function($route, $request, $value
 = NULL)
{
 $ip = is_null($value) ? Request::getClientIp() : $value;
 $gi = geoip_open(Config::get('geoip.path'),
 GEOIP_STANDARD);
 $code = geoip_country_code_by_addr($gi, $ip);
 return Redirect::to('geo/' . strtolower($code));
});

6.	 In our routes.php file, create a route to apply the filter to and a route to accept the
country code, as shown in the following code:

Route::get('geo', array('before' => 'geoip:80.24.24.24',
function()
{
return '';
}));
Route::get('geo/{country_code}', function($country_code)
{
return 'Welcome! Your country code is: ' . $country_code;
});

How it works...
We begin this recipe by installing the geoip library, by adding it to our composer.json file
and updating. Once it's downloaded, we can then download MaxMind's free geoip data file
and add it to our app. In our case, we'll put the file in the root of our app. Then, we need to
create a config file that will hold the location of the geoip data file.

Next, we want to check the user's IP address and redirect them to a country specific page. For
this, we'll use Laravel's before filter. It starts by setting the $ip variable. If we manually pass
in an IP address, that's what it will use; otherwise, we run the Request::getClientIp()
method to try and determine it. Once we have the IP address, we run it through the geoip
function to get the country code for the IP address. We then redirect the user to the route with
the country code as a parameter.

Then we create a route to add the filter to. In our case, we'll pass an IP address manually to
the filter, but if it wasn't there it would attempt to use the user's address. Our next route takes
the country code as a parameter. At this point, we could offer custom content based on the
country or even automatically set which language file to use.

Chapter 11

245

Gathering e-mail addresses and using them
with a third-party e-mail service

E-mail lists and newsletters are still a popular and efficient way to communicate with large
groups of people. In this recipe, we'll use Laravel and the free MailChimp service to set up an
easy way to gather e-mail subscriptions.

Getting ready
For this recipe, we'll need a working Laravel 4 installation, as well as a free account with
http://mailchimp.com/ and generated API keys in Mailchimp's account section. We'll
also need to create at least one list in Mailchimp.

How to do it...
To complete this recipe, follow these steps:

1.	 In the app directory, create a new directory named libraries.

2.	 Download Mailchimp's API library from http://apidocs.mailchimp.com/api/
downloads/#php, then unzip it and place the file MCAPI.class.php in the new
libraries folder.

3.	 Open Laravel's composer.json file and add the libraries directory to the autoload
section. That section should resemble the following snippet:
 "autoload": {
 "classmap": [
 "app/commands",
 "app/controllers",
 "app/models",
 "app/database/migrations",
 "app/database/seeds",
 "app/tests/TestCase.php",
 "app/libraries"
]
},

4.	 Open the command line window, and run the composer's dump-autoload
command, as shown in the following command:
 php composer.phar dump-autoload

Deploying and Integrating Third-party Services into Your Application

246

5.	 In the app/config directory, create a file named mailchimp.php with the
following code:
<?php

return array(
 'key' => 'mykey12345abcde-us1',
 'list' => 'q1w2e3r4t5'
);

6.	 To get all of our Mailchimp lists, and see their IDs, open the routes.php file and
add a new route as shown in the following code:
Route::get('lists', function()
{
 $mc = new MCAPI(Config::get('mailchimp.key'));
 $lists = $mc->lists();

 if($mc->errorCode) {
 echo 'Error loading list: ' . $mc->errorMessage;
 } else {
 echo '<h1>Lists and IDs</h1><h3>Total lists: '
 $lists['total'] . '</h3>';
 foreach($lists['data'] as $list) {
 echo '' . $list['name'] . ': ' .
 $list['id'] . '
';
}
}
});

7.	 In routes.php file, create a route to show the subscribe form using the
following code:
Route::get('subscribe', function()
{
 return View::make('subscribe');
});

8.	 In app/views directory, create a file named subscribe.blade.php as given in
the following snippet:
 {{ Form::open() }}
 First Name: {{ Form::text('fname') }}

 Last Name: {{ Form::text('lname') }}

 Email: {{ Form::text('email') }}

 {{ Form::submit() }}
 {{ Form::close() }}

Chapter 11

247

9.	 In the routes.php file, create a route to accept and process the form submission as
given in the following code:
Route::post('subscribe', function()
{
 $mc = new MCAPI(Config::get('mailchimp.key'));

