Phil Ballard

Sixth Edition
New coverage of
ECMAScript 6

SamsTeach Yourself

JavaScript

About This eBook

ePUB is an open, industry-standard format for eBooks. However, support of ePUB
and its many features varies across reading devices and applications. Use your device
or app settings to customize the presentation to your liking. Settings that you can
customize often include font, font size, single or double column, landscape or portrait
mode, and figures that you can click or tap to enlarge. For additional information about
the settings and features on your reading device or app, visit the device manufacturer’s
Web site.

Many titles include programming code or configuration examples. To optimize the
presentation of these elements, view the eBook in single-column, landscape mode and
adjust the font size to the smallest setting. In addition to presenting code and
configurations in the reflowable text format, we have included images of the code that
mimic the presentation found in the print book; therefore, where the reflowable format
may compromise the presentation of the code listing, you will see a “Click here to view
code image” link. Click the link to view the print-fidelity code image. To return to the
previous page viewed, click the Back button on your device or app.

Sams Teach Yourself
JavaScript®
in 24 Hours

Sixth Edition

Phil Ballard

SAM s 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself JavaScript in 24 Hours, Sixth Edition
Copyright © 2015 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33738-3

ISBN-10: 0-672-33738-X

Library of Congress Control Number: 2015905614
Printed in the United States of America

First Printing June 2015

Executive Editor
Mark Taber

Managing Editor
Sandra Schroeder

Senior Development Editor
Chris Zahn

Senior Project Editor
Tonya Simpson

Copy Editor
Bart Reed

Indexer

Tim Wright
Proofreader
Debbie Williams

Publishing Coordinator
Vanessa Evans

Technical Editor
Siddhartha Singh

Cover Designer
Mark Shirar

Compositor
Bronkella Publishing

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity
of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness 1s implied. The information provided is on an “as 1s” basis.
The author and the publisher shall have neither liability nor responsibility to any person
or entity with respect to any loss or damages arising from the information contained in
this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales(@pearsoned.com
or (800) 382-3419.

For government sales inquiries, please contact governmentsales(@pearsoned.com.

For questions about sales outside the U.S., please contact
international @pearsoned.com.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com

Contents at a Glance

Introduction

PART I: First Steps with JavaScript

HOUR 1 Introducing JavaScript
2 Writing Simple Scripts

3 Using Functions
4 DOM Objects and Built-in Objects

PART II: Cooking with Code
HOUR 5 Numbers and Strings
6 Arrays

7 Program Control
PART III: Objects

HOUR 8 Object-Oriented Programming

9 Scripting with the DOM
10 Meet JSON
PART IV: HTML and CSS

HOUR 11 JavaScript and HTMLS5
12 JavaScript and CSS

13 Introducing CSS3

PART V: Using JavaScript Libraries
HOUR 14 Using Libraries

15 A Closer Look at jQuery
16 The jQuery Ul User Interface Library

17 Ajax with jQuery

PART VI: Advanced Topics

HOUR 18 Reading and Writing Cookies
19 Coming Soon to JavaScript

20 Using Frameworks

21 JavaScript Beyond the Web Page

PART VII: Learning the Trade
HOUR 22 Good Coding Practice

23 Debugging Your Code
24 JavaScript Unit Testing

PART VIII: Appendices

A Tools for JavaScript Development

B JavaScript Quick Reference

Index

Table of Contents

Introduction

Part I: First Steps with JavaScript

HOUR 1: Introducing JavaScript
Web Scripting Fundamentals

Server- Versus Client-Side Programming

JavaScript in a Nutshell

Where JavaScript Came From
The <script> Tag
Introducing the DOM

Talking to the User

Summary

Q&A

Workshop
Exercises

HOUR 2: Writing Simple Scripts
Including JavaScript in Your Web Page

JavaScript Statements

Variables

Operators

Capturing Mouse Events
Summary

Q&A

Workshop
Exercises

HOUR 3: Using Functions
General Syntax
Calling Functions
Passing Arguments to Functions

Returning Values from Functions

Scope of Variables

Summary
Q&A

Workshop
Exercises

HOUR 4: DOM Objects and Built-in Objects
Interacting with the User
Selecting Elements by Their ID
Accessing Browser History

Using the 1ocation Object

Browser Information—The navigator Object

Dates and Times

Simplifying Calculation with the Math Object
Summary

Q&A

Workshop
Exercises

Part II: Cooking with Code
HOUR 5: Numbers and Strings

Numbers
Strings
Boolean Values
Summary
Q&A
Workshop
Exercises
HOUR 6: Arrays

Arrays
Summary
Q&A

Workshop
Exercise

HOUR 7: Program Control
Conditional Statements
Loops and Control Structures
Setting and Using Timers

Summary
Q&A

Workshop
Exercises

Part I11: Objects

HOUR 8: Object-Oriented Programming
What Is Object-Oriented Programming?

Object Creation
Extending and Inheriting Objects Using prototype

Encapsulation

Using Feature Detection

Summary
Q&A

Workshop
Exercises

HOUR 9: Scripting with the DOM
DOM Nodes

Selecting Elements with getElementsByTagName ()

Reading an Element’s Attributes
Mozilla’s DOM Inspector
Summary

Q&A

Workshop
Exercises

HOUR 10: Meet JSON
What Is JSON?
Accessing JSON Data
Data Serialization with JSON
JSON Data Types
Simulating Associative Arrays

Creating Objects with JSON
JSON Security

Summary
Q&A

Workshop
Exercises

Part IV: HTML and CSS

HOUR 11: JavaScript and HTMLS

New Markup for HTMLS
Some Important New Elements
Drag and Drop

Local Storage

Working with Local Files
Summary

Q&A

Workshop
Exercises

HOUR 12: JavaScript and CSS
A Ten-Minute CSS Primer
The DOM style Property

Accessing Classes Using className

The DOM styleSheets Object

Summary
Q&A
Workshop

Exercises

HOUR 13: Introducing CSS3
Vendor-Specific Properties and Prefixes

CSS3 Borders

CSS3 Backgrounds

CSS3 Gradients

CSS3 Text Effects

CSS3 Transitions, Transformations, and Animations

Referencing CSS3 Properties in JavaScript
Setting CSS3 Properties with Vendor Prefixes

Summary
Q&A

Workshop
Exercises

Part V: Using JavaScript Libraries

HOUR 14: Using Libraries
Why Use a Library?

What Sorts of Things Can Libraries Do?

Some Popular Libraries

Introducing prototype.js
Summary
Q&A

Workshop
Exercises

HOUR 15: A Closer Look at jQuery
Including jQuery in Your Pages

JQuery’s $ (document) . ready Handler

Selecting Page Elements
Working with HTML Content

Showing and Hiding Elements
Animating Flements

Command Chaining
Handling Events
Summary

Q&A

Workshop
Exercises

HOUR 16: The jQuery Ul User Interface Library
What jQuery Ul Is All About

How to Include jQuery Ul in Your Pages

Interactions

Using Widgets
Summary
Q&A

Workshop
Exercises

HOUR 17: Ajax with jQuery
The Anatomy of Ajax
Using jQuery to Implement Ajax
Summary
Q&A

Workshop
Exercises

Part VI: Advanced Topics

HOUR 18: Reading and Writing Cookies
What Are Cookies?

The document . cookie Property

Cookie Ingredients

Writing a Cookie
A Function to Write a Cookie
Reading a Cookie

Deleting Cookies

Setting Multiple Values in a Single Cookie

Summary
Q&A

Workshop
Exercises

HOUR 19: Coming Soon to JavaScript
Classes

Arrow Functions
Modules
Using 1et and const

Template Strings

Access Arrays with for-of

Transpilation

Summary
Q&A

Workshop
Exercises

HOUR 20: Using Frameworks
Software Frameworks

Model-View-Controller (MVC) Architecture
Using an MVC Framework for Web Apps
The Angular]S Framework

Building an AngularJS Application
Summary

Q&A

Workshop
Exercises

HOUR 21: JavaScript Beyond the Web Page
JavaScript Outside the Browser

Writing Google Chrome Extensions
Going Further

Summary
Q&A

Workshop
Exercises

Part VII: Learning the Trade

HOUR 22: Good Coding Practice
Don’t Overuse JavaScript

Writing Readable and Maintainable Code
Graceful Degradation

Progressive Enhancement

Unobtrusive JavaScript

Feature Detection

Handling Errors Well

Summary
Q&A

Workshop
Exercises

HOUR 23: Debugging Your Code
An Introduction to Debugging
More Advanced Debugging

Summary
Q&A

Workshop
Exercises

HOUR 24: JavaScript Unit Testing
What s Unit Testing?

Writing JavaScript for Unit Testing
The QUnit Test Suite

Summary

Q&A

Workshop

Exercises

Part VIII: Appendices
APPENDIX A: Tools for JavaScript Development
Editors
Validators
Debugging and Verifying Tools

APPENDIX B: JavaScript Quick Reference

Index

About the Author

Phil Ballard, the author of various Sams Teach Yourself titles, graduated in 1980 with
an honors degree in electronics from the University of Leeds, England. Following an
early career as a research scientist with a major multinational, he spent a few years in
commercial and managerial roles within the high technology sector, later working full
time as a software engineering consultant.

Operating as “The Mouse Whisperer” (www.mousewhisperer.co.uk), Ballard has spent
recent years involved solely in website and intranet design and development for an
international portfolio of clients, as well as writing numerous technical books and
articles.

http://www.mousewhisperer.co.uk

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do better,
what areas you’d like to see us publish in, and any other words of wisdom you’re
willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of
this book.

When you write, please be sure to include this book’s title and author as well as your
name and email address. We will carefully review your comments and share them with
the author and editors who worked on the book.

Email: feedback@samspublishing.com
Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

mailto:feedback@samspublishing.com

Reader Services

Visit our website and register this book at www.informit.com/register for convenient
access to any updates, downloads, or errata that might be available for this book.

http://www.informit.com/register

Introduction

This introduction walks you through a few basic things before you begin reading,
including who this book was written for, why it was written, the conventions employed
in this book and in the Sams Teach Yourself series, how the content is organized, and
the tools you need to create JavaScript.

Who This Book Is For

If you’re interested in learning JavaScript, chances are that you’ve already gained at
least a basic understanding of HTML and web page design in general, and want to move
on to adding some extra interactivity to your pages. Or maybe you currently code in
another programming language, and want to see what additional capabilities JavaScript
can add to your armory.

If you’ve never tinkered with HTML at all, nor done any computer programming, it
would be helpful to browse through an HTML primer before getting into the book. Don’t
worry—HTML is very accessible, and you don’t need to be an expert in it to start
experimenting with the JavaScript examples in this book.

JavaScript is an ideal language to use for your first steps in programming, and in case
you get bitten by the bug, pretty much all of the fundamental concepts that you learn in
JavaScript will later be applicable in a wide variety of other languages such as C, Java,
and PHP.

The Aims of This Book

When JavaScript was first introduced, it was somewhat limited in what it could do.
With basic features and rather haphazard browser support, it gained a reputation in
some quarters as being something of a toy or gimmick. Now, due to much better browser
support for W3C standards and improvement in the JavaScript implementations used in
recent browsers, JavaScript is finally being treated as a serious programming language.

Many advanced programming disciplines used in other programming languages can
readily be applied to JavaScript; for example, object-oriented programming promotes
the writing of solid, readable, maintainable, and reusable code.

So-called “unobtrusive” scripting techniques and the use of DOM scripting focus on
adding interaction to web pages while keeping the HTML simple to read and well
separated from the program code.

This book aims to teach the fundamental skills relevant to all of the important aspects of
JavaScript as i1t’s used today. In the course of the book, you start from basic concepts
and gradually learn the best practices for writing JavaScript programs in accordance
with current web standards.

Conventions Used

All of the code examples in the book are written as HTMLS. For the most part, though,
the code avoids using HTMLS5-specific syntax, since at the time of writing its support in
web browsers is still not universal. The code examples should work correctly in
virtually any recent web browser, regardless of the type of computer or operating
system.

In addition to the main text of each lesson, you will find a number of boxes labeled as
Notes, Tips, and Cautions.

Note

These sections provide additional comments that might help you to understand the
text and examples.

Tip
These blocks give additional hints, shortcuts, or workarounds to make coding
easier.

Caution
Avoid common pitfalls by using the information in these blocks.

Try it Yourself
Each hour contains at least one section that walks you through the process of
implementing your own script. This will help you to gain confidence in writing
your own JavaScript code based on the techniques you’ve learned.

Q&A, Workshop, and Exercises
After each hour’s lesson, you’ll find three final sections.
» The “Q&A” section tries to answer a few of the more common questions about the
hour’s topic.
» The “Workshop” section includes a quiz that tests your knowledge of what you

learned in that lesson. Answers to the quiz items are conveniently provided
immediately following the quiz.

» The “Exercises” section offers suggestions for further experimentation, based on

the lesson, that you might like to try on your own.

How the Book Is Organized

The book is divided into seven parts, gradually increasing in the complexity of the
techniques taught.

» Part I—First Steps with JavaScript
An introduction to the JavaScript language and how to write simple scripts using
the language’s common functions. This part of the book is aimed mainly at readers
with little or no prior programming knowledge, and no knowledge of the
JavaScript language.

» Part II—Cooking with Code
Here JavaScript’s data types are introduced, such as numbers, strings, and arrays.
More sophisticated programming paradigms such as program control loops and
timers are also covered.

» Part III—Objects

This part of the book concentrates on creating and handling objects, including
navigating and editing the objects belonging to the DOM (Document Object
Model).

» Part IV—HTML and CSS

Here you learn in greater depth how JavaScript can interact with HTML
(including HTMLYS) and CSS (Cascading Style Sheets), including the latest CSS3
specification.

» Part V—Using JavaScript Libraries
In this part of the book you learn how to simplify cross-browser development
using third-party libraries such as jQuery.

» Part VI—Advanced Topics
This part of the book covers reading and writing cookies, looks at what’s new in
JavaScript via the ECMAScript 6 specification, introduces the use of frameworks
such as Angular]JS, and shows examples of using JavaScript beyond its use in web
pages.

» Part VII—Learning the Trade

In the final part you explore aspects of professional JavaScript development such
as good coding practices, JavaScript debugging, and unit testing.

Tools You’ll Need

Writing JavaScript does not require any expensive and complicated tools such as

Integrated Development Environments (IDEs), compilers, or debuggers.

The examples in this book can all be created in a text-editing program, such as the
Windows Notepad program. At least one such application ships with just about every
operating system, and countless more are available for no or low cost via download
from the Internet.

Note

Appendix A, “Tools for JavaScript Development,” lists some additional, easily
obtainable tools and resources for use in JavaScript development.

To see your program code working, you’ll need a web browser such as Internet
Explorer, Mozilla Firefox, Opera, Safari, or Google Chrome. It is recommended that
you upgrade your browser to the latest current stable version.

The vast majority of the book’s examples do not need an Internet connection to function.
Simply storing the source code file in a convenient location on your computer and
opening it with your chosen browser is generally sufficient. The exceptions to this are
the hour on cookies and the examples in the book that demonstrate Ajax; to explore all
of the sample code will require a web connection (or a connection to a web server on
your local area network) and a little web space in which to post the sample code. If
you’ve done some HTML coding, you may already have that covered; if not, a hobby-
grade web hosting account costs very little and will be more than adequate for trying out
the examples in this book. (Check that your web host allows you to run scripts written in
the PHP language if you want to try out the Ajax examples in Part V. Nearly all hosts
do.)

Part I: First Steps with JavaScript

Introducing JavaScript

What You’ll Learn in This Hour:
» About server-side and client-side programming
» How JavaScript can improve your web pages
» The history of JavaScript
» The basics of the Document Object Model (DOM)
» What the window and document objects are
» How to add content to your web pages using JavaScript
» How to alert the user with a dialog box

The modern Web has little to do with its original, text-only ancestor. Modern web pages
can involve audio, video, animated graphics, interactive navigation, and much more—
and more often than not, JavaScript plays a big part in making it all possible.

In this first hour we describe what JavaScript is, briefly review the language’s origins,
and consider the kinds of things it can do to improve your web pages. You also dive
right in and write some working JavaScript code.

Web Scripting Fundamentals

Since you’ve picked up this book, there’s a pretty good chance that you’re already
familiar with using the World Wide Web and have at least a basic understanding of
writing web pages in some variant of HTML.

HTML (Hypertext Markup Language) is not a programming language but (as the name
indicates) a markup language; we can use it to mark parts of our page to indicate to the
browser that these parts should be shown in a particular way—bold or italic text, for
instance, or as a heading, a list of bullet points, arranged as a table of data, or using
many other markup options.

Once written, these pages by their nature are static. They can’t respond to user actions,
make decisions, or modify the display of their page elements. The markup they contain
will always be interpreted and displayed in the same way whenever the page is visited
by a user.