 $merge_vars = array('FNAME' => Input::get('fname'),
 'LNAME' => Input::get('lname'));
 $ret = $mc->listSubscribe(Config::get('mailchimp.list'),
 Input::get('email'), $merge_vars);

if ($mc->errorCode){
 return 'There was an error: ' . $mc->errorMessage;
} else {
 return 'Thank you for your subscription!';
}
});

How it works...
To begin this recipe, we'll need to add Mailchimp's PHP library. Since we won't be using a
composer, we need to set up a directory to hold any of our non-composer libraries. So we
create a libraries directory in the app folder, and add Mailchimp there.

To let Laravel know that we want to autoload anything in the new directory, we need to
update the composer.json file. We then add the directory location to the Classmap
section. Then we need to run composer's dump-autoload command to recreate our
autload files, and have it added in our new directory.

We then need to create a new config file to hold our Mailchimp credentials and the ID of the
list we want to use. We can get the list ID from the Mailchimp dashboard, or we can use the
lists route to display them all.

To capture the user's e-mail, we create a route and view to hold our form. This form could also
be in a pop-up, modal, or part of a larger page. We ask for their name and e-mail, and then
have it posted to Mailchimp.

In our post route, we just need to instantiate the Mailchimp class, create an array to hold
the name, and send everything to the listSubscribe() method. Finally, we check for any
errors from Mailchimp and show a success message.

Deploying and Integrating Third-party Services into Your Application

248

There's more...
Mailchimp offers a very extensive API that allows us to easily manage our e-mail
lists. To see everything they offer, check out the online documentation at:
http://apidocs.mailchimp.com/

Storing and retrieving cloud content from
Amazon S3

Using a service such as Amazon's S3 to store our files will allow us to leverage their servers'
speed and reliability. To utilize the service, we can easily implement a Laravel package to
handle our uploads to Amazon.

Getting ready
For this recipe, we'll need a working Laravel 4 installation. We'll also need a free Amazon AWS
account, which can be registered at: http://aws.amazon.com/s3/

After registering, we need to get our Access Key ID and Secret ID from the Security
Credentials page. Also, in the S3 management console, we'll need to have at least one bucket
created. For this recipe, we'll call the bucket named as laravelcookbook.

How to do it…
To complete this recipe, follow the given steps:

1.	 Open Laravel's composer.json file and add the Amazon SDK package. The require
section should resemble the following snippet:
"require": {
 "laravel/framework": "4.0.*",
 "aws/aws-sdk-php-laravel": "dev-master"
},

2.	 Open the command line window, and install the package using the Composer
package, as given in the following code:
 php composer.phar update

3.	 After everything is installed, in the app/config directory, create a file named as
aws.php shown in the following code:
<?php

return array(
 'key' => 'MYKEY12345',

Chapter 11

249

 'secret' => 'aLongS3cretK3y1234abcdef',
 'region' => '',
);

4.	 In the app/config directory, open the app.php file. At the end of the providers
array, add the AWS provider as given in the following code:
 'Aws\Laravel\AwsServiceProvider',

5.	 Also in the app.php file, in the aliases array, add the following alias:
 'AWS' => 'Aws\Laravel\AwsFacade',

6.	 In our routes.php files, test that everything is working by creating a route to list our
buckets with the following code:
Route::get('buckets', function()
{
 $list = AWS::get('s3')->listBuckets();
 foreach ($list['Buckets'] as $bucket) {
 echo $bucket['Name'] . '
';
}
});

7.	 To test the buckets, go to http://{your-server}/buckets, and it should display
a list of all of the buckets we've set up.