As you know from using the World Wide Web, modern websites can do much more; the
pages we routinely visit are often far from static. They can contain “live” data, such as
share prices or flight arrival times, animated displays with changing colors and fonts, or
interactive capabilities such as the ability to click through a gallery of photographs or
sort a column of data.

These clever capabilities are provided to the user by programs—often known as
scripts—operating behind the scenes to manipulate what’s displayed in the browser.

Note

The term script has no doubt been borrowed from the world of theater and TV,
where the script defines the actions of the presenters or performers. In the case of
a web page, the protagonists are the elements on the page, with a script provided
by a scripting language such as, in this case, JavaScript. Program and script are,
for our purposes, pretty much interchangeable terms, as are programming and
scripting. You’ll find all of these used in the course of the book.

Server- Versus Client-Side Programming
There are two fundamental ways of adding scripts to otherwise static web content:

» You can have the web server execute a script before delivering your page to the
user. Such scripts can define what information is sent to the browser for display to
the user—for example, by retrieving product prices from the database of an online
store, checking a user’s identity credentials before logging her into a private area
of the website, or retrieving the contents of an email mailbox. These scripts are
generally run at the web server before generating the requested web page and
serving it to the user. You won’t be surprised to learn that we refer to this as
server-side scripting.

» Alternatively, the scripts themselves, rather than being run on the server, can be
delivered to the user’s browser along with the code of the page. Such scripts are
then executed by the browser and operate on the page’s already-delivered content.
The many functions such scripts can perform include animating page sections,
reformatting page layouts, allowing the user to drag-and-drop items within a page,
validating user input on forms, redirecting users to other pages, and much more.
You have probably already guessed that this is referred to as client-side
scripting, and you’re correct.

This book is all about JavaScript, the most-used language for client-side scripting on the
Internet.

Note

There is, in fact, an elegant way to incorporate output from server-side scripts
into your client-side JavaScript programs. We look at this in Part V, “Using
JavaScript Libraries,” when we study a technique called 4jax.

JavaScript in a Nutshell

Note

Although the names are similar, JavaScript doesn’t have much, if anything, to do
with the Java language developed by Sun Microsystems. The two languages share
some aspects of syntax, but no more so than either of them do with a whole host
of other programming languages.

A program written in JavaScript can access the elements of a web page, and the
browser window in which it is running, and perform actions on those elements, as well
as create new page elements. A few examples of JavaScript’s capabilities include

» Opening new windows with a specified size, position, and style (for example,
whether the window has borders, menus, toolbars, and so on)

» Providing user-friendly navigation aids such as drop-down menus

» Validation of data entered into a web form to make sure that it is of an acceptable
format before the form is submitted to the web server

» Changing how page elements look and behave when particular events occur, such
as the mouse cursor moving over them

» Detecting and exploiting advanced features supported by the particular browser
being used, such as third-party plug-ins, or native support for new technologies

Because JavaScript code runs locally inside the user’s browser, the page tends to
respond quickly to JavaScript instructions, enhancing the user’s experience and making
the application seem more like one of the computer’s native applications rather than
simply a web page. Also, JavaScript can detect and utilize certain user actions that
HTML can’t, such as individual mouse clicks and keyboard actions.

Virtually every web browser in common use has support for JavaScript.

Where JavaScript Came From

The ancestry of JavaScript dates back to the mid 1990s, when version 1.0 was
introduced for Netscape Navigator 2.

The European Computer Manufacturers Association (ECMA) became involved,
defining ECMAScript, the great-granddaddy of the current language. At the same time,
Microsoft introduced jScript, its own version of the language, for use in its Internet
Explorer range of browsers.

Tip
ECMA continues to issue updated versions of the ECMAScript language

standard. At the time of writing, ECMAScript 6 is nearing its final version, and in
Part VI, “Advanced Topics,” you can read about some of the new language
features soon to become available.

Note

JavaScript is not the only client-side scripting language. Microsoft browsers
have supported (in addition to jScript, Microsoft’s version of JavaScript) a
scripting-oriented version of the company’s own Visual Basic language, called
VBScript.

JavaScript, however, has much better browser support; a version of JavaScript is
supported by nearly every modern browser.

The Browser Wars

In the late 1990s, Netscape Navigator 4 and Internet Explorer 4 both claimed to offer
major improvements over earlier browser versions in terms of what could be achieved
with JavaScript.

Unfortunately, the two sets of developers had gone in separate directions, each defining
its own additions to the JavaScript language, and how it interacted with your web page.

This ludicrous situation forced developers to essentially write two versions of each of
their scripts, and use some clumsy and often error-prone routines to try to determine
which browser was being used to view the page, and subsequently switch to the most
appropriate version of their JavaScript code.

Note

The World Wide Web Consortium (W3C) is an international community that
exists to develop open standards to support the long-term growth of the World
Wide Web. Its website at http://www.w3.org/ is a vast resource of information
and tools relating to web standards.

Thankfully, the World Wide Web Consortium (the W3C) worked hard with the
individual browser manufacturers to standardize the way web pages were constructed
and manipulated, by means of the Document Object Model (DOM). Level 1 of the new
standardized DOM was completed in late 1998, and Level 2 in late 2000.

Don’t worry if you’re not sure what the DOM is or what it does—you learn a lot about
it later this hour and through the course of this book.

The <scrint> Tag

http://www.w3.org/

Whenever the page is requested by a user, any JavaScript programs it contains are
passed to the browser along with page content.

Note

JavaScript is an interpreted language, rather than a compiled language such as
C++ or Java. The JavaScript instructions are passed to the browser as plain text
and are interpreted sequentially; they do not need to first be “compiled” into
condensed machine code only readable by the computer’s processor. This offers
big advantages in that JavaScript programs are easy to read, can be edited
swiftly, and their operation can be retested simply by reloading the web page in
the browser.

You can include JavaScript statements directly into your HTML code by placing them
between <script>and </script> tags within the HTML.:

Click here to view code image

<script>
. JavaScript statements ...

</script>
The examples in this book are all written to validate correctly as HTMLS, in which no
obligatory attributes are specified for the <script> element (the t ype attribute is
optional in HTMLS, and has been excluded from the examples in this book to aid
clarity). However, if you write JavaScript for inclusion in HTML 4.x or XHTML pages,
you should add the t ype attribute to your <script> elements:

Click here to view code image

<script type="text/javascript">
. JavaScript statements ...
</script>
You’ll also occasionally see <script> elements having the attribute
language="JavaScript". This has long been deprecated, so unless you think you
need to support ancient browsers such as Navigator and Mosaic, there’s no need to
continue writing code like this.

Note

The term deprecated is applied to software features or practices to indicate that
they are best avoided, usually because they have been superseded.

Although still supported to provide backward compatibility, their deprecated
status often implies that such features will be removed in the near future.

The examples in this hour place their JavaScript code within the body section of the
document, but JavaScript code can appear elsewhere in the document too; you can also
use the <script> element to load JavaScript code saved in an external file. We
discuss how to include JavaScript in your pages in much more detail in Hour 2,

“Writing Simple Scripts.”

Introducing the DOM

A Document Object Model (DOM) is a conceptual way of visualizing a document and
its contents.

Each time your browser is asked to load and display a page, it needs to interpret (we
usually use the word “parse”) the source code contained in the HTML file comprising
the page. As part of this parsing process, the browser creates a type of internal model
known as a DOM representation based on the content of the loaded document. It is this
model that the browser then refers to when rendering the visible page. You can use
JavaScript to access and edit the various parts of the DOM representation, at the same
time changing the way the user sees and interacts with the page in view.

In the early days, JavaScript provided rather primitive access to certain parts of a web
page. JavaScript programs could gain access, for example, to the images and forms
contained in a web page; a JavaScript program could contain statements to select “the

2 9

second form on the page” or “the form called ‘registration’.

Web developers sometimes refer to this as DOM Level 0, in backward-compatible
homage to the W3C’s subsequent Level 1 DOM definition. As well as DOM Level 0,
you might also see reference to the BOM, or Browser Object Model. Since then, the
W3C has gradually extended and improved the DOM specification. The W3C’s much
more ambitious definition has produced a DOM that is valid not just for web pages and
JavaScript, but for any programming language and for XML, in addition to HTML,
documents.

Note

In this book, we concentrate on the W3C’s DOM Levels 1 and 2 DOM
definitions. If you’re interested in the details of the various DOM levels, you can
find a good overview at https://developer.mozilla.org/en/DOM_Levels.

The W3C and Standards Compliance

The browser vendors have incorporated much-improved support for DOM in their most
recent versions. At the time of writing, Internet Explorer is shipping in version 11,
Netscape Navigator has been reborn as Mozilla Firefox (currently in version 35.0), and
other competitors in the market include Opera, Konqueror, Apple’s Safari, and

https://developer.mozilla.org/en/DOM_Levels

Google’s Chrome and Chromium. All of these offer excellent support for the DOM.

The situation has improved markedly for web developers. Apart from a few irritating
quirks, we can now largely forget about writing special code for individual browsers
provided that we follow the DOM standards.

Note

The use of early browsers such as Netscape Navigator (any version) and Internet
Explorer up to version 5.5 has now virtually disappeared. This book concentrates
on more modern browsers that are compatible with DOM Level 1 or better, such
as Internet Explorer 9+, Firefox, Google Chrome, Apple Safari, Opera, and
Konqueror. You are recommended to upgrade your browser to the latest stable
version.

The window and document Objects

Each time your browser loads and displays a page, it creates in memory an internal
representation of the page and all its elements, the DOM. In the DOM, elements of your
web page have a logical, hierarchical structure, like a tree of interconnected parent and
child objects. These objects, and their interconnections, form a conceptual model of the
web page and the browser that contains and displays it. Each object also has a list of
properties that describe it, and a number of methods we can use to manipulate those
properties using JavaScript.

Right at the top of the hierarchical tree is the browser window object. This object is a
parent or ancestor to everything else in the DOM representation of your page.

The window object has various child objects, some of which are visualized in Figure
1.1. The first child object shown in Figure 1.1, and the one we’ll use most in this book,
is the document object. Any HTML page loaded into the browser creates a
document object containing all of the HTML and other resources that go into making
up the displayed page. All of this information is accessible via JavaScript as a parent-
child hierarchy of objects, each with its own properties and methods.

window

document location history navigator

FIGURE 1.1 The window object and some of its children

The other children of the window object visible in Figure 1.1 are the location
object (containing details of the URL of the currently loaded page), the history
object (containing details of the browser’s previously visited pages), and the
navigator object (which stores details of the browser type, version, and
capabilities). We look in detail at these objects in Hour 4, “DOM Objects and Built-In
Objects,” and use them again at intervals throughout the book, but for now let’s
concentrate on the document object.

Object Notation
The notation we use to represent objects within the tree uses the dot or period:

parent.child

As an example, referring to Figure 1.1, the 1ocation objectis a child of the window
object, so in the DOM it is referred to like this:

window.location

Tip
This notation can be extended as many times as necessary to represent any object
in the tree. For example

objectl.object2.object3

represents object3, whose parent is object?2, which is itself a child of
objectl.

The <body> section of your HTML page is represented in the DOM as a child element
of the document object; we would access it like this:

window.document.body
The last item in the sequence can also be, instead of another object, a property or
method of the parent object:

objectl.object2.property
objectl.object2.method

For example, let’s suppose that we want to access the t it 1e property of the current
document, as specified by the HTML <title>...</title> tags. We can simply
use

window.document.title

Note

Don’t worry if object hierarchy and dot notation don’t seem too clear right now.
You’ll be seeing many examples in the course of the book!

Tip
The window object always contains the current browser window, so you can
refer to window.document to access the current document. As a shortcut, you

can also simply use document instead of window.document—this also
refers to the current document.

If you have several windows open, or if you are using a frameset, there will be a
separate window and document object for each window or frame. To refer to
one of these documents, you need to use the relevant window name and document
name belonging to the window or frame in question.

Talking to the User

Let’s take a look at some of the methods associated with the window and document
objects. We begin with two methods, each of which provides a means to talk to the user.

window.alert()

Even if you don’t realize it, you’ve seen the results of the window object’s alert
method on many occasions. The window object, you’ll recall, is at the top of the DOM
hierarchy, and represents the browser window that’s displaying your page. When you
call the alert () method, the browser pops open a dialog displaying your message,
along with an OK button. Here’s an example:

Click here to view code image

<script>window.alert ("Here is my message");</script>

This 1s our first working example of the dot notation. Here we are calling the alert ()
method of the window object, so our object .method notation becomes
window.alert.

Tip
In practice, you can leave out the window. part of the statement. Because the
window object is the top of the DOM hierarchy (it’s sometimes referred to as
the global object), any methods called without direct reference to their parent
object are assumed to belong to window. So

Click here to view code image

<script>alert ("Here 1s my message");</script>

works just as well.

Notice that the line of text inside the parentheses is contained within quotation marks.
These can be single or double quotes, but they must be there, or an error will be
produced.

This line of code, when executed in the browser, pops up a dialog like the one in Figure
1.2.

+. Example JavaScript Aler x

X | & [file:///fhome/xubuntu/Desktop/6e-1-alert.html e e (D =

Ld

JavaScript Alert %

Here is my message

FIGURE 1.2 Awindow.alert () dialog

Tip
Figure 1.2 shows the alert generated by the Chrome browser running on Ubuntu

Linux. The appearance of the dialog changes in detail depending on the particular

browser, operating system, and display options you are using, but it always
contains the message along with a single OK button.

Tip
Until the user clicks OK, he is prevented from doing anything else with the page.

A dialog that behaves this way is known as a modal dialog.

document.write()

You can probably guess what the wr i te method of the document object does, simply
from its name. This method, instead of popping up a dialog, writes characters directly
into the DOM of the document, as shown in Figure 1.3.

Click here to view code image

<script>document.write ("Here is another message");</script>
[Example of document: x
€ C f [filez///home/xubuntu/Desktop/6e-1.html S E O =

Here is another message

FIGURE 1.3 Using document .write ()

Note

In fact, document .write is a pretty dumb way to write content to the page—
it has a lot of limitations, both in terms of its function and in terms of coding style
and maintainability. It has largely fallen into disuse for “serious” JavaScript
programming. By the time you come to write more advanced JavaScript
programs, you’ll have learned much better ways to put content into your pages
using JavaScript and the DOM. However, we use document .write quite a
lot during Part I of the book, while you come to grips with some of the basic
principles of the language.

Try it Yourself: “Hello World!” in JavaScript

It seems almost rude to introduce a programming language without presenting the
traditional “Hello World” example. Have a look at the simple HTML document

of Listing 1.1.

LISTING 1.1 “Hello World!” in an alert() Dialog

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>Hello from JavaScript!</title>
</head>
<body>
<script>
alert ("Hello World!"™);
</script>
</body>
</html>

Create a document called hello.html in your text editor, and enter the preceding
code. Save it to a convenient place on your computer, and then open it with your
web browser.

Caution

Some text editor programs might try to add a .txt extension to the filename you
specify. Be sure your saved file has the extension .html or the browser will
probably not open it correctly.

Many popular operating systems allow you to right-click on the icon of the
HTML file and choose Open With..., or similar wording. Alternatively, fire up
your chosen browser, and use the File > Open options from the menu bar to
navigate to your file and load it into the browser.

You should see a display similar to Figure 1.2, but with the message “Hello
World!” in the dialog. If you have more than one browser installed on your
computer, try them all, and compare the display—the dialogs will probably look
a little different, but the message, and the operation of the OK button, should be
just the same.

Caution

The default security settings in some browsers cause them to show a security
warning when they are asked to open local content, such as a file on your own
computer. If your browser does this, just choose the option that allows the content
to be shown.

Reading a Property of the document Object

You may recall from earlier in the hour that objects in the DOM tree have properties
and methods. You saw how to use the write method of the document object to
output text to the page—now let’s try reading one of the properties of the document
object. We’re going to use the document . title property, which contains the title as
defined in the HTML <t it1le> element of the page.

Edit hello.html in your text editor, and change the call to the window.alert ()
method:

alert (document.title) ;

Notice that document .title is NOT now enclosed in quotation marks—if it were,
JavaScript would infer that we wanted to output the string “document.title” as literal
text. Without the quote marks, JavaScript sends to the alert () method the value
contained in the document . title property. The result is shown in Figure 1.4.

{ Hello from JavaScript! =

&« X f [file:///home/xubuntu/Desktop/hello.html w E MO =

JavaScript Alert

Hello from JavaScript!

FIGURE 1.4 Displaying a property of the document object

Summary

In this hour, you were introduced to the concepts of server-side and client-side scripting
and had a brief history lesson about JavaScript and the Document Object Model. You
had an overview of the sorts of things JavaScript can do to enhance your web pages and
improve the experience for your users.

Additionally, you learned about the basic structure of the Document Object Model, and
how JavaScript can access particular objects and their properties, and use the methods
belonging to those objects.

In the lessons that follow, we’ll build on these fundamental concepts to get into more
advanced scripting projects.