8.	 Now let's create a form for a user to upload an image. We begin with a route to hold
the form as given in the following code:
Route::get('cloud', function()
{
 return View::make('cloud');
});

9.	 In the app/views folder, create a file named as cloud.blade.php with the
following code:
 {{ Form::open(array('files' => true)) }}
 Image: {{ Form::file('my_image') }}

 {{ Form::submit() }}
 {{ Form::close() }}

10.	 Back in the routes.php file, create a route to process the file and upload it to S3 as
shown in the following code:
Route::post('cloud', function()
{
 $my_image = Input::file('my_image');
 $s3_name = date('Ymdhis') . '-' . $my_image
 >getClientOriginalName();
 $path = $my_image->getRealPath();

Deploying and Integrating Third-party Services into Your Application

250

 $s3 = AWS::get('s3');
 $obj = array(
 'Bucket' => 'laravelcookbook',
 'Key' => $s3_name,
 'SourceFile' => $path,
 'ACL' => 'public-read',
);

 if ($s3->putObject($obj)) {
 return
 Redirect::to('https://s3.amazonaws.com/laravelcookbook/
 ' . $s3_name);
} else {
 return 'There was an S3 error';
}
});

How it works...
We begin the recipe by installing Amazon's AWS SDK. Thankfully, Amazon released a
composer package specifically designed for Laravel 4, so we just add that to our composer.
json file and update.

After everything is installed, we need to create a configuration file and add in our
Amazon credentials. We can also add in the region (such as Aws\Common\Enum\
Region::US_WEST_2) but, if we leave it blank, it will use the US Standard region.
Then we update our app.php configuration, including the AWS ServiceProvider and
the Facade that Amazon provided.

If we already have buckets in our S3, we can create a route to list those buckets. It begins by
creating a new S3 instance and simply calling the listBuckets() method. We then loop
through the array of Buckets and show their name.

Our next goal is to create a form where a user can add an image. We create the cloud route
that displays the cloud view. Our view is a simple Blade template form with a single file
field. That form will then be posted to cloud.

In our cloud post route, we begin by retrieving the image using the Input::file() method.
Next, we create a new name for our image by adding the date to the beginning of the file's
name. Then we get the path of the uploaded image, so we know which file to send to S3.

Next, we create an S3 instance. We also need an array to hold the values to send to S3.
Bucket is simply the name of the S3 bucket we want to use, Key is the name we want to
give to the file, SourceFile is the location of the file we want to send over, and then ACL are
the permissions we want to give to the file. In our case, we set ACL to public-read, which
allows the image to be displayed to anyone.

Chapter 11

251

Our final step is to call the putObject() method which should send everything to our S3
bucket. If it's successful, we then redirect the user to view the uploaded file.

There's more...
In our example, the user is forced to wait until the image is uploaded to Amazon before
continuing. This would be an excellent case to use a queue to process everything.

See also
ff The Creating a queue and using Artisan to run it recipe

Index
A
acceptance testing 226
acceptance tests

writing, Codeception used 226, 227
access

restricting, to certain pages 60
add() method 130
advanced Autoloaders

creating, with directories 19, 20
creating, with namespaces 19, 20

advanced Blade usage
utilizing 135-137

advanced Eloquent
using 85-87

advanced routing
using 105, 106

advanced validation
using, in forms 204, 206

Ajax
used, for creating user 179-182
used, for validating user 179-182

Ajax Newsletter sign up box
creating 185-188

Ajax search function
creating 177-179

allShows() method 77
Amazon S3

used, for retrieving cloud content 248-250
used, for storing cloud content 248-250

Apache
development environment, setting up 7-9
virtual host, setting up 7-9

app
debugging 228-231
profiling 228-231

setting up, Generators package
used 154-157

Ardent
URL 85

Artisan
used, for running queue 234-236

artisan command 72, 198
assets

adding 128-130
attributes

used, for modifying table columns
names 95-98

auth_admin filter 61
Auth::attempt() method 202
Auth class 49
authentication system

creating 52-56
Auth library

configuring 50-52
setting up 50-52

Autocomplete library 42
autocomplete text input

creating 42-44
Autoloader

class name, mapping to file 18, 19
automatic validation

using, in models 82, 84

B
BaseController.php file 102
basic controller

creating 102, 103
basic cookies

using 212-215
basic sessions

using 212-215

254

Blade
used, for creating views 130-132

Bootstrap CSS framework
using, with Laravel 143, 145

built-in Form class
used, for creating form 22, 23

C
CAPTCHA style spam catcher

creating 44-47
class name

mapping, to file 18, 19
clean URLs

creating 9
closure

used, for creating controller 103
cloud content

retrieving, Amazon S3 used 248-250
storing, Amazon S3 used 248-250

Codeception
about 227
URL 227
used, for writing Codeception 226, 227

Composer
about 233
non-Packagist package, adding to 164, 166

composer.json file 151, 221
Composer package

adding, to Packagist 162, 163
creating, in Laravel 157-161

configuration, Laravel 10, 11
content

localizing 137-139
Content Delivery Network (CDN) 175
controllers

setting up, for returning data 175, 177
used, for testing controllers 223-225

Cross-Site Request Forgery. See CSRF
CRUD system

creating 88-91
CSRF 202
CSRF tokens

using, in forms 202-204
CSV

importing, Eloquent used 92-94

custom artisan command
creating 166, 169

custom error message
creating 31-33

custom routing
setting 243, 244

D
data

decrypting 196-199
encrypting 196-199
filtering, based on checkbox

selection 182-185
obtaining, from another page 172-174
passing, into views 123-125

database
accessing, Fluent query builder used 78, 79
accessing, raw SQL used 75-77

database relationships
using 85-87

data source
RSS, using as 94, 95

data tables
creating, migrations used 72-74
creating, schemas used 72-74

Datatables plugin
about 193
URL, for info 193

dd() helper function 79
deleteRecord() method 91
DELETE request 115
development environment

setting up, in Apache 7-9
Digital Ocean

URL 240
directories

advanced Autoloaders, creating with 19, 20

E
e-commerce 207
Eloquent

used, for importing CSV 92-94
Eloquent ORM 202

used, for querying 80-82
e-mail

sending, Laravel and jQuery used 188-191

255

e-mail addresses
gathering 245
using, with third party e-mail service 245, 247

Engine Yard
URL 240

F
Facebook

using, for logins 65, 66
file

class name, mapping to 18, 19
upload, validating 29, 30

file uploader
creating 27, 28

filters
about 61
using, in forms 202-204
using, on route 106, 107

fire() method 169, 236
flashOnly() method 24
Fluent query builder

used, for accessing database 78, 79
forget() method 215
form input

gathering 23, 24
forms

advanced validation, using 204, 206
creating, built-in Form class used 22, 23
CSRF tokens, using 202-204
filters, using 202-204
honey pot, adding to 33, 35

Form::token() function 204

G
Generators 153
Generators package

used, for setting up app 154-157
GeoIP Lookup

performing 243, 244
getIndex() method 105
getRecord() method 91
GET request 114
getRreate() method 91
getUsernameAttribute() method 98
git submodule

Laravel, installing as 6, 7

H
Hash 199
Hash::check() function 202
has() method 215
Heroku

URL 240
hget() function 212
honey pot

adding, to form 33, 35
honey pot technique 33
HybridAuth package

OAuth, setting up with 61, 62

I
IDEs

setting up, for auto-completing Laravel’s
namespaces 14-17

image
cropping, Jcrop used 39-41
uploading, Redactor used 36, 38

installation, Laravel
as git submodule 6, 7

installation, packages 150-153
Integrated Development

Environment. See IDEs
IronMQ 234

J
Jcrop

about 21, 38
used, for cropping image 39-41

L
Laravel

about 21, 195, 233
Bootstrap CSS framework, integrating

with 143, 145
Composer package, creating in 157-161
configuring 10, 11
installing, as git submodule 6, 7
menus, creating 140-143
non-Eloquent ORM, using 98-100
Stripe payment gateway, using with 241, 242
using, with Sublime Text 2 12-14

256

Laravel app
deploying, to Pagoda Box 236-240
Twig templates, incorporating into 133, 134

LinkedIn
using, for logins 68, 69

listSubscribe() method 247
localization

about 11
creating, of content 137-139

logins
Facebook, using for 65, 66
LinkedIn, using for 68, 69
OpenID, using for 62, 64
Twitter, using for 67, 68