Q&A

Q. If I use server-side scripting (in a language such as PHP or ASP), can I still
use JavaScript on the client side?

A. Most definitely. In fact, the combination of server-side and client-side scripting
provides a potent platform, capable of producing powerful applications. Google’s
Gmail is a good example.

Q. How many different browsers should I test in?

A. As many as you practically can. Writing standards-compliant code that avoids
browser-specific features will go a long way toward making your code run
smoothly in different browsers. However, one or two minor differences between
browser implementations of certain features are likely to always exist.

Q. Won’t the inclusion of JavaScript code slow down the load time of my pages?

A. Yes, though usually the difference is small enough not to be noticeable. If you
have a particularly large piece of JavaScript code, you may feel it’s worthwhile
testing your page on the slowest connection a user is likely to have. Other than in
extreme circumstances, it’s unlikely to be a serious issue.

Workshop

Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. Is JavaScript a compiled or an interpreted language?
a. A compiled language
b. An interpreted language
c. Neither
d. Both

2. What extra tags must be added to an HTML page to include JavaScript
statements?

a.<script>and </script>
b. <type="text/javascript">
c.<!--and -->

3. The top level of the DOM hierarchy is occupied by:
a. The document property
b. The document method
¢. The document object

d. The window object

Answers

1. b. JavaScript is an interpreted language. The program code is written in plain
text, and the statements are read and executed one at a time.

2. a. JavaScript statements are added between <script>and </script> tags.

3. d. The window object is at the top of the DOM tree, and the document object
1s one of its child objects.

Exercises
» In the “Try It Yourself” section of this hour, we used the line

alert (document.title) ;
to output the t it le property of the document object. Try rewriting that script
to instead output the document . lastModified property, which contains the
date and time that the web page was last changed. (Be careful—property names
are case sensitive. Note the capital M.) See whether you can then modify the code
to use document .write () inplace ofalert () to write the property
directly into the page, as in Figure 1.3.

» Try the example code from this hour in as many different browsers as you have
access to. What differences do you note in how the example pages are displayed?

Writing Simple Scripts

What You’ll Learn in This Hour:
» Various ways to include JavaScript in your web pages
» The basic syntax of JavaScript statements
» How to declare and use variables
» Using mathematical operators
» How to comment your code
» Capturing mouse events

You learned in Hour 1, “Introducing JavaScript,” that JavaScript is a scripting language
capable of making web pages more interactive.

In this hour you learn more about how JavaScript can be added to your web page, and
then about some of the fundamental syntax of your JavaScript programs such as
statements, variables, operators, and comments. You’ll also get your hands dirty with
more code examples.

Including JavaScript in Your Web Page

In the previous hour I said that JavaScript programs are passed to the browser along
with page content—but how do we achieve that? Actually there are two basic methods
for associating JavaScript code with your HTML page, both of which use the
<script></script> element introduced in Hour 1.

One method is to include the JavaScript statements directly into the HTML file, just like
we did in the previous hour:

Click here to view code image

<script>
. Javascript statements are written here ...
</script>
A second, and usually preferable way to include your code is to save your JavaScript
into a separate file, and use the <script> element to include that file by name using
the src (source) attribute:

Click here to view code image

<script src='mycode.js'></script>

The preceding example includes the file mycode . s, which contains our JavaScript
statements. If your JavaScript file is not in the same folder as the calling script, you can

also add a (relative or absolute) path to it:

Click here to view code image

<script src='/path/to/mycode.js'></script>

or

Click here to view code image

<script src='http://www.example.com/path/to/mycode.js'></script>

Placing your JavaScript code in a separate file offers some important advantages:

» When the JavaScript code is updated, the updates are immediately available to
any page using that same JavaScript file. This is particularly important in the
context of JavaScript libraries, which we look at later in the book.

» The code for the HTML page is kept cleaner, and therefore easier to read and
maintain.

» Performance is slightly improved because your browser caches the included file;
therefore, having a local copy in memory next time it is needed by this or another

page.

Note

It is customary to give files of JavaScript code the file extension .js, as in this
example. However, your included code files can have any extension, and the
browser will try to interpret the contents as JavaScript.

Caution

The JavaScript statements in the external file must NOT be surrounded by
<script> ... </script> tags, nor can you place any HTML markup
within the external file. Just include the raw JavaScript code.

Listing 2.1 shows the simple web page we used in Hour 1, but now with a file of
JavaScript code included in the <body> section. JavaScript can be placed in either the
head or body of the HTML page. In fact, it is more common—and generally
recommended—for JavaScript code to be placed in the head of the page, where it
provides a number of functions that can be called from elsewhere in the document. You
learn about functions in Hour 3, “Using Functions”; until then, we limit ourselves to
adding our example code into the body of the document.

LISTING 2.1 An HTML Document with a JavaScript File Included

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>A Simple Page</title>
</head>
<body>
<p>Some content ...</p>
<script src='mycode.]js'></script>
</body>
</html>

When JavaScript code is added into the body of the document, the code statements are
interpreted and executed as they are encountered while the page is being rendered. After
the code has been read and executed, page rendering continues until the page is
complete.

Tip
You’re not limited to using a single script element—you can have as many of
them on your page as you need.

Note

You sometimes see HTML-style comment notation <! -- and —-> inside
script elements, surrounding the JavaScript statements, like this:

Click here to view code image

<script>
<l--
. Javascript statements are written here ...
-—>
</script>
This was for the benefit of ancient browsers that didn’t recognize the <script>
tag. This HTML “comment” syntax prevented such browsers from displaying the
JavaScript source code on the screen along with the page content. Unless you

have a reason to support very old browsers, this technique is no longer required.

JavaScript Statements

JavaScript programs are lists of individual instructions that we refer to as statements.
To interpret statements correctly, the browser expects to find each statement written on
a separate line:

this is statement 1
this is statement 2

Alternatively, they can be combined in the same line by terminating each with a
semicolon:

Click here to view code image

this is statement 1; this is statement 2;

To ease the readability of your code, and to help prevent hard-to-find syntax errors, it’s
good practice to combine both methods by giving each statement its own line and
terminating the statement with a semicolon:

this is statement 1;
this is statement 2;

Commenting Your Code

Some statements are not intended to be executed by the browser’s JavaScript
interpreter, but are there for the benefit of anybody who may be reading the code. We
refer to such lines as comments, and there are specific rules for adding comments to
your code.

A comment that occupies just a single line of code can be written by placing a double
forward slash before the content of the line:

// This 1s a comment

Note
JavaScript can also use the HTML comment syntax for single-line comments:

<!-— this is a comment -->

However, this is not commonly used in JavaScript programs.

To add a multiline comment in this way, we need to prefix every line of the comment:

// This is a comment

// spanning multiple lines
A more convenient way of entering multiline comments to your code is to prefix your
comment with /* and terminate it with * /. A comment written using this syntax can

span multiple lines:
/* This comment can span
multiple lines

without needing
to mark up every line */

Adding comments to your code is really a good thing to do, especially when you’re

writing larger or more complex JavaScript applications. Comments can act as
reminders to you, and also as instructions and explanations to anybody else reading your
code at a later date.

Note

It’s true that comments add a little to the size of your JavaScript source file, and
this can have an adverse effect on page-loading times. Generally the difference is
so small as to be barely noticeable, but if it really matters you can always strip
out all the comments from a “production” version of your JavaScript file—that is,
a version to use with live, rather than development, websites.

Variables

A variable can be thought of as a named “pigeon-hole” where we keep a particular
piece of data. Such data can take many different forms—an integer or decimal number, a
string of characters, or various other data types discussed later in this hour or in those
that follow. Our variables can be called pretty much anything we want, so long as we
only use alphanumeric characters, the dollar sign $, or underscores in the name.

Note

JavaScript is case sensitive—a variable called mypetcat is a different
variable from Mypetcat or MYPETCAT.

Many coders of JavaScript, and other programming languages, like to use the so-
called CamelCase convention (also called mixedCase, BumpyCaps, and various
other names) for variable names. In CamelCase, compound words or phrases
have the elements joined without spaces, with each element’s initial letter
capitalized except the first letter, which can be either upper- or lowercase. In this
example, the variable would be named MyPetCat or myPetCat.

Let’s suppose we have a variable called netPrice. We can set the value stored in
netPrice with a simple statement:

netPrice = 8.99;

We call this assigning a value to the variable. Note that we don’t have to declare the
existence of this variable before assigning a value, as we would have to in some other
programming languages. However, doing so is possible in JavaScript by using the var
keyword, and in most cases is good programming practice:

var netPrice;
netPrice = 8.99;

Alternatively we can combine these two statements conveniently and readably into one:
var netPrice = 8.99;

To assign a character string as the value of a variable, we need to include the string in
single or double quotes:

Click here to view code image

var productName = "Leather wallet";

We could then, for example, write a line of code sending the value contained in that
variable to the window.alert method:

alert (productName) ;

The generated dialog would evaluate the variable and display it (this time, in Mozilla
Firefox) as in Figure 2.1.

Leather wallet

—

FIGURE 2.1 Displaying the value of variable productName

Tip
Choose readable variable names. Having variable names such as
productName and netPrice makes code much easier to read and maintain
than if the same variables were called var123 and myothervar49, even
though the latter names are entirely valid.

Operators

The values we have stored in our variables aren’t going to be much use to us unless we
can manipulate them in calculations.

Arithmetic Operations

First, JavaScript allows us to carry out operations using the standard arithmetic
operators of addition, subtraction, multiplication, and division.

var theSum = 4 + 3;

As you’ll have guessed, after this statement has been executed the variable the Sum
will contain a value of 7. We can use variable names in our operations too:

Click here to view code image

var productCount = 2;
var subtotal = 14.98;
var shipping = 2.75;
var total = subtotal + shipping;

We can use JavaScript to subtract (-), multiply (*), and divide (/) in a similar manner:

Click here to view code image

subtotal = total - shipping;
var salesTax = total * 0.15;
var productPrice = subtotal / productCount;

To calculate the remainder from a division, we can use JavaScript’s modulus division
operator. This is denoted by the % character:

Click here to view code image

var itemsPerBox = 12;
var itemsToBeBoxed = 40;
var itemsInlastBox = itemsToBeBoxed % itemsPerBox;

In this example, the variable itemsInLastBox would contain the number 4 after the
last statement completes.

JavaScript also has convenient operators to increment (++) or decrement (--) the value
of a variable:

productCount++;

1s equivalent to the statement

Click here to view code image

productCount = productCount + 1;
Similarly,

items--;
is just the same as

items = items - 1;

Tip
If you need to increment or decrement a variable by a value other than one,

JavaScript also allows you to combine other arithmetic operators with the =
operator; for example, += and -=.

The following two lines of code are equivalent:

total = total + 5;
total += 5;

So are these two:

counter = counter - step;
counter -= step;

We can use this notation for other arithmetic operators, such as multiplication and
division:

price = price * uplift;

price *= uplift;

A more comprehensive list of JavaScript’s arithmetic operators appears in Appendix B,
“JavaScript Quick Reference.”

Operator Precedence

When you use several operators in the same calculation, JavaScript uses precedence
rules to determine in what order the calculation should be done. For example, consider
the statement

var average = a + b + ¢ / 3;

If, as the variable’s name implies, you’re trying to calculate an average, this would not
give the desired result; the division operation would be carried out on ¢ before adding
the values of a and b to the result. To calculate the average correctly, we would have to
add parentheses to our statement, like this:

Click here to view code image

var average = (a + b + ¢c) / 3;

If you have doubts about the precedence rules, I would recommend that you always use
parentheses liberally. There is no cost to doing so, it makes your code easier to read
(both for you and for anyone else who later has to edit or decipher it), and it ensures that
precedence issues don’t spoil your calculations.

Note

If you have programming experience in another language such as PHP or Java,
you’ll find that the precedence rules in JavaScript are pretty much identical to the
ones you're used to. You can find detailed information on JavaScript precedence
at http://msdn.microsoft.com/en-us/library/z3ks45k7(v=vs.94).aspx.

Using the + Operator with Strings

http://msdn.microsoft.com/en-us/library/z3ks45k7(v=vs.94).aspx

~ - ~

Arithmetic operators don’t make much sense if the variables they operate on contain
strings rather than numeric values. The exception is the + operator, which JavaScript
interprets as an instruction to concatenate (join together sequentially) two or more
strings:

Click here to view code image

var firstname = "John";
var surname = "Doe";
var fullname = firstname + " " + surname;

// the wvariable fullname now contains the value "John Doe"
If you try to use the + operator on two variables, one of which is a string and the other
numeric, JavaScript converts the numeric value to a string and concatenates the two:

var name = "David";
var age = 45;
alert (name + age);

Figure 2.2 shows the result of using the + operator on a string and a numeric value.

David4s

FIGURE 2.2 Concatenating a string and a numeric value

We talk about JavaScript data types, and string operations in general, much more in

Hour 5, “Numbers and Strings.”

Try it Yourself: Convert Celsius to Fahrenheit

To convert a temperature in degrees Celsius to one measured in degrees
Fahrenheit, we need to multiply by 9, divide by 5, and then add 32. Let’s do that
in JavaScript:

Click here to view code image

var cTemp = 100; // temperature in Celsius
// Let's be generous with parentheses
var hTemp = ((cTemp * 9) /5) + 32;

In fact, we could have omitted all of the parentheses from this calculation and it
would still have worked fine:

var hTemp = cTemp*9/5 + 32;

However, the parentheses make the code easier to understand, and help prevent
errors caused by operator precedence.

Let’s test the code in a web page, as shown in Listing 2.2.

LISTING 2.2 Calculating Fahrenheit from Celsius

Click here to view code image

<!DOCTYPE html>

<html>
<head>
<title>Fahrenheit From Celsius</title>
</head>
<body>
<script>
var cTemp = 100; // temperature in Celsius
// Let's be generous with parentheses
var hTemp = ((cTemp * 9) /5) + 32;
document.write ("Temperature in Celsius: " + cTemp + "
degrees
") ;
document.write ("Temperature in Fahrenheit: " + hTemp + "
degrees") ;
</script>
</body>
</html>

Save this code as a file temperature.html and load it into your browser.
You should get the result shown in Figure 2.3.

[Fahrenheit From Celsiu

« e alD ﬁl'e:Hfl%émefxubuntuﬂ]esl{tupftemperature.html wE a0 =

Temperature in Celsius: 100 degrees
Temperature in Fahrenheit: 212 degrees

FIGURE 2.3 The output of Listing 2.2

Edit the file a few times to use different values for cTemp, and check that
everything works OK.

Capturing Mouse Events

One of the fundamental purposes of JavaScript is to help make your web pages more
interactive for the user. To achieve this, we need to have some mechanisms to detect
what the user and the program are doing at any given moment—where the mouse is in
the browser window, whether the user has clicked a mouse button or pressed a
keyboard key, whether a page has fully loaded in the browser, and so on.

All of these occurrences we refer to as events, and JavaScript has a variety of tools to
help us work with them. Let’s take a look at some of the ways we can detect a user’s
mouse actions using JavaScript.

JavaScript deals with events by using so-called event handlers. We are going to
investigate three of these: onC1lick, onMouseOver, and onMouseOut.

The onClick Event Handler

The onC1ick event handler can be applied to nearly all HTML elements visible on a
page. One way we can implement it is to add one more attribute to the HTML element:

Click here to view code image

nw

onclick=" ...some JavaScript code...

Note

While adding event handlers directly into HTML elements is perfectly valid, it’s
not regarded these days as good programming practice. It serves us well for the
examples in Part I of this book, but later in the book you learn more powerful and
elegant ways to use event handlers.

Let’s see an example; have a look at Listing 2.3.

LISTING 2.3 Using the onClick Event Handler

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>onClick Demo</title>
</head>
<body>
<input type="button" onclick="alert('You clicked the button!')"
value="Click Me" />
</body>

</html>

The HTML code adds a button to the <body> element of the page, and supplies that
button with an onc1ick attribute. The value given to the onc1ick attribute is the
JavaScript code we want to run when the HTML element (in this case a button) is
clicked. When the user clicks on the button, the onc11ick event is activated (we
normally say the event has been “fired””) and the JavaScript statement(s) listed in the
value of the attribute are executed.

In this case, there’s just one statement:

Click here to view code image

alert ('You clicked the button!')

Figure 2.4 shows the result of clicking the button.

[onClick Demo x

« C # [} file///home/xubuntu/Desktop/onclick.html w E MO =

JavaScript Alert =
K

You clicked the button!

FIGURE 2.4 Using the onC11ick event handler

Note

You may have noticed that we call the handler onC11ick, but that we write this
in lowercase as onc1lick when adding it to an HTML element. This convention
has arisen because, although HTML is case insensitive, XHTML is case sensitive
and requires all HTML elements and attribute names to be written in lowercase.

onMouseOver and onMouseOut Event Handlers

When we simply want to detect where the mouse pointer is on the screen with reference
to a particular page element, onMouseOver and onMouseOut can help us to do that.

The onMouseOver event is fired when the user’s mouse cursor enters the region of
the screen occupied by the element in question. The onMouseOut event, as I’m sure
you’ve already guessed, is fired when the cursor leaves that same region.

Listing 2.4 provides a simple example of the onMouseOver event in action.

LISTING 2.4 Using onMouseOver

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>onMouseOver Demo</title>
</head>
<body>
<img src="imagel.png" alt="image 1" onmouseover="alert ('You entered
the image!'")" />
</body>
</html>

The result of running the script is shown in Figure 2.5. Replacing onmouseover with
onmouseout in the code will, of course, simply fire the event handler—and therefore
pop up the alert dialog—as the mouse /eaves the image, rather than doing so as it enters.

[} onMouseOver Demo = §
& - C #i [Jfile///home/xubuntu/Desktop/mouseover.html iy M O =

JavaScript Alert

You entered the image!

FIGURE 2.5 Using the onMouseOver event handler

Try it Yourself: Creating an Image Rollover

We can use the onMouseOver and onMouseOut events to change how an
image appears while the mouse pointer is above it. To achieve this, we use
onMouseOver to change the src attribute of the HTML element as the
mouse cursor enters, and onMouseOut to change it back as the mouse cursor
leaves. The code 1s shown in Listing 2.5.

LISTING 2.5 An Image Rollover Using onMouseOver and onMouseOut

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>OnMouseOver Demo</title>
</head>
<body>
<img src="tick.gif" alt="tick" onmouseover="this.src='tick2.gif';"
onmouseout="this.src="tick.gif';" />
</body>
</html>

Y ou may notice something new in the syntax we used here. Within the JavaScript
statements for onMouseOver and onMouseOut we use the keyword this.

When using this within an event handler added via an attribute of an HTML
element, this refers to the HTML element itself; in this case, you can read it as
“this 1image,” and this. src refers (using the “dot” notation that we’ve already
met) to the src (source) property of this image object.

In this example we used two images, tick.gif and tick2.gif—youcan
use any images you have on hand, but the demonstration works best if they are the
same size, and not too large.

Use your editor to create an HTML file containing the code of Listing 2.5. You
can change the image names tick.gif and tick2.gif to the names of your two
images, if different; just make sure the images are saved in the same folder as
your HTML file. Save the HTML file and open it in your browser.

You should see that the image changes as the mouse pointer enters, and changes
back as it leaves, as depicted in Figure 2.6.

[OnMouseOver Demo %

= C f [Jfilex///home/xubuntu/Desktop/mouseover.htmi

['| OnMouseOver Demo =

&« C fi ijﬁle:mhumefxubuntumesktupfmnusemrer.html”

FIGURE 2.6 An image rollover using onMouseOver and onMouseOut

Note

There was a time when image rollovers were regularly done this way, but these
days they can be achieved much more efficiently using Cascading Style Sheets
(CSS). Still, it’s a convenient way to demonstrate the use of the onMouseOver
and onMouseOut event handlers.

Summary
You covered quite a lot of ground this hour.
First of all you learned various ways to include JavaScript code in your HTML pages.

You studied how to declare variables in JavaScript, assign values to those variables,
and manipulate them using arithmetic operators.

Finally, you were introduced to some of JavaScript’s event handlers, and you learned
how to detect certain actions of the user’s mouse.

Q&A

Q. Some of the listings and code snippets list opening and closing <script>
tags on the same line; other times they are on separate lines. Does it matter?

A. Empty spaces, such as the space character, tabs, and blank lines, are completely
ignored by JavaScript. You can use such blank space, which programmers usually

call whitespace, to lay out your code in such a way that it’s more legible and easy
to follow.

Q. Can I use the same <script> element both to include an external
JavaScript file and to contain JavaScript statements?

A. No. If you use the script element to include an external JavaScript file by
using the src attribute, you cannot also include JavaScript statements between
<script> and </script>—this region must be left empty.

Workshop

Try to answer the following questions before looking at the “Answers” section that
follows.

Quiz

1. What is an onC11ick event handler?
a. An object that detects the mouse’s location in the browser
b. A script that executes in response to the user clicking the mouse
c¢. An HTML element that the user can click

2. How many <script> elements are permitted on a page?
a. None
b. Exactly one
¢. Any number

3. Which of these is NOT a true statement about variables?
a. Their names are case sensitive.
b. They can contain numeric or non-numeric information.

c¢. Their names may contain spaces.

Answers

1.b. AnonClick event handler is a script that executes when the user clicks the
mouse.

2. c. You can use as many <script> elements as you need.

3. c. Variable names in JavaScript must not contain spaces.

Exercises

p Starting with Listing 2.4, remove the onMouseOver and onMouseOut
handlers from the element. Instead, add an onC1 ick handler to set the

title property of the image to My New Title. (Hint: You can access the
image title using this.title.)

» Can you think of an easy way to test whether your script has correctly set the new
image title?

Using Functions

What You’ll Learn in This Hour:
» How to define functions
» How to call (execute) functions
» How functions receive data
» Returning values from functions
» About the scope of variables

Commonly, programs carry out the same or similar tasks repeatedly during the course of
their execution. For you to avoid rewriting the same piece of code over and over again,
JavaScript has the means to parcel up parts of your code into reusable modules, called
functions. Once you’ve written a function, it is available for the rest of your program to
use, as if it were itself a part of the JavaScript language.

Using functions also makes your code easier to debug and maintain. Suppose you’ve
written an application to calculate shipping costs; when the tax rates or haulage prices
change, you’ll need to make changes to your script. There may be 50 places in your
code where such calculations are carried out. When you attempt to change every
calculation, you’re likely to miss some instances or introduce errors. However, if all
such calculations are wrapped up in a few functions used throughout the application,
then you just need to make changes to those functions. Your changes will automatically
be applied all through the application.

Functions are one of the basic building blocks of JavaScript and will appear in virtually
every script you write. In this hour you see how to create and use functions.

General Syntax

Creating a function is similar to creating a new JavaScript command that you can use in
your script.

Here’s the basic syntax for creating a function:

Click here to view code image

function sayHello () {
alert ("Hello");
// ... more statements can go here ...

}

You begin with the keyword function, followed by your chosen function name with
parentheses appended, then a pair of curly braces, {}. Inside the braces go the

JavaScript statements that make up the function. In the case of the preceding example,
we simply have one line of code to pop up an alert dialog, but you can add as many
lines of code as are necessary to make the function...well, function!

Caution

The keyword function must always be used in lowercase, or an error will be
generated.

To keep things tidy, you can collect together as many functions as you like into one
<script> element:
<script>
function doThis () {
alert ("Doing This");
}
function doThat () {
alert ("Doing That");

}
</script>

Calling Functions

Code wrapped up in a function definition will not be executed when the page loads.
Instead, 1t waits quietly until the function is called.

To call a function, you simply use the function name (with the parentheses) wherever
you want to execute the statements contained in the function:

sayHello () ;

For example, you may want to add a call to your new function sayHello () to the
onClick event of a button:

Click here to view code image

<input type="button" value="Say Hello" onclick="sayHello ()" />

Tip
Function names, like variable names, are case-sensitive. A function called
MyFunc () 1s different from another called myFunc (). Also, as with variable

names, it’s really helpful to the readability of your code to choose meaningful
function names.

Tip
You’ve already seen numerous examples of using the methods associated with

JavaScript objects, such as document .write () and window.alert ().

Methods are simply functions that “belong” to a specific object. You learn much
more about objects in Hour 4, “DOM Objects and Built-in Objects.”

Putting JavaScript Code in the Page <head>

Up to now, our examples have all placed the JavaScript code into the <body> part of
the HTML page. Using functions lets you employ the much more common, and usually
preferable, practice of storing your JavaScript code in the <head> of the page.
Functions contained within a <script> element in the page head, or in an external file
included via the src attribute of a <script> element in the page head, are available
to be called from anywhere on the page. Putting functions in the document’s head section
ensures that they have been defined prior to any attempt being made to execute them.

Listing 3.1 shows an example.

LISTING 3.1 Functions in the Page Head

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>Calling Functions</title>
<script>
function sayHello () {
alert ("Hello");
}
</script>
</head>
<body>
<input type="button" value="Say Hello" onclick="sayHello ()" />
</body>
</html>

In this listing, you can see that the function definition itself has been placed inside a
<script> element in the page head, but the call to the function has been made from a
different place entirely—on this occasion, from the onC11ick event handler of a button
in the body section of the page.

The result of clicking the button is shown in Figure 3.1.

[calling Functions X

&« - C f [file://home/xubuntu/Desktop/functions.htmi o7 M O =

JavaScript Alert o

Hello

FIGURE 3.1 Calling a JavaScript function

Passing Arguments to Functions

It would be rather limiting if your functions could only behave in an identical fashion
each and every time they were called, as would be the case in the preceding example.

Fortunately, you can extend the capabilities of functions a great deal by passing data to
them. You do this when the function is called, by passing to it one or more arguments:

functionName (arguments)

Let’s write a simple function to calculate the cube of a number and display the result:

function cube (x) {
alert(x * x * x);
}
Now we can call our function, replacing the variable x with a number. Calling the
function like the following results in a dialog box being displayed that contains the
result of the calculation, in this case 27:

cube (3) ;

Of course, you could equally pass a variable name as an argument. The following code
would also generate a dialog containing the number 27:

var length = 3;
cube (length) ;

Note

You’ll sometimes see or hear the word parameters used in place of arguments,
but it means exactly the same thing.

Multiple Arguments

Functions are not limited to a single argument. When you want to send multiple
arguments to a function, all you need to do 1s separate them with commas:

function times(a, b) {
alert(a * b);

}

times (3, 4); // alerts '12'

You can use as many arguments as you want.

Caution

Make sure that your function calls contain enough argument values to match the
arguments specified in the function definition. If any of the arguments in the
definition are left without a value, JavaScript may issue an error, or the function
may perform incorrectly. If your function call is issued with too many arguments,
the extra ones will be ignored by JavaScript.

It’s important to note that the names given to arguments in the definition of your function
have nothing to do with the names of any variables whose values are passed to the
function. The variable names in the argument list act like placeholders for the actual
values that will be passed when the function is called. The names that you give to
arguments are only used inside the function definition to specify how it works.

We talk about this in more detail later in the hour when we discuss variable scope.

Try it Yourself: A Function to Qutput User Messages

Let’s use what we’ve learned so far in this hour by creating a function that can
send the user a message about a button he or she has just clicked. We place the
function definition in the <head> section of the page and call it with multiple

arguments.
Here’s our function:

Click here to view code image

function buttonReport (buttonId, buttonName, buttonValue) {

// information about the id of the button

var userMessagel = "Button id: " + buttonId + "\n";

// then about the button name

var userMessage?2 = "Button name: " + buttonName + "\n";
// and the button value

var userMessage3 = "Button value: " + buttonValue;

// alert the user
alert (userMessagel + userMessage2 + userMessage3) ;
}

The function buttonReport takes three arguments, those being the id, name,
and value of the button element that has been clicked. With each of these three
pieces of information, a short message is constructed. These three messages are
then concatenated into a single string, which is passed to the alert () method to
pop open a dialog containing the information.

Tip
You may have noticed that the first two message strings have the element "\ n"
appended to the string; this is a “new line” character, forcing the message within
the alert dialog to return to the left and begin a new line. Certain special
characters like this one must be prefixed with \ if they are to be correctly
interpreted when they appear in a string. Such a prefixed character is known as an
escape sequence. You learn more about escape sequences in Hour 5, “Numbers

and Strings.”

To call our function, we put a button element on our HTML page, with its 1d,
name, and value defined:

Click here to view code image

<input type="button" i1d="idl" name="Button 1" value="Something" />
We need to add an onC11ck event handler to this button from which to call our
function. We’re going to use the this keyword, as discussed in Hour 2,
“Writing Simple Scripts”:

Click here to view code image

onclick = "buttonReport (this.id, this.name, this.value)"

The complete listing is shown in Listing 3.2.

LISTING 3.2 Calling a Function with Multiple Arguments

Click here to view code image

<!DOCTYPE html>
<html>

<head>
<title>Calling Functions</title>
<script>
function buttonReport (buttonId, buttonName, buttonValue) {
// information about the id of the button

var userMessagel = "Button id: " + buttonId + "\n";

// then about the button name

var userMessage2 = "Button name: " + buttonName + "\n";
// and the button value

var userMessage3 = "Button value: " + buttonValue;

// alert the user
alert (userMessagel + userMessage2 + userMessage3l);
}
</script>
</head>
<body>
<input type="button" id="idl" name="Left Hand Button" value="Left"
onclick ="buttonReport (this.id, this.name, this.value)"/>
<input type="button" id="id2" name="Center Button" wvalue="Center"
onclick ="buttonReport (this.id, this.name, this.value)"/>
<input type="button" id="id3" name="Right Hand Button" wvalue="Right"
onclick ="buttonReport (this.id, this.name, this.value)"/>
</body>
</html>

Use your editor to create the file buttons.html and enter the preceding code. You
should find that it generates output messages like the one shown in Figure 3.2, but
with different message content depending on which button has been clicked.

[calling Functions *

&« - C f [filex///home/xubuntu/Desktop/buttons.html o7 M O =

| Left || CEHT.EE| Right JavaScript Alert

Button id: id2
Button name: Center Button
Button value: Center

FIGURE 3.2 Using a function to send messages

Returning Values from Functions

OK, now you know how to pass information to functions so that they can act on that
information for you. But how can you get information back from your function? You
won’t always want your functions to be limited to popping open a dialog!

Luckily, there 1s a mechanism to collect data from a function call—the return value.
Let’s see how it works:

function cube (x) {
return x * x * Xx;

}

Instead of usingan alert () dialog within the function, as in the previous example,
this time we prefixed our required result with the return keyword. To access this
value from outside the function, we simply assign to a variable the value returned by
the function:

var answer = cube (3);

The variable answer will now contain the value 27.

Note

The values returned by functions are not restricted to numerical quantities as in
this example. In fact, functions can return values having any of the data types
supported by JavaScript. We discuss data types in Hour 5.

Tip
Where a function returns a value, we can use the function call to pass the return
value directly to another statement in our code. For example, instead of

var answer = cube(3);
alert (answer) ;

we could simply use

alert (cube (3));

The value of 27 returned from the function call cube (3) immediately becomes
the argument passed to the alert () method.

Scope of Variables

We have already seen how to declare variables with the var keyword. There 1s a
golden rule to remember when using functions:

“Variables declared inside a function only exist inside that function.”
This limitation is known as the scope of the variable. Let’s see an example:

Click here to view code image

// Define our function addTax ()

function addTax (subtotal, taxRate) {
var total = subtotal * (1 + (taxRate/100));
return total;

}

// now let's call the function

var invoiceValue = addTax (50, 10);
alert (invoiceValue); // works correctly
alert (total); // doesn't work

If we run this code, we firstsee analert () dialog with the value of the variable
invoiceValue (which should be 55, but in fact will probably be something like
55.000000001 because we have not asked JavaScript to round the result).

We will not, however, then see analert () dialog containing the value of the variable
total. Instead, JavaScript simply produces an error. Whether you see this error
reported depends on your browser settings—you learn more about error handling later
in the book—but JavaScript will be unable to displayanalert () dialog with the
value of your variable total.

This 1s because we placed the declaration of the variable total inside the

addTax () function. Outside the function the variable total simply doesn’t exist (or,
as JavaScript puts it, “is not defined”’). We used the return keyword to pass back just
the value stored in the variable total, and that value we then stored in another
variable, invoice.

We refer to variables declared inside a function definition as being /ocal variables; that
1s, local to that function. Variables declared outside any function are known as global
variables. To add a little more confusion, local and global variables can have the same
name, but still be different variables!

The range of situations where a variable is defined is known as the scope of the
variable—we can refer to a variable as having /ocal scope or global scope.

Try it Yourself: Demonstrating the Scope of Variables

To illustrate the issue of a variable’s scope, take a look at the following piece of
code:

Click here to view code image

var a = 10;
var b = 10;
function showVars () {
var a = 20; // declare a new local variable 'a'
b = 20; // change the value of global variable 'b'
return "Local variable 'a' = " + a + "\nGlobal variable 'b' = " +
b;
}
var message = showVars() ;
alert (message + "\nGlobal variable 'a' = " + a);

Within the showVars () function we manipulate two variables, a and b. The
variable a we define inside the function; this is a local variable that only exists
inside the function, quite separate from the global variable (also called a) that

we declare at the very beginning of the script.

The variable b is not declared inside the function, but outside; it is a global
variable.

Listing 3.3 shows the preceding code within an HTML page.

LISTING 3.3 Global and Local Scope

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>Variable Scope</title>

</head>

<body>
<script>
var a = 10;
var b = 10;
function showVars () {
var a = 20; // declare a new local variable 'a'
b = 20; // change the value of global variable 'b'
return "Local variable 'a' =" + a + "\nGlobal variable 'b' =
" + b;
}
var message = showVars() ;
alert (message + "\nGlobal variable 'a' = " + a);
</script>
</body>
</html>

When the page is loaded, showVars () returns a message string containing
information about the updated values of the two variables a and b, as they exist
inside the function—a with local scope, and b with global scope.