M
MailChimp

about 185, 245
URL 245

Mail::queue() command 236
menus

about 140
creating, in Laravel 140-143

migrations
used, for creating data tables 72-74

Mockery
used, for testing controllers 223-225

models
automatic validation, using in 82, 84

Model-View-Controller (MVC) patterns 102

N
named routes

using 115, 116
named views

using 146, 148
namespaces

advanced Autoloaders, creating with 19, 20
nested views

about 125
view, loading into 125-127

nest() method 127
non-Eloquent ORM

using, in Laravel 98-100
non-Packagist package

adding, to Composer 164, 166

O
OAuth

setting up, with HybridAuth package 61, 62
OpenID

URL, for info 64
using, for logins 62, 64

orWhere() function 79

P
packages

about 150
downloading 150
installing 150-153

Packagist
Composer package, adding to 162, 163
URL 162

pages
access, restricting to 60

Pagoda Box
about 236
Laravel app, deploying to 236-240

PHPUnit
configuring 219, 221
setting up 219, 221

postIndex() method 105
POST method 115
postRegister() method 182
POST request 115
postSearch() method 179
putObject() method 251
putRecord() method 91
PUT request 115

Q
queue

creating 234-236
running, Artisan used 234-236

Queue::push() method 236
Quickstart package 240

R
raw SQL

used, for accessing database 75-77

257

Redactor
about 21, 36
used, for uploading image 36, 38

RedBeans
about 100
URL 100

Redis
about 211
URL 211
used, for saving sessions 211, 212

Request::ajax() method 174
Response::json() method 177
RESTful API

building, with routes 109-114
RESTful controller

creating 104, 105
route

creating, closure used 103
filter, using on 106, 107
subdomain, using in 117-120

Route::any() method 145
Route::controller() 105
route groups

using 108, 109
routes

used, for building RESTful API 109-114
routes.php file 101
RSS

using, as data source 94, 95

S
sadd() function 212
schemas

used, for creating data tables 72-74
scripts() method 130
secure API server

creating 215-218
security 195
sessions

saving, Reddis used 211, 212
set() function 212
setupLayout() method 102
shopping cart

building 207-210
sortable table

creating 191-193

Stripe
URL 241
URL, for documentation 243

Stripe payment gateway
using, with Laravel 241, 242

styles() method 130
subdomain

using, in route 117-120
Sublime Text 2

about 11
Laravel, using with 12-14
URL, for downloading 11

T
table columns names

modifying, attributes used 95-98
test case

running 221, 222
writing 221, 222

Twig 132
TwigBranch package 134
Twig templates

incorporating, into Laravel
application 133, 134

Twitter
using, for logins 67, 68

U
uniqid() function 210
unit tests 219
user

creating, Ajax used 179-182
validating, Ajax used 179-182

user info
retrieving, after user login 56-59
updating, after user login 56-59

user input
validating 25-27

user password
hashing 199-201

V
Validator class 25
view composers

using 146, 148

258

W
where() function 79, 106
with() method 125

View::make() function 123, 125
views

about 121
creating 122, 123
creating, Blade used 130-132
data, passing into 123-125
loading, into another view 125-127
loading, into nested views 125-127
using 122, 123

virtual host
setting up, in Apache 7-9

Thank you for buying

Laravel Application Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Laravel Starter [Instant]
ISBN: 978-1-78216-090-8 Paperback: 64 pages

The definitive introduction to the Laravel PHP web
development framework

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results

2.	 Create databases using Laravel's migrations

3.	 Learn how to implement powerful relationships
with Laravel's own "Eloquent" ActiveRecord
implementation

4.	 Learn about maximizing code reuse with
the bundles

Laravel Application
Development Blueprints
ISBN: 978-1-78328-211-1 Paperback: 299 pages

Learn to develop ten fantastic applications with the new
and improved Laravel 4

1.	 Learn how to integrate third-party scripts and
libraries into your application

2.	 With different techniques, learn how to adapt
different methods to your needs

3.	 Expand your knowledge of Laravel 4 so you can
tailor the sample solutions to your requirements

Please check www.PacktPub.com for information on our titles

CodeIgniter for Rapid PHP
Application Development
ISBN: 978-1-84719-174-8 Paperback: 260 pages

Improve your PHP coding productivity with the free
compact open-source MVC CodeIgniter framework!