A message about the current value of the other, global variable a is then
appended to the message, and the message displayed to the user.

Copy the code into the file scope.html and load it into your browser. Compare
your results with Figure 3.3.

{ Variable Scope X

« x| & [O ﬂIE:fffht;mefxubuntufﬂesktupfscupe.html wE MO =

Ll

JavaScript Alert

Local variable 'a'= 20
Global variable 'b' =20
Global variable 'a'=10

FIGURE 3.3 Local and global scope

Summary
In this hour you learned about what functions are, and how to create them in JavaScript.

You learned how to call functions from within your code, and pass information to those
functions in the form of arguments. You also found out how to return information from a
function to its calling statement.

Finally, you learned about the local or global scope of a variable, and how the scope of
variables affects how functions work with them.

Q&A
Q. Can one function contain a call to another function?
A. Most definitely; in fact, such calls can be nested as deeply as you need them to be.
Q. What characters can I use in function names?

A. Function names must start with a letter or an underscore and can contain letters,
digits, and underscores in any combination. They cannot contain spaces,
punctuation, or other special characters.

Workshop

Try to answer all the questions before reading the subsequent “Answers” section.

Quiz

1. Functions are called using
a. The function keyword
b. The call command
¢. The function name, with parentheses

2. What happens when a function executes a return statement?
a. An error message is generated.
b. A value is returned and function execution continues.
¢. A value is returned and function execution stops.

3. A variable declared inside a function definition is called
a. A local variable
b. A global variable
¢. An argument

Answers
1. c. A function is called using the function name.

2. c. After executing a return statement, a function returns a value and then ceases
function execution.

3. a. A variable defined within a function has local scope.

Exercises

» Write a function to take a temperature value in Celsius as an argument, and return
the equivalent temperature in Fahrenheit, basing it on the code from Hour 2.

» Test your function in an HTML page.

DOM Objects and Built-in Objects

What You’ll Learn in This Hour:
» Talking to the user withalert (), prompt (), and confirm/()
» Selecting page elements with getElementById ()
» Accessing HTML content with inne rHTML
» How to use the browser history object
» Reloading or redirecting the page using the 1ocation object
» Getting browser information via the navigator object
» Manipulating dates and times with the Date object
» Calculations made easier with the Math object

In Hour 1, “Introducing JavaScript,” we talked a little about the DOM and introduced
the top-level object in the DOM tree, the window object. We also looked at one of its
child objects, document.

In this hour, we introduce some more of the utility objects and methods that you can use
in your scripts.

Interacting with the User

Among the methods belonging to the window object, there are some designed
specifically to help your page communicate with the user by assisting with the input and
output of information.

alert()

You’ve already used the alert () method to pop up an information dialog for the user.
You’ll recall that this modal dialog simply shows your message with a single OK
button. The term modal means that script execution pauses, and all user interaction with
the page is suspended, until the user clears the dialog. The alert () method takes a
message string as its argument:

alert ("This is my message");

alert () does notreturn a value.

confirm()

The confirm () method is similarto alert (), in that it pops up a modal dialog
with a message for the user. The confirm () dialog, though, provides the user with a

choice; instead of a single OK button, the user may select between OK and Cancel, as
shown in Figure 4.1. Clicking on either button clears the dialog and allows the calling
script to continue, but the confirm () method returns a different value depending on
which button was clicked—Boolean true in the case of OK, or false in the case of
Cancel. We begin to look at JavaScript’s data types in the next hour, but for the moment
you just need to know that a Boolean variable can only take one of two values, true or

false.

Are you happy to continue?

| cancel |[ok |

FIGURE 4.1 The confirm () dialog

The confirm () method is called in a similar way to alert (), passing the required
message as an argument:

Click here to view code image

var answer = confirm("Are you happy to continue?");

Note that here, though, we pass the returned value of t rue or false to a variable so
we can later test its value and have our script take appropriate action depending on the
result.

prompt()
The prompt () method is yet another way to open up a modal dialog. In this case,
though, the dialog invites the user to enter information.

A prompt () dialogis called in just the same manner as confirm():

Click here to view code image

var answer = prompt ("What is your full name?");

The prompt method also allows for an optional second argument, giving a default
response in case the user clicks OK without typing anything;

Click here to view code image

var answer = prompt ("What is your full name?", "John Doe");

The return value froma prompt () dialog depends on what option the user takes:

» If the user types in input and clicks OK or presses Enter, the user input string is
returned.

» If the user clicks OK or presses Enter without typing anything into the prompt
dialog, the method returns the default response (if any), as optionally specified in
the second argument passed to prompt ().

» If the user dismisses the dialog (that is, by clicking Cancel or pressing Escape),
then the prompt method returns null.

Note
The null value is used by JavaScript on certain occasions to denote an empty
value. When treated as a number it takes the value 0, when used as a string it
evaluates to the empty string (“”’), and when used as a Boolean value it becomes
false.

The prompt () dialog generated by the previous code snippet is shown in Figure 4.2.

What is your full name?

[jnhn Doe

|I Cancel | | oK |

FIGURE 4.2 The prompt () dialog

Selecting Elements by Their ID

In Part III, “Objects,” you’ll learn a lot about navigating around the DOM using the
various methods of the document object. For now, we limit ourselves to looking at
one 1n particular—the getElementById () method.

To select an element of your HTML page having a specific ID, all you need to do is call
the document object’s getElementById () method, specifying as an argument the
ID of the required element. The method returns the DOM object corresponding to the
page element with the specified ID.

Let’s look at an example. Suppose your web page contains a <div> element:

Click here to view code image

<div id="div1l">
.. Content of DIV element ...
</div>

In your JavaScript code, you can access this <div> element using
getElementById (), passing the required ID to the method as an argument:

Click here to view code image

var myDiv = document.getElementById("divl");

We now have access to the chosen page element and all of its properties and methods.

Caution

Of course, for this to work the page element must have its ID attribute set.
Because ID values of HTML page elements are required to be unique, the method
should always return a single page element, provided a matching ID is found.

The innerHTML Property

A handy property that exists for many DOM objects, innerHTML allows us to get or
set the value of the HTML content inside a particular page element. Imagine your HTML
contains the following element:

Click here to view code image

<div id="divl">
<p>Here 1is some original text.</p>
</div>

We can access the HTML content of the <div> element using a combination of
getElementById () and innerHTML:

Click here to view code image

var myDivContents = document.getElementById ("divl") .innerHTML;

The variable myDivContents will now contain the string value:

Click here to view code image

"<p>Here is some original text.</p>"

We can also use innerHTML to set the contents of a chosen element:

Click here to view code image

document.getElementById("divl") .innerHTML =
"<p>Here 1s some new text instead!</p>";

Executing this code snippet erases the previous HTML content of the <div> element
and replaces it with the new string.

Accessing Browser History

The browser’s history is represented in JavaScript by the window.history object,
which is essentially a list of the URLs previously visited. Its methods enable you to use
the list, but not to manipulate the URLs explicitly.

The only property owned by the histoxry object is its length. You can use this
property to find how many pages the user has visited:

Click here to view code image

alert ("You've visited " + history.length + " web pages in this browser
session");

The history object has three methods.

forward () and back () are equivalent to pressing the Forward and Back buttons on
the browser; they take the user to the next or previous page in the history list.

history.forward() ;

There is also the method go, which takes a single parameter. This can be an integer,
positive or negative, and it takes the user to a relative place in the history list:

Click here to view code image

history.go(-3); // go back 3 pages
history.go(2); // go forward 2 pages

The method can alternatively accept a string, which it uses to find the first matching
URL in the history list:

Click here to view code image

history.go ("example.com"); // go to the nearest URL in the history
// list that contains 'example.com'

Using the location Object

The 1ocation object contains information about the URL of the currently loaded
page.

We can think of the page URL as a series of parts:

[protocol]//[hostname]:[port]/[pathname][search][hash]

Here’s an example URL: http://www.example.com:8080/tools/display.php?
section=435#list

The list of properties of the 1ocation object includes data concerning the various
parts of the URL. The properties are listed in Table 4.1.

Property Description

location.href ‘http:/ /www.example.com:8080/tools/display.php?section=435#list’
locaticon.protocol ‘http:’

location.host ‘www.example.com:8080'

location.hostname ‘www.example.com’

location.port ‘BOBO’

location.pathname ‘/tools/display.php’
location.search “?section=435%’

location.hash ‘#Hlist’

TABLE 4.1 Properties of the location Object

Navigating Using the location Object
There are two ways to take the user to a new page using the 1ocation object.
First, we can directly set the hre f property of the object:

Click here to view code image

location.href = 'www.newpage.com';

Using this technique to transport the user to a new page maintains the original page in
the browser’s history list, so the user can return simply by using the browser Back
button. If you would rather the sending page were removed from the history list and
replaced with the new URL, you can instead use the location object’s replace ()
method:

Click here to view code image

location.replace ('www.newpage.com') ;

This replaces the old URL with the new one both in the browser and in the history list.

Reloading the Page

To reload the current page into the browser—the equivalent to having the user click the
“reload page” button—we can use the reload () method:

location.reload() ;

Tip
Using reload () without any arguments retrieves the current page from the

browser’s cache, if it’s available there. To avoid this and get the page directly
from the server, you can call reload with the argument t rue:

document.reload (true) ;

Browser Information—The navigator Object

While the 1ocation object stores information about the current URL loaded in the
browser, the navigator object’s properties contain data about the browser
application itself.

Try it Yourself: Displaying Information Using the navigator Object

We’re going to write a script to allow you to find out what the navigator
object knows about your own browsing setup. Use your editor to create the file
navigator.html containing the code from Listing 4.1. Save the file and open it in
your browser.

LISTING 4.1 Using the navigator Object

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>window.navigator</title>
<style>
td {border: lpx solid gray; padding: 3px 5px;}
</style>
</head>
<body>
<script>
document.write ("<table>");
document .write ("<tr><td>appName</td><td>"+navigator.appName + "
</td></tr>");
document .write ("<tr><td>appCodeName</td>
<td>"+navigator.appCodeName + "</td></tr>");
document .write ("<tr><td>appVersion</td><td>"+navigator.appVersion
+ "</td></tr>");
document.write ("<tr><td>language</td><td>"+navigator.language + "
</td></tr>") ;
document .write ("<tr><td>cookieEnabled</td>
<td>"+navigator.cookieEnabled + "</td></tr>");
document.write ("<tr><td>cpuClass</td><td>"+navigator.cpuClass + "
</td></tr>");
document.write ("<tr><td>onLine</td><td>"+navigator.onLine + "</td>
</tr>");
document.write ("<tr><td>platform</td><td>"+navigator.platform + "
</td></tr>") ;
document.write ("<tr><td>No of Plugins</td>
<td>"+navigator.plugins.length + "</td></tr>");
document.write ("</table>") ;

http://www.example.com/documents/letter.htm?page=2

https://addons.mozilla.org/en-US/firefox/addon/dom-inspector-6622/

http://json.org/

http://www.flickr.com/services/api/response.json.html

http://www.ietf.org/rfc/rfc4627
http://json.org/

http://www.webmproject.org/

http://www.whatwg.org/specs/web-apps/current-work/multipage/the-video-element.html

http://caniuse.com/
http://html5readiness.com/

http://shouldiprefix.com/
http://www.w3schools.com/cssref/css3_browsersupport.asp

http://www.w3.org/TR/2011/WD-css3-images-20110217/

http://css3.bradshawenterprises.com/all/

http://www.prototypejs.org

http://www.dojotoolkit.org/
http://developer.yahoo.com/yui/
http://mootools.net/
http://jquery.com/

http://prototypejs.org/

http://www.prototypejs.org
http://script.aculo.us/

http://docs.jquery.com/Downloading_jQuery

http://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js
http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.11.2.min.js
http://code.jquery.com/jquery-1.11.2.min.js
http://code.jquery.com/jquery-1.11.2.js
http://code.jquery.com/jquery-latest.min.js

http://docs.jquery.com/Using_jQuery_with_Other_Libraries

http://jqueryui.com/themeroller/

http://jqueryui.com/themeroller/
http://jqueryui.com/themeroller/

http://docs.jquery.com/UI/

http://api.jquery.com/jQuery.ajax/

FIGURE 17.3 An Ajax form using jQuery

Summary

In this hour you took a good look at the basics of Ajax programming and learned how
you can use the jQuery library to make the whole process much more slick and
straightforward.

Q&A
Q. How did Ajax get its name?

A. Ajax is an acronym for Asynchronous JavaScript And XML. In practice, though,
Ajax is by no means limited to returning just XML data.

Q. Do other libraries besides jQuery implement Ajax?

A. Certainly. There are many libraries and frameworks that help you implement
Ajax, some popular ones being Dojo, MooTools, and Prototype.

Workshop

Try to answer all the questions before reading the subsequent “Answers” section.

Quiz

1. Which of these will grab element with id=source from server file
examples.html and insert it into a page element with id=target?

a. S ("#target") .load ("examples.html #source");
b. $ ("#source") .load ("examples.html #target");
C. S (#source) .load ("examples.html #info");
2. A function used to process the data returned from an Ajax call is called:
a. An anonymous function
b. A callback function
c. An Ajax request
3. The jQuery serialize () method:
a. Encodes a set of form elements as a string for submission.
b. Encodes a set of form elements as a JSON object for submission.

c. Encodes a set of form elements as a JavaScript array for submission.

Answers
l.a. $("#target") .load ("examples.html #source");
2. b. A callback function

3. a. The jQuery serialize () method encodes a set of form elements as a string
for submission.

Exercises

» Upload some plain text in a .txt file to your server. Create an HTML page that
uses JQuery’s 1oad () method to return the text and display itina <div>
element of your page.

» Amend the code of this hour’s “Try It Yourself” exercise to disallow form
submission if either data entry field is blank or contains data less than four
characters long,

Part VI: Advanced Topics

Reading and Writing Cookies

What You’ll Learn in This Hour:
» What cookies are
» All about cookie attributes
» How to set and retrieve cookies
» About cookie expiration dates
» How to save multiple data items in a single cookie
» Deleting cookies
» Escaping and unescaping data
» Limitations of cookies

Something that the JavaScript techniques that you have seen so far can’t do is transfer
information from one page to another. Cookies provide a convenient way to give your
web pages the means to store and retrieve small pieces of information on a user’s own
computer, allowing your website to save details such as a user’s preferences or dates of
his or her prior visits to your site.

In this hour you learn how to create, save, retrieve, and delete cookies using JavaScript.

What Are Cookies?

The HTTP protocol that you use to load web pages into your browser is a so-called
stateless protocol. This means that once the server has delivered the requested page to
your browser, it considers the transaction complete and retains no memory of it. This
makes it difficult to maintain certain sorts of continuity during a browsing session (or
between one session and the next) such as keeping track of which information the visitor
has already read or downloaded, or of his or her login status to a private area of the
site.

Cookies are a way to get around this problem; you could, for example, use cookies to
remember a user’s last visit, save a list of that user’s preferences, or keep track of
shopping cart items while he or she continues to shop. Correctly used, cookies can help
improve the experience perceived by the user while using your site.

The cookies themselves are small strings of information that can be stored on a user’s
computer by the web pages he or she visits, to be later read by any other web pages
from within the correct domain and path. Cookies are set to expire after a specified
length of time.

Caution

Be aware that many users do not allow websites to leave cookies on their
computers, so be sure not to make your websites depend on them.

The usual reason is that some websites use cookies as part of advertising
systems, using them to track users’ online activities with a view to selecting
appropriate advertisements. It may be advisable to show an explanation of why
you are going to use the cookie and what you’ll use it for.

Limitations of Cookies

Your browser may have a limit to how many cookies it can store—normally a few
hundred cookies or more. Usually, 20 cookies per domain name are permitted. A total
of 4KB of cookie information can be stored for an individual domain.

In addition to the potential problems created by these size limitations, cookies can also
vanish from a hard disk for various reasons, such as the cookie’s expiry date being
reached or the user clearing cookie information or switching browsers. Cookies should
therefore never be used to store critical data, and your code should always be written to
cope with situations where an expected cookie cannot be retrieved.

The document.cookie Property

Cookies in JavaScript are stored and retrieved by using the cookie property of the
document object.

Each cookie 1s essentially a text string consisting of a name and a value pair, like this:

username=sam

When a web page is loaded into your browser, the browser marshals all of the cookies
available to that page into a single string-like property, which is available as
document .cookie. Within document . cookie, the individual cookies are
separated by semicolons:

Click here to view code image

username=sam; location=USA;status=fullmember;

Tip
[refer to document . cookie as a string-like property, because it isn’t really

a string—it just behaves like one when you’re trying to extract cookie
information, as you see during this hour.

Escaping and Unescaping Data

Cookie values may not include certain characters. Those disallowed include
semicolons, commas, and whitespace characters such as space and tab. Before storing
data to a cookie, you need to encode the data in such a way that it will be stored
correctly.

You can use the JavaScript escape () function to encode a value before storing it, and
the corresponding unescape () function to later recover the original cookie value.

The escape () function converts any non-ASCII character in the string to its
equivalent two- or four-digit hexadecimal format—so a blank space is converted into
%20, and the ampersand character (&) to $26.

For example, the following code snippet writes out the original string saved in variable
str followed by its value after applying the escape () function:

Click here to view code image

var str = 'Here is a (short) piece of text.';
document.write (str + '
' + escape(str));

The output to the screen would be

Click here to view code image

Here is a (short) piece of text.
Here%20is%20a%20%28short%29%20piece%200f%20text.

Notice that the spaces have been replaced by $20, the opening parenthesis by $28, and
the closing parenthesis by $2 9.

All special characters, with the exception of *, @, -, , +, ., and /, are encoded.

Cookie Ingredients

The cookie information in document . cookie may look like a simple string of name
and value pairs, each in the form of

name=value;

but really each cookie has certain other pieces of information associated with it, as
outlined in the following sections.

Note

The definitive specification for cookies was published in 2011 as RFC6265. You
can read it at http://tools.ietf.org/html/rfc6265.

cookieName and cookieValue
These are the name and value visible in each name=value pair in the cookie string.

http://tools.ietf.org/html/rfc6265

domain

The domain attribute tells the browser to which domain the cookie belongs. This
attribute 1s optional, and when not specified its value defaults to the domain of the page
setting the cookie.

The purpose of the doma in attribute is to control cookie operation across subdomains.
If the domain is set to www.example.com, then pages on a subdomain such as
code.example.com cannot read the cookie. If, however, domain is set to example.com,
then pages in code.example.com will be able to access it.

You cannot set the domain attribute to any domain outside the one containing your
page.

path

The path attribute lets you specify a directory where the cookie is available. If you
want the cookie to be only set for pages in directory document s, set the path to
/documents. The path attribute is optional, the usual default path being/, in which
case the cookie is valid for the whole domain.

secure

The optional and rarely used secure flag indicates that the browser should use SSL
security when sending the cookie to the server.

expires

Each cookie has an expires date after which the cookie is automatically deleted. The
expires date should be in UTC time (Greenwich Mean Time, or GMT). If no value is
set for expires, the cookie will only last as long as the current browser session and
will be automatically deleted when the browser is closed.

Writing a Cookie

To write a new cookie, you simply assign a value to document . cookie containing
the attributes required:

Click here to view code image

document.cookie = "username=sam;expires=15/06/2013 00:00:00";

To avoid having to set the date format manually, we could do the same thing using
JavaScript’s Date object:

Click here to view code image

var cookieDate = new Date (2013, 05, 15);
document.cookie = "username=sam;expires=" + cookieDate.toUTCString()

This produces a result identical to the previous example.

Tip
Note the use of
cookieDate.toUTCString () ;
instead of

cookieDate.toString() ;

because cookie dates always need to be set in UTC time.

In practice, you should use escape () to ensure that no disallowed characters find
their way into the cookie values:

Click here to view code image

var cookieDate = new Date (2013, 05, 15);

var user = "Sam Jones";

document.cookie = "username=" + escape (user) + ";expires=" +
cookieDate.toUTCString () ;

A Function to Write a Cookie

It’s fairly straightforward to write a function to write your cookie for you, leaving all
the escaping and the wrangling of optional attributes to the function. The code for such a
function appears in Listing 18.1.

LISTING 18.1 Function to Write a Cookie

Click here to view code image

function createCookie (name, value, days, path, domain, secure) {
if (days) {
var date = new Date();
date.setTime (date.getTime () + (days*24*60*60*1000));

var expires = date.toGMTString();
}
else var expires = "";
cookieString = name + "=" + escape (value);
if (expires) cookieString += "; expires=" + expires;
if (path) cookieString += "; path=" + escape (path);
if (domain) cookieString += "; domain=" + escape (domain);
if (secure) cookieString += "; secure";
document.cookie = cookieString;

The operation of the function is straightforward. The name and value arguments are

assembled into a name=value string, after escaping the value part to avoid errors
with any disallowed characters.

Instead of specifying a date string to the function, we are asked to pass the number of
days required before expiry. The function then handles the conversion into a suitable
date string.

The remaining attributes are all optional and are appended to the string only if they exist
as arguments.

Caution

Your browser security may prevent you from trying out the examples in this hour
if you try simply loading the files from your local machine into your browser. To
see the examples working, you may need to upload the files to a web server on
the Internet or elsewhere on your local network.

Try it Yourself: Writing Cookies

Let’s use this function to set the values of some cookies. The code for our simple
page is shown in Listing 18.2. Create a new file named testcookie.html and enter
the code as listed. Feel free to use different values for the name and value pairs
that you store in your cookies.

LISTING 18.2 Writing Cookies

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>Using Cookies</title>
<script>
function createCookie (name, value, days, path, domain, secure) {
if (days) {
var date = new Date () ;
date.setTime (date.getTime () + (days*24*60*60*1000)) ;
var expires = date.toGMTString() ;
}

else var expires = "";

cookieString = name + "=" + escape (value);

if (expires) cookieString += "; expires=" + expires;

if (path) cookieString += "; path=" + escape (path);

if (domain) cookieString += "; domain=" + escape (domain) ;
if (secure) cookieString += "; secure";

document.cookie = cookieString;

}

createCookie ("username", "Sam Jones", 5);

createCookie ("location"™, "USA", 5);
createCookie ("status", "fullmember", 5);
</script>
</head>
<body>
Check the cookies for this domain using your browser tools.
</body>
</html>

Upload this HTML file to an Internet host or a web server on your local area
network, if you have one. The loaded page displays nothing but a single line of
text:

Click here to view code image

Check the cookies for this domain using your browser tools.

In the Chromium browser, I can open Developer Tools using Shift+Ctrl+I—if you
are using a different browser, check the documentation for how to view cookie
information.

My result is shown in Figure 18.1.

¥ mousewhisperer.co.uk/cookietest.html - Chromium At

Ou. usewhisperer,

\ C Mt © mousewhisperer.co.uk/cookietest.html % B O3 3

| ||

Check the cookies for this domain using your browser tools.

"31, Elements | .I'-___—lJ Resources | @ MNetwarl 1& cript @Tun--lllu-- ICL

B4 D SO aRER i Name Walue Demain P | Expires Size |HTIP | Se..
» |;|_;| Local Storage | E— S5am%20|ones . mousewhisparer, co,uk [+ Men, 30)an 2012 15:41:1... [1s . .
* t_d Session Storage 1 lacation (WET-Y mousewhisperer.co.uk |/ | Men, 30 Jan 2012 15:41:1... 11

A _:g- Cookies status fullmembear mousewhisperer.co.uk |/ | Mon, 30)Jan 2012 15:41:1... 15

ff mousewhisperer.co.uk

B(»x= | Q <top frame> & All | Errors Warnings Logs #

FIGURE 18.1 Displaying our cookies

Tip
Note that each time the function is called, it sets a new value for
document.cookie, yet this value does not overwrite the previous one;

instead, it appends your new cookie to the cookie values already present. As |
said, document . cookie sometimes appears to act like a string, but it isn’t
one really.

Reading a Cookie

The function to read the value of a cookie relies heavily on JavaScript’s split ()
string method that you learned about in Hour 5, “Numbers and Strings.” You may recall
that split () takes a string and splits it into an array of items, using a specified
character to determine where the string should be divided:

Click here to view code image

myString = "John#Paul#George#Ringo";

var myArray = myString.split('#');
The preceding statement would divide string myString into a series of separate parts,
cutting the string at each occurrence of the hash (#) character; myArray [0] would
contain “John,” myArray[1] would contain “Paul,” and so forth.

Since in document . cookie the individual cookies are divided by the semicolon
character, this character is initially used to break up the string returned by
document.cookie:

Click here to view code image

var crumbs = document.cookie.split(';"'");
You want to search for a cookie of a specific name, so the resulting array crumbs is
next searched for any items having the appropriate name= part.

The indexOf () and substring () methods are combined to return the value part
of the cookie, which is then returned by the function after using unescape () to
remove any encoding;

Click here to view code image

function getCookie (name) {

var nameEquals = name + "=";
var crumbs = document.cookie.split(';");
for (var i = 0; 1 < crumbs.length; i++) {
var crumb = crumbs[i];
if (crumb.indexOf (nameEquals) == 0) {

return unescape (crumb.substring (nameEquals.length,
crumb.length));
}
}

return null;

Deleting Cookies
To delete a cookie, all that is required is to set it with an expiry date before the current
day. The browser infers that the cookie has already expired and deletes it.

function deleteCookie (name) {
createCookie (name,"",-1);

}

Caution
Some versions of some browsers maintain the cookie until you restart your
browser even if you have deleted it in the script. If your program depends on the
deletion definitely having happened, do another getCookie test on the deleted

cookie to make sure it has really gone.

Try it Yourself: Using Cookies
Let’s put together all you’ve learned so far about cookies by building some pages
to test cookie operation.

First, collect the functions createCookie (), getCookie (), and
deleteCookie () into a single JavaScript file and save it as cookie.js, using

the code in Listing 18.3.

LISTING 18.3 cookies.js

Click here to view code image

function createCookie (name, value, days, path, domain, secure) {
if (days) {
var date = new Date();
date.setTime (date.getTime () + (days*24*60*60*1000)) ;

var expires = date.toGMTString() ;

}

else var expires = "";

cookieString = name + "=" + escape (value);

if (expires) cookieString += "; expires=" + expires;

if (path) cookieString += "; path=" + escape (path):;

if (domain) cookieString += "; domain=" + escape (domain);
if (secure) cookieString += "; secure";

document.cookie = cookieString;

}

function getCookie (name) {

var nameEquals = name + "=";
var crumbs = document.cookie.split(';"'):
for (var 1 = 0; 1 < crumbs.length; i++) {

var crumb = crumbs[i].trim()

if (crumb.indexOf (namekEquals) == 0) {
return unescape (crumb.substring (nameEquals.length,
crumb.length)) ;
}
}

return null;

}

function deleteCookie (name) {
createCookie (name,"",-1);

}

This file will be included in the <head> of your test pages so that the three
functions are available for use by your code.

The code for the first test page, cookietest.html, is listed in Listing 18.4, and that
for a second test page, cookietest2.html, in Listing 18.5. Create both of these
pages in your text editor.

LISTING 18.4 cookietest.html

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>Cookie Testing</title>
<script src="cookies.js"></script>
<script>
window.onload = function () {
var cookievalue = prompt ("Cookie Value:");
createCookie ("myCookieData", cookievalue):;
}
</script>
</head>
<body>
Go to Cookie Test Page 2
</body>
</html>

LISTING 18.5 cookietest2.html

Click here to view code image

<!DOCTYPE html>

<html>

<head>
<title>Cookie Testing</title>
<script src="cookies.js"></script>

<script>

window.onload = function () {
document.getElementById ("output") .innerHTML = "Your cookie
value: " + getCookie ("myCookieData");
}
</script>
</head>

<body>
Back to Cookie Test Page 1

<div id="output"></div>

</body>

</html>

The only visible page content in cookietest.html is a link to the second page
cookietest2.html. However, the window.onload event is captured by the code
on the page and used to execute a function that launches a prompt () dialog as
soon as the page has finished loading. The dialog asks you for a value to be saved
to your cookie, and then calls createCookie () to seta cookie of name
myCookieData with the value that you just entered.

The page cookietest.html is shown working in Figure 18.2.

r Cookie Testing - Chromium =

& X ft @ wwwmousewhisperer.co.uk/tyis/cock 5y EF O &

Go to Cookie Test Page 2

0 Cookie Value;
SAMS

@ cancel | W 0K |

: N

FIGURE 18.2 Enter a value for your cookie.

After setting your cookie, use the link to navigate to cookietest2.html.

When this page loads, the window.onload event handler executes a function
that retrieves the stored cookie value using getCookie () and writes it to the

page, as shown in Figure 18.3.

- Cookie Testing - Chromium = =

C M © wwwmousewhisperer.co.uk/tyjs/cook 5 O

Backto Cookie Test Page 1
Your cookie value: SAMS

FIGURE 18.3 Retrieving the value of your cookie

To try it out for yourself, you need to upload the files cookietest.html,
cookietest2.html, and cookies.js to a web server on the Internet (or one on your
local network, if you have one) as browser security will probably prevent you
from setting cookies when using the file: // protocol to view a file on your
own computer.

Setting Multiple Values in a Single Cookie

Each cookie contains one name=value pair, so if you need to store several separate
pieces of data such as a user’s name, age, and membership number, you need three
different cookies.

However, with a little ingenuity you can make your cookie store all three values by
concatenating the required values into a single string, which becomes the value stored
by your cookie.

This way, instead of having three separate cookies for name, age, and membership
number, you could have just one, perhaps named user, containing all three pieces of
data. To separate the details later, you place in your value string a special character
called a delimiter to separate the different pieces of data:

Click here to view code image

var userdata = "Sandy|26|A23679";
createCookie ("user", userdata):;

Here the | (pipe) character acts as the delimiter. When you later retrieve the cookie
value, you can split it into its separate variable values by using the | delimiter:

Click here to view code image

var myUser = getCookie ("user");
var myUserArray = myUser.split('|"');

var name = myUserArray[0];
var age = myUserArrayl[l];
var memNo = myUserArray[2];

Cookies that store multiple values use up fewer of the 20 cookies per domain allowed
by some browsers, but remember that your use of cookies is still subject to the 4KB
overall limit for cookie information.

Note

This is a further example of serialization, which you learned about in Hour 10,
“Meet JSON.”

Summary

In this hour you learned about cookies, and how to set, retrieve, and delete them using
JavaScript. You also learned how to concatenate multiple values into a single cookie.

Q&A

Q. When concatenating multiple values into a single cookie, can you use any
character as a delimiter?

A. You can’t use any character that might appear in your escaped data (except as the
delimiter character), nor can you use equals (=) or the semicolon (;) as these are
used to assemble and concatenate the name=value pairs in
document . cookie. Additionally, cookies may not include whitespace or
commas, so naturally they cannot be used as delimiters either.

Q. Are cookies safe?

A. Questions are often raised over the security of cookies, but such fears are largely
unfounded. Cookies can help website owners and advertisers track your browsing
habits, and they can (and do) use such information to select advertisements and
promotions to show on web pages that you visit. Website owners and advertisers
can’t, however, find out personal information about you or access other items on
your hard disk simply through the use of cookies.

Workshop

Try to answer all the questions before reading the subsequent “Answers” section.

Quiz

1. Cookies are small pieces of text information stored
a. On a user’s hard disk
b. On the server
c. At the user’s Internet service provider

2. Encoding a string to store it safely in a cookie can be carried out by using
a. escape ()
b. unescape ()
c.split ()

3. A character used to separate multiple values in a single cookie is known as
a. An escape sequence
b. A delimiter

¢. A semicolon

Answers
1. a. Cookies are stored on a user’s hard disk.
2.a. Youcanuse escape () to safely encode string values for storage in a cookie.

3. b. Multiple values are separated by a character called a delimiter.

Exercises

» Find out how to view cookie information in your favorite browser. Use the
browser tools to examine the cookie set by the code of Listing 18.4.

» Rewrite the code for cookietest.html and cookietest2.html to write multiple values
to the same cookie and separate them on retrieval, displaying the values on
separate lines. Use the hash character (#) as your delimiter.

» Add a button to cookietest2.html to delete the cookie set in cookietest.html and

check that it works as requested. (Hint: Use the button to call
deleteCookie().)

Coming Soon to JavaScript

What You’ll Learn in This Hour:
» About some of the most important new additions coming soon to JavaScript
» How to find out which features are supported by which browsers
» How to use some of the new language features right away

ECMAScript 6 (codenamed Harmony) is the forthcoming version of the ECMAScript
standard that underpins the JavaScript language. This new standard should be ratified
sometime in 2015.

ECMAScript 6 is a significant update to the specification, and the first major update to
the language since ECMAScript 5 became standardized in 2009. The major browser
manufacturers are already working on implementing the new features in their JavaScript
engines.

In this hour we’ll take a look at a few of the most important new features, some of which
you can already use.

Tip
At the time of writing, Google’s Chrome browser has support for ECMAScript 6

turned off by default. You can turn it on by visiting the chrome://flags/ page and
finding the Enable Experimental JavaScript entry.

Note

You can check out the current compatibility status for various browsers and
ECMAScript 6 features at http://kangax.github.io/compat-table/es6/.

Classes

In Hour 8, “Object-Oriented Programming,” you read about OOP and saw examples of
how to create and manipulate objects, including this one:

Click here to view code image

function Car (Color, Year, Make, Miles) {
this.color = Color;
this.year = Year;
this.make = Make;
this.odometerReading = Miles;
this.setOdometer = function(newMiles) {

http://kangax.github.io/compat-table/es6/

this.odometerReading = newMiles;

}

If you’ve come to JavaScript from another programming language you may already be
familiar with classes. A class 1s a representation of an object.