1.	 Clear, structured tutorial on working with
CodeIgniter

2.	 Careful explanation of the basic concepts of
CodeIgniter and its MVC architecture

3.	 Using CodeIgniter with databases, HTML forms,
files, images, sessions, and email

4.	 Building a dynamic website quickly and easily
using CodeIgniter's prepared code

Instant Zend Framework 2.0
ISBN: 978-1-78216-412-8 Paperback: 52 pages

Leverage the power of Zend Framework to build practical
MVC applications

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results

2.	 Discover how to get the skeleton application

3.	 Configure the skeleton application to use Zend
Framework 2

4.	 Understand how to validate forms, and upload
files using Zend Framework 2

Please check www.PacktPub.com for information on our titles

 ~StormRG~

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up and Installing Laravel
	Introduction
	Installing Laravel as a git submodule
	Setting up a virtual host and development environment in Apache
	Creating "clean" URLS
	Configuring Laravel
	Using Laravel with Sublime Text 2
	Setting up your IDE to auto-complete Laravel's namespaces
	Using Autoloader to map a class name
to its file
	Creating advanced Autoloaders with namespaces and directories

	Chapter 2: Using Forms and Gathering Input
	Introduction
	Creating a simple form
	Gathering form input to display on another page
	Validating user input
	Creating a file uploader
	Validating a file upload
	Creating a custom error message
	Adding a honey pot to a form
	Uploading an image using Redactor
	Cropping an image with Jcrop
	Creating an autocomplete text input
	Making a CAPTCHA-style spam catcher

	Chapter 3: Authenticating
Your Application
	Introduction
	Setting up and configuring the Auth library
	Creating an authentication system
	Retrieving and updating user info after logging in
	Restricting access to certain pages
	Setting up OAuth with the HybridAuth package
	Using OpenID for logins
	Logging in using Facebook credentials
	Logging in using Twitter credentials
	Logging in using LinkedIn

	Chapter 4: Storing and Using Data
	Introduction
	Creating data tables using migrations
and schemas
	Querying using raw SQL statements
	Querying using Fluent
	Querying using Eloquent ORM
	Using automatic validation in models
	Using advanced Eloquent and relationships
	Creating a CRUD system
	Importing a CSV using Eloquent
	Using RSS as a data source
	Using attributes() to change table
column names
	Using a non-Eloquent ORM in Laravel

	Chapter 5: Using Controllers
and Routes for
URLs and APIs
	Introduction
	Creating a basic controller
	Creating a route using a closure
	Making the controller RESTful
	Using advanced routing
	Using a filter on the route
	Using route groups
	Building a RESTful API with routes
	Using named routes
	Using a subdomain in your route

	Chapter 6: Displaying Your Views
	Introduction
	Creating and using a basic view
	Passing data into a view
	Loading a view into another view/nested views
	Adding assets
	Creating a view using Blade
	Using TWIG templates
	Utilizing advanced Blade usage
	Creating localization of content
	Creating menus in Laravel
	Integrating with Bootstrap
	Using named views and view composers

	Chapter 7: Creating and Using Composer Packages
	Introduction
	Downloading and installing packages
	Using the Generators package to set up
an app
	Creating a Composer package in Laravel
	Adding your Composer package to Packagist
	Adding a non-Packagist package
to Composer
	Creating a custom artisan command

	Chapter 8: Using Ajax and jQuery
	Introduction
	Getting data from another page
	Setting up a controller to return JSON data
	Creating an Ajax search function
	Creating and validating a user using Ajax
	Filtering data based on checkbox selection
	Making an Ajax newsletter sign-up box
	Sending an e-mail using Laravel and jQuery
	Creating a sortable table using jQuery and Laravel

	Chapter 9: Using Security and Sessions Effectively
	Introduction
	Encrypting and decrypting data
	Hashing passwords and other data
	Using CSRF tokens and filters in forms
	Using advanced validation in forms
	Building a shopping cart
	Using Redis to save sessions
	Using basic sessions and cookies
	Creating a secure API server

	Chapter 10: Testing and
Debugging Your App
	Introduction
	Setting up and configuring PHPUnit
	Writing and running a test case
	Using Mockery to test controllers
	Writing acceptance tests using Codeception
	Debugging and profiling your app

	Chapter 11: Deploying and Integrating Third-party Services into
Your Application
	Introduction
	Creating a queue and using Artisan to run it
	Deploying a Laravel app to Pagoda Box
	Using the Stripe payment gateway
with Laravel
	Doing a GeoIP Lookup and seting custom routing
	Gathering e-mail addresses and using them with a third party e-mail service
	Storing and retrieving cloud content from Amazon S3

	Index