Click here to view code image

class Car {
constructor (Color, Year, Make, Miles) {
this.color = Color;
this.year = Year;
this.make = Make;
this.odometerReading = Miles;

}

setOdometer (newMiles) {
this.odometerReading

newMiles;
}
}

This syntax also allows you to extend classes, creating a new class that inherits the
properties of the parent. Here’s an example:

Click here to view code image

class Sportscar extends Car {
constructor (Color, Year, Make, Miles) {
super (Color, Year, Make, Miles);
this.doors = 2;

}

Here I’ve used the super keyword in my constructor, allowing me to call the
constructor of a parent class and inherit all of its properties. In truth, this is just
syntactic sugar; everything using classes can be rewritten in functions and prototypes,
just like you learned in Hour 8. However, it’s much more compatible with other popular
languages, and somewhat easier to read.

Arrow Functions
The arrow function (=>) is a shorthand syntax for an anonymous function.

Click here to view code image

param => statements or expression

Let’s explicate this a bit more:

» param—The name of an argument or arguments. If the function has zero
arguments, this needs to be indicated with (). For only one argument the
parentheses are not required.

» Statements or expression—Multiple statements need to be enclosed in curly

braces. A single expression, though, doesn’t need braces. The expression is also
the return value of that function.

Click here to view code image

var overTen = x => x > 10 ? 10 : x;
overTen (8); // returns 8
overTen (12); // returns 10

Note that the function keyword isn’t required, and that the parentheses can be
omitted since there is a single argument. The following example has two arguments:

Click here to view code image

var higher = (x, y) => {
if (x > vy) |
return x;
} else {
return y;
}
}
higher (7, 9); // returns 9
higher (12, 3); // returns 12

As well as being a little simpler to write, arrow functions also have the feature that they
inherit the value of this from the container. This is really handy when using objects.
Previously we needed to assign this to a variable to pass it into a function:

Click here to view code image

function myObject () {
this.height = 13;

var self = this;
setTimeout (function fiveSecondsLater () {
console.log(self.height);
}, 5000)
}
var o = new myObject () ;

In the preceding example, we couldn’t simply use
console.log(this.height);

because this would refer to its immediate container, here the function
fiveSecondsLater (). However, by using arrow functions the use of a variable
like self canbe avoided:

Click here to view code image

function myObject () {
this.height = 13;

setTimeout (() => {
console.log(this.height); // 'this' here refers to myObject
}, 5000)

}

var o = new myObject (),

Modules

As JavaScript applications grow in complexity, a means needs to be found to make
objects declared in one file available in others. By this means, larger projects can be
written in a modular fashion.

By default, anything you declare in one file is not available outside of that file. In
ECMAScript 6, though, you can use the export keyword to make it available.

Here’s an example of how to export a class:

Click here to view code image

// this code appears in filel.js
export default function Car (Color, Year, Make, Miles) {
this.color = Color;

this.year = Year;

this.make = Make;

this.odometerReading = Miles;

this.setOdometer = function (newMiles) {

this.odometerReading = newMiles;
}
// this object can be imported by other files

And 1n the receiving file:

Click here to view code image

// this code appears in file2.]s
import Car from 'filel';
var ferrari = new Car('red', 1986, 'Dino', 75500);

Using let and const

Before ECMAScript 6, JavaScript had only two types of scope—namely, function
scope and global scope. (The scope of a variable, as you learned in Hour 3, “Using
Functions,” depends on whereabouts in the code the variable was declared using the
var keyword.)

To the frustration of many developers coming to JavaScript from other languages,
JavaScript lacked a so-called block scope, defining that a variable is only accessible
within the block in which it’s defined. (A block is everything inside a pair of curly
braces.)

The new keyword let allows you to declare a variable while limiting its scope to the
block, statement, or expression on which it is declared.

The var keyword, in contrast, defines a variable either globally or locally to an entire
function, taking no account of block scope:

Click here to view code image

function myFunc () {
{
let x;
if(y == 0)
{
// this is ok, x has block scope
let x = "inner";

}
// this is an error, x already declared in block
let x = "outer";
}
}
The const declaration creates a constant—that is, a read-only named variable. The
value of a constant cannot change through reassignment, nor can a constant be re-

declared later.

Click here to view code image

function myFunc () {

{

const x = "foo";

// this is an error, x 1s constant, can't be re-defined
x = "bar";
}
}

Try it Yourself: Checking Out const

Let’s have a look at how const operates. At the time of writing, it works in
most browsers, but I’'m going to use Google Chrome.

Instead of writing code in a text file, open the JavaScript Console for your
browser. In the case of Chrome, I can do that with Ctrl+Shift+] as shown in

Figure 19.1.

Q D Elements MNetwork Sources Timeline Profiles Resources Audits | Console |

& ¥ <topframe= L Presene log

>

FIGURE 19.1 Chrome’s JavaScript Console

First, define a constant using the const keyword. You can call it anything you
like and choose any value. Mine is called MYCONST and I’ve given it a value of

10 (see Figure 19.2).

Q, D Elements MNetwork Sources Timeline Profiles Resources Audits | Console |

& % <topframe= L Presene log

const MYCONST = 1@

FIGURE 19.2 Setting a constant

The console issues undefined because the declaration of a const does not return
a value.

In Figure 19.3 I try to redefine the value of MYCONST.

Q, [] Elements Metwork Sources Timeline Profiles Resources Audits | Console|

& Y <topframe= L Presene log
» const MYCONST = 1@
undefine
» MYCOMNST = 11
11
> MYCONST
18

FIGURE 19.3 The constant can’t be reassigned

As you can see, the constant MYCONST couldn’t be reassigned a new value. Let’s
try to re-declare it instead (see Figure 19.4).

Q D Elements MNetwork Sources Timeline Profiles Resources Audits | Console |
& Y <topframe= L Presene log
const MYCONST = 1@
undetine
MYCONST = 11
11
MYCONST
18
var MYCONST = 9
undetine
MYCONST
18
>

FIGURE 19.4 Redeclaration of a constant doesn’t work

Nope, we can’t do that either. Finally, let’s try to reinitialize it (see Figure 19.5).

Q D Elements Metwork Sources Timeline Profiles Resources Audits | Console |

& Y <iopframe= L Presene log
» const MYCONST = 18
Lin '._ rineg
» MYCOMNST = 11
11
» MYCOMNST
18
» wvar MYCONST = 9
1 ..'._ rineg
> MYCONST
18
» const MYCONST = 28

© » Uncaught » TypeError: Identifier 'MYCONST' has already been declared

e —

FIGURE 19.5 Trying to reinitialize throws an error

JavaScript throws an error.

Values declared using the const keyword, as we can see, cannot be
reinitialized, re-declared, or reassigned.

Template Strings

Template strings provide help in constructing strings and are similar to string
interpolation features in some other programming languages such as Perl and Python
(among others).

Click here to view code image

var name = "John";
var course = "Mathematics III";
var myString = 'Hello ${name}, welcome to ${course}.';

You can substitute more complex expressions too:

Click here to view code image

var total = 20;

var tax = 4;
msg = 'Total is ${total} (or ${total + tax}, including tax)';
alert (msqg) ; // "Total is 20 (or 24, including tax)"

Access Arrays with for-of

JavaScript has various methods for handling arrays, as you read about in Hour 6,
“Arrays.” Apart fromwhile and for loops, you can also use for-1in. Unfortunately,
this loop visits all of an array’s named properties, not just the actual array values:

Click here to view code image

"use strict";
let arrl = [6, 5, 7, 9 1;
arrl.greeting = "hi";

for (var x in arrl) {
console.log(x); // logs "O", "1", "2", "3", "greeting"

}

To get around this problem, ECMAScript 6 introduces the for-of construct, which
iterates over just the property values:

Click here to view code image

for (var y of arrl) {
console.log(y); // logs "e", "5", "7v, "gn"
}

Note

Note the use of the directive "use strict" inthe preceding code snippet.
This directive, introduced in ECMAScript 5, indicates that JavaScript should
execute in strict mode, a more rigid set of interpreter rules, and is currently
necessary to use certain ECMAScript 6 features.

Transpilation

The examples presented so far in this hour are fine for testing ECMAScript 6 features,
but at the time of writing they are not ready for use in your production code. Few
visitors to your website will be using a browser with strong ECMAScript 6 support.
You can start preparing for the future, though.

Traceur is a Google project intended to take ECMAScript 6 code and process it into
ECMAScript 5 code that is compatible with most browsers using their default settings.
It doesn’t support all of the ECMAScript 6 features, but new features are being added
all the time.

You can read about the project at https://code.google.com/p/traceur-
compiler/wiki/GettingStarted, and also download the code to try for yourself at

https://github.com/google/traceur-compiler.

Summary

In this hour, you’ve read about just some of the important new changes coming to the
JavaScript language in the ECMAScript 6 specification.

The new language features bring the JavaScript syntax more into line with other popular
languages, as well as making code more concise and readable.

https://code.google.com/p/traceur-compiler/wiki/GettingStarted
https://github.com/google/traceur-compiler

Browser vendors have already begun to implement these and other ECMAScript 6
features into their offerings, and more of the specification will doubtless be supported
1n upcoming browser versions.

Q&A
Q. How can I follow the progress of the ECMAScript 6 specification?

A. Probably the best online resource is the official ECMAScript wiki
(http://wiki.ecmascript.org/).
Q. Who or what is Ecma?

A. Ecma is an international, membership-based, non-profit standards organization,
originally called the European Computer Manufacturers Association (ECMA).
The organization was founded in 1961 to standardize computer systems throughout
Europe.

Workshop

Try to answer all the questions before reading the subsequent “Answers” section.

Quiz

1. A value declared as a const:
a. Can later be reassigned but not re-declared
b. Can later be re-declared but not reassigned
c. Can later neither be re-declared nor reassigned

2. You can use the export keyword to
a. Save all your program data into another file
b. Make something you declare in one file available outside of that file
c¢. Make something you declared in another file available inside of the current file

3. Which of the following is a correct arrow function to turn a Centigrade
temperature into Fahrenheit?

a.var fahr = cent => cent * 1.8 + 32;
b. var fahr => cent = cent * 1.8 + 32;
¢. function fahr = cent => cent * 1.8 + 32;

Answers
1. c. A const can later neither be re-declared nor reassigned.
2. b. Make something you declare in one file available outside of that file

http://wiki.ecmascript.org/

3.a.var fahr = cent => cent * 1.8 + 32;

Exercises

» Check out how many ECMAScript6 features are supported in your current
browser, by using one of the online resources mentioned earlier. Write some

small code examples to check the operation of any supported features described in
this hour.

» Check out the documentation on the official Ecma wiki for the other ECMAScript
6 features not discussed in this hour.

Using Frameworks

What You’ll Learn in This Hour:
» What frameworks are, and why they’re useful
» About the Model-View-Controller (MVC) architecture
» How to get started with Google’s AngularJS framework
» Details of some other popular frameworks

If you’ve already written a number of applications, chances are you’ve had to solve
some of the same coding problems over and over again. One of the techniques you can
use to cut down on such re-invention of the wheel is to use a software framework.

In this hour you’ll learn about a popular style of network called an MVC (Model-View-
Controller) framework, and see how to implement such a framework for single-page
JavaScript applications by using Google’s Angular]S.

Software Frameworks

The purpose of a framework is to improve the efficiency with which you can write
software applications, at the same time adding consistency, quality, reliability, and
robustness to your application.

Choosing a well-written and appropriate framework can leave you more time to focus
on the unique requirements of your application rather than spending lots of valuable time
on the application’s infrastructure.

Why Use a Framework?

Frameworks help you to reuse code that has been previously built and tested, improving
your application’s reliability and reducing the coding and testing work required in its
creation.

A framework can also encourage better programming practices, due to the structure it
imposes on your application.

Finally, a framework usually provides you with the means to extend its functionality,
making it better suited to your application’s needs.

Frameworks Are Not the Same as Libraries

Many people confuse the term software framework with a software library, like the
ones discussed in Part V of this book.

However, there 1s a fundamental difference between frameworks and libraries; when
you use a library, the objects and methods available within that library already exist,
waiting to be invoked by your custom application. You need to know which objects and
methods to employ in your code in order to create your application.

When you use a framework, it’s you that designs and codes the objects and methods
used by your application. The framework provides a consistent structure in which you
can do this.

Model-View-Controller (MVC) Architecture

The concept of the Model-View-Controller (MVC) software architecture is fairly
simple: to separate our application into units, each of which conforms to one of the
following parts.

Models

Models represent the part of the application dealing with business data and business
logic. A model might be a single object, or it could be some structure made up from a
variety of objects.

Views

A view is a representation of a model used to present information to the user. It usually
acts as a presentation filter, showing only certain aspects of the data contained in a
model while suppressing others.

A view interrogates its model to obtain the data necessary for presentation. It might also
change the data in the model by sending appropriate commands. Such questions and
commands all have to be in semantics defined within the model.

Controllers

A controller forms the link between the user and the application, arranging for views to
be displayed on the screen, or reading user input by presenting menus, input fields,
buttons, or other page elements. The controller interprets user input before passing it to
one or more of the views.

The operation of the various parts of the MVC framework is shown in Figure 20.1.

CONTROLLER

MODEL VIEW

FIGURE 20.1 Model-View-Controller framework interactions

A Real-World Example
Watching TV can be analogous to an MVC framework.

The broadcaster makes available various channels, each containing different
data; these channels can be thought of as the models of the MVC system.

The view is provided by the TV’s screen.
You can interact with the TV by using the functions of the remote control(ler).

Using an MVC Framework for Web Apps
The MVC architecture lends itself very well to web applications.

» Model—The page content is stored in the models that underpin the application.
The technical details may vary—the text and images may be stored in a database,
as server files, or in some other way—but the content, and the rules of how it all
fits together, are encoded into the model part of the framework.

» View—The HTML and CSS add one or more visual display layers to the content
—the veneer we apply to give our web application a particular appearance and
style. We can change how the content is displayed without altering the original

content, as stored in the model(s), at all.

» Controller—The controller element consists of program code linked to the
interactive elements on the page, such as form fields, buttons, and links. Such code
interprets user input and communicates with models and views.

The AngularJS Framework

Angular]S is an MVC framework developed by Google that lets you build well-
structured, easily testable, and maintainable JavaScript web applications. It is designed
to help you produce powerful, reliable, single-page web applications.

An Overview of AngularJS
Angular]S is an MVC framework that binds your HTML code (corresponding to the
views part of the MVC paradigm) to JavaScript objects (the models part of MVC).

In one direction, any changes to your models update the page automatically. The
opposite is also true—a model, for instance associated with a text field, is updated
when the content of the field is changed. In the same manner, any changes in the view—
such as a user entering informtion in a field, or clicking on a button—make the required
changes to the appropriate model(s).

Behind the scenes, Angular]JS handles all the logic, so you don’t have to write code to
update your page’s HTML code, or to listen for and act upon user events.

Including AngularJS in your page

To use Angular]S you have to include it in your page. Perhaps the easiest way to do that
is via Google’s CDN:

Click here to view code image

<script src="http://ajax.googleapis.com/ajax/libs/angularjs/1.3.14/
angular.min.js"></script>

Extending HTML with ng- directives

Angular]S employs a number of directives that help you associate your page’s HTML
elements to models in the MVC architecture. These directives each start with ng— and
can be added to any element.

The key attribute that you have to include in any page is ng—app, which defines an
AngularJS application. You need to apply this to an element that contains the rest of the
page elements bearing ng- directives. You can apply it to the page’s <body> element
(making the whole page part of the application), or a <div> element enclosing the
application:

<body ng-app>

Angular]S finds this element when the page loads and processes all ng— directives it
sees on its child elements.

Two further important ng- directives are ng-model and ng-bind.

The ng-mode1 directive connects the value of HTML controls such as input fields,
select boxes, text areas and so on, to application data stored in models.

The ng-bind directive binds that application data, in the MVC models, to elements in
the HTML view.

A trivial example is shown in Listing 20.1.

LISTING 20.1 A Simple AngularJS Example

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>AngularJS Example</title>
<style>

foutput {

font: 28px bold helvetica, arial, sans-serif;

color: red;

}
</style>
<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.3.14/angular.min.js":
</script>
</head>
<body ng-app>

<p>Name: <input type="text" ng-model="name"></p>

</body>
</html>

Angular]JS begins work as soon as the web page has loaded. The ng-app directive
tells AngularJS that, in this case, it is the <body> element of the page that contains an
Angular]S application.

The ng-model directive then binds the value contained by the input field to the
variable name.

Similarly, the ng-bind directive binds the HTML content of the element to
the variable name. In this way, the element becomes a view in our MVC
framework.

Now, any changes in the input field will be immediately reflected in the
element, as shown in Figure 20.2.

/ [Angular]S Example 2

-4 [file:///home/xubuntu/Desktop/ang1.html

Name: |Phil Balla |

Phil Balla

FIGURE 20.2 A simple AngularJS application

That’s it. We already have a dynamic application that would ordinarily have taken much
more code to build. We didn’t have to worry about writing code for data binding and
updating, nor specify any models. In fact, we haven’t yet written any JavaScript of our
own! The application—simple as it is—already works because of Angular]S’s design.

Scopes

A scope is an object that links a DOM element (the view part of the MVC architecture)
to a controller; in MVC terms, this object becomes the model.

The controller and the view both have access to the scope model, so it can be used to
communicate between them. This scope object will house the data and the methods to be
used in the view.

All Angular]JS applications have a $SrootScope. The SrootScope is the top-most
scope and belongs to the DOM element that contains the ng—app directive.

When explicit scopes are not set in the application, this is the scope used by Angular]S
to bind data and functions. This is why the preceding example works.

To get a better idea of how scopes work, let’s attach a controller to a particular DOM
element, creating a scope for that element, and then interact with it.

Directives

You saw a few directives in the previous example. In AngularJS a directive is a
function attached to a DOM element that has the capability to run methods, attach
controllers and scope objects, and manipulate the DOM.

When an AngularJS application is launched and Angular starts stepping through the
DOM (starting from the DOM element having attribute ng-app), it will parse the code
collecting and running these directives.

Directives handle all of the hard work of making AngularJS applications dynamic.
We’ve seen a few examples of directives previously, including ng-model and ng-

bind:

Click here to view code image

<body ng-app>
<p>Name: <input type="text" ng-model="name"></p>

</body>

There are many default directives built into AngularJS, some of which we’ll look at
next.

Expressions
A double set of curly braces is used to encase an expression directive:

{{ expression }}

Angular]JS expressions are rather like JavaScript expressions, in that they can contain
literals, operators, and variables. These are all valid AngularJS expressions:

Click here to view code image

{({ 3+ 9 }}

{{ quantity * cost }}

{{ firstName + " " + lastName }}

AngularJS expressions are interpreted as data in the exact location where the expression
1s written.

ng-init
The ng—init directive runs at startup, before AngularJS has run any application code.
With it you can set default variables prior to running any other functions.

ng-click
The ng-c1ick directive attaches a listener to a DOM element. When the element 1s
clicked, AngularJS executes the expression defined in the directive.

ng-repeat
The ng-repeat directive iterates through a collection and loads a template for each
item. The template it copies is the element having the attribute ng-repeat.

Sscope.departments = |

{ name: 'Sales'},
name: 'Support'},

{
{ name: 'Production'},
{ name: 'Shipping'}

13

You can iterate through them using ng-repeat:

Click here to view code image

<1li ng-repeat="dept in departments">{{ dept.name }}</1i>

Here the <1 1> element will be cloned four times to produce the list sent to the view.

Filters

The job of a filter is to select a subset of items from an array and return it as a new
array. Here are a few things you might do with an array:

» Format a number to a currency format, using currency.
» Select a subset of items from an array, using filter.
» Format a string to lowercase, using 1 owercase.
p Order an array by an expression, using orderBy.
» Format a string to uppercase, using uppercase.
Here’s the general syntax for a filter in AngularJS:

Click here to view code image

{{ filter expression | filter : expression : comparator }}

Let’s suppose you want to apply a currency filter to some numeric data:

Click here to view code image

<div ng-app>
Total: <input type="number" ng-model="netTotal">
Tax: <input type="number" ng-model="tax">
<p>Invoice Total = {{ (netTotal + tax) | currency }}</p>
</div>
In this example, the expression { { netTotal + tax }} will be evaluated, and the

result formatted as currency.

Adding a Filter to a Directive

A filter can also be added to any ng- directive by using the pipe character (|)
followed by a filter description:

Click here to view code image

<li ng-repeat="dept in departments | filter: uppercase">{{ dept.name
}i</1i>

This example will display all list entries in uppercase.

Building an AngularJS Application
You now know enough to put together a basic AngularJS application.

Try it Yourself: A Basic AngularJS Application

We’ll start with a basic HTML page containing a text input field to accept a
user’s search string and a <div> element to contain a list of search results
containing the entered string.

Listing 20.2 shows the basic HTML of the page, with the AngularJS framework
already included.

LISTING 20.2 HTML code of the AngularJS Application

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>AngularJS Example</title>
<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.3.14/angular.min.js":
</script>
</head>
<body>
<p>Search Departments: <input type="text"></p>
<div id="list-container">

<1li></1i>

</div>
</body>
</html>

Next, we’ll apply the necessary ng- directives to the page:

The ng—-app directive to the <body> element, defining this as the container
for the AngularJS application.

The ng-model directive to the search field, defining it as a model in our
MVC framework.

The ng-repeat directive to the <1i> element in our list of search results.
The <11i> element will be repeated once for each search result.

We’ll also use the ng-init directive to set up some initial data for the
application. In a real-world case, this data is more likely to be brought instead
from an external source such as a server-side database, but this will serve for our
example.

Click here to view code image

ng-init = "departments = [

{ name: 'Sales', contact: 'Marsha Brown'},
name: 'Support', contact: 'Dave Price'},
name: 'Production', contact: 'Grant Wales'},
name: 'Service', contact: 'Sherry Dell'},

name: 'Accounting', contact: 'Kim Sutherland'},
name: 'Shipping', contact: 'Sandy Connell'}]"

e e e

Our initial data comprises an array of fictional departments, each including the

department name and the name of the staff contact in charge of it.

Listing 20.3 shows the revised HTML, which also includes a little CSS styling

for good measure.

LISTING 20.3 Revised Code of the AngularJS Application

Click here to view code image

name: 'Administration', contact: 'Sally Bennett'},

<!DOCTYPE html>

<html>
<head>
<title>AngularJS Example</title>
<style>
body {
background-color: #ddf;
font: 16px bold helvetica, arial, sans-serif;
}
input {

padding: 10px;

}

#list-container {
background-color: white;
color: #448;
border-radius: 25px;
border: 1lpx solid black;
padding: 25px;

}

name: 'Accounting', contact: 'Kim Sutherland'},
name: 'Shipping', contact: 'Sandy Connell'}]">

</style>
<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.3.14/angular.min.js
</script>
</head>
<body ng-app ng-init = "departments = |
{ name: 'Sales', contact: 'Marsha Brown'},
{ name: 'Support', contact: 'Dave Price'},
{ name: 'Production', contact: 'Grant Wales'},
{ name: 'Service', contact: 'Sherry Dell'},
{ name: 'Administration', contact: 'Sally Bennett'},
{
{

"w-s

<p>Search Departments: <input type="text" placeholder="Enter search
string”" ng-model="searchString"></p>
<div id="list-container">

<li ng-repeat="dept in departments">{{ dept.name }}</1i>

</div>
</body>
</html>

Save this code to an .html file and open it in your browser. You should see the
departments and contacts listed in a page looking something like the one in Figure
20.3.

[Angular]s Example X

C # [} file:///home/xubuntu/Desktop/TIY-20.html <7 5] 54 & =

Search Depariments: | |-

4 N

Sales (Marsha Brown)
Support (Dave Price)
Production (Grant Wales)
Service (Sherry Dell)
Administration (Sally Bennett)
Accounting (Kim Sutherland)
Shipping (Sandy Connell)

FIGURE 20.3 Our AngularJS app ready for use

All well and good, but the search field doesn’t currently do anything. We’ll fix
that by adding a filter to the ng-repeat directive, based on the data entered in
the search field, as shown in Listing 20.4.

LISTING 20.4 The Finalized AngularJS Application

Click here to view code image

<!DOCTYPE html>
<html>
<head>

<title>AngularJdS Example</title>
<style>
body {
background-color: #ddf;
font: 1l6px bold helvetica, arial, sans-serif;
}
input {
padding: 10px;
}
#list-container {
background-color: white;
color: #448;
border-radius: 25px;
border: 1lpx solid black;
padding: 25px;
}
</style>
<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.3.14/angular.min.js":
</script>
</head>
<body ng-app>
<p>Search Departments: <input type="text" placeholder="Enter search
string"
ng-model="searchString"></p>
<div ng-init = "departments = [
{ name: 'Sales', contact: 'Marsha Brown'},
{ name: 'Support', contact: 'Dave Price'},
{ name: 'Production', contact: 'Grant Wales'},
{ name: 'Service', contact: 'Sherry Dell'},
{ name: 'Administration', contact: 'Sally Bennett'},
{ name: '"Accounting', contact: 'Kim Sutherland'},
{ name: 'Shipping', contact: 'Sandy Connell'}]"></div>
<div id="list-container">

<li ng-repeat="dept in departments | filter: searchString">{{
dept.name + " (" + dept.contact + ")" }}</1li>

</div>
</body>
</html>

And that’s all we need to do! AngularJS handles the data binding so the filter acts
in real time as a user types (see Figure 20.4).

[Angular]5 Example x

C # [filez///home/xubuntu/Desktop/TIY-20.html 57 =] B4 & =

Search Depariments: sal

« Sales (Marsha Brown)
» Administration (Sally Bennett)

FIGURE 20.4 The filter directive acts as you type

Summary

In this hour, you learned the basics about the Model-View-Controller framework
architecture, and how that can be usefully applied to web applications.

You were introduced to Google’s Angular]JS framework, and used it to build a simple
web application with little or no additional code.

In truth, we’ve barely touched the surface of what AngularJS can do. Take a look at the
official website at https://angularjs.org/ to learn more.

Q&A
Q. What is the background of AngularJS?

A. Angular]S was developed in 2009 by a company called Brat Tech LLC as part of
a commercial JSON storage service. It was later released as an open-source
library, which Google employees continue to maintain and support.

Q. Where can I get AngularJS documentation and help?

A. The official website at https://angularjs.org/ has links to extensive documentation,
tutorials, developer guides, and much more.

Workshop

https://angularjs.org/
https://angularjs.org/

Try to answer all the questions before reading the subsequent “Answers” section.

Quiz

1. What does the M stand for in an MVC framework?
a. Mirror
b. Managed
c. Model

2. In an AngularJS application, ng- directives are added:
a. To the document head
b. To page elements
c. In a separate file linked into the document

3. The ng-init directive runs:
a. On application startup, before the AngularJS application code
b. When called by the user
c. After the application terminates

Answers
1. c. Model
2. b. To page elements
3. a. On application startup, before the AngularJS application code

Exercises

» Modify the code of the “Try It Yourself” example to search only within the
department name, but still to report both department name and contact name in the
displayed list.

» Check out the Angular]JS API docs at https://docs.angularjs.org/api and discover
just how much more you can do with Angular]JS.

https://docs.angularjs.org/api

JavaScript Beyond the Web Page

What You’ll Learn in This Hour:
» Some examples of applications for JavaScript outside straightforward web pages
» How to write a browser extension for Google Chrome

Up to now you’ve learned a wide range of uses for JavaScript in the writing of web
pages. However, JavaScript can also be used for extending browsers by building add-
ons and extensions. Also, JavaScript interpreters are embedded in a number of tools
apart from web browsers. Such applications often provide their own object model
representing the host environment, although the core JavaScript language may remain
essentially the same in each instance.

In this hour, you learn about uses for JavaScript above and beyond writing simple web
content. You also write your own extension for Google’s Chrome browser.

JavaScript Outside the Browser

There are a number of applications for JavaScript to control the actions of other
applications in addition to web pages:

» Browser extensions for Google’s Chrome, Opera, and Apple’s Safari 5 browsers,
and widget/gadget collections for Apple’s Dashboard, Microsoft, Yahoo!, and
Google Desktop can all be written using JavaScript.

» JavaScript is supported in PDF files used by Adobe’s Acrobat and Adobe
Reader, as well as many third-party applications.

» Adobe tools such as Photoshop, Illustrator, Dreamweaver, and others allow
scripting via JavaScript.

» The OpenOffice.org office application suite (and its sibling LibreOffice) have
JavaScript as one of the included macro scripting languages. These suites are
written largely in Java and provide a JavaScript implementation based on Mozilla
Rhino. JavaScript macros can access the application’s variables and objects,
much like web browsers host scripts that access the browser’s Document Object
Model (DOM) for a web page.

» Sphere, an open source and cross-platform program for writing role-playing
games, and the Unity game engine support JavaScript for scripting.

» Google Apps Script allows users access and control over Google Spreadsheets
and other products using JavaScript.

» ActionScript, the programming language used in Adobe Flash, is another

implementation of the ECMAScript standard.

» The Mouzilla platform, which is the basis of Firefox, Thunderbird, and other
projects, uses JavaScript for the graphical user interface of these applications.

In this hour of the book, you’re going to try your hand at one of these—writing an
extension for Google’s Chrome web browser.

Writing Google Chrome Extensions

Extensions are small applications that run inside a web browser and provide additional
services, integrate with third-party websites or data sources, and customize the user’s
experience of the browser application. A Google Chrome extension is nothing more or
less than a collection of files (HTML, CSS, JavaScript, images, and so on) bundled into
a .zip file (although it’s renamed as a .crx file).

The extension basically creates a web page that can use all the interface elements that
the browser provides to regular web pages, including JavaScript libraries, CSS style
sheets, XMLHt tpRequest objects, and so on.

Extensions can interact with web pages or servers, and can also interact via program
code with browser features such as bookmarks and tabs.

Building a Simple Extension

The first step is to create a folder on your computer to contain the code for your
extension.

Each extension has a manifest file, named manifest.json, that is formatted in JSON and
provides important information.

The manifest file can contain a wide range of parameters and options, but here we’ll
begin with a basic example. In your new folder create a text file called manifest.json
and edit it like this:

Click here to view code image
{

"name": "My First Extension",
"version": "1.0",
"manifest version": 2,
"description": "Hello World extension.",
"browser action": {
"default icon": "icon.png",
"default popup": "popup.html"
by
"web accessible resources": [
"icon.png",
"popup.js"

Put an icon called icon.png in the same folder—I used a small graphic image of a star,
but you can use whatever you want. Create the file popup.html listed in Listing 21.1 and
put that in the folder too.

LISTING 21.1 popup.html Google Chrome Extension

Click here to view code image

<!DOCTYPE html>

<html>
<head>
<style>
body {
width: 350px;
}
div {
border: 1lpx solid black;
padding: 20px;
font: 20px normal helvetica, verdana, sans-serif;
}
</style>
<script src="popup.js"></script>
</head>
<body>
</body>
</html>

Here is the JavaScript code contained in popup.js:

Click here to view code image

function sayHello () {
var message = document.createTextNode ("Hello World!");
var out = document.createElement ("div");
out.appendChild (message) ;
document .body.appendChild (out) ;

}

window.onload = sayHello;

All this does is, on page load, create a <div> element containing the message “Hello
World!” and append it to the DOM’s <body> element.

Now display Chrome’s Extensions page by clicking the settings icon and selecting
More Tools > Extensions.

Click the box next to Developer Mode to show a little more information.

Then click the Load Unpacked Extensions button. Navigate to the folder containing your
extension and select it. You should see something like Figure 21.1.

_

-~ = C' A [3 chrome://extensions o =0 # =
Chrome Extensions ¥ Developer mode [
History - z : : = ‘ i
ory | Load unpacked extension... || Pack extension... | Update extensions now |
II Extensions ' o B ')
Cattinoe
S E Try the new Chrome Apps & Extensions Developer Tool. x

AdBlock 2.16.3 2
¥ Enabled &
The most popular Chrome extension, with over 40 million users! Blocks ads all over the

web.

Permissions Options Details

1N: sichmmninbklfenincnamekkhislidom X

FIGURE 21.1 Your new extension visible on the Extensions page

Make sure the extension is enabled by checking the box next to it. You can now run your
extension by clicking on the toolbar icon, as shown in Figure 21.2.

oogle

(&) https://www.google. es/?gfe_rd=cr&ei=WIUQU7XdH8qABQes44GIAW iy M O # E

Hello World!

Espaiia

Google |

=

FIGURE 21.2 Hello World as a Google Chrome extension

Debugging the Extension

Right-click on the icon that launches your extension, and you see a content menu
containing options to enable and disable the extension, plus an option called Inspect
popup. Click on that and Chrome’s Developer Tools pop open to let you examine the
pop-up window, as shown in Figure 21.3.

€ C fi @& https://www.google.es/?gfe_rd=cr&ei=WIUQU7XdH8qABQes44GLisy [s @ # lye =
H
Hello World!
> Developer Tools - chrome-extension://pdijijohddokeicagmdbfcafecocn ccm/popup.html - + X
Q, Elements Network | Sources| Timeline Profiles Resources Audits Console »= *
|Sou... | Co... Sni.. || popupjs x | IR n - + t b @
v Opdijijohddokeicagrﬁ 1| function sayHello() { nln- Watch Expressions +
2 var message = document.createTextNode("Hello World!"); | |]
| popup.html | 3 var out = document.createElement("div"); WSk oL
| popup.js | 4 out.appendChildimessage): Not Paused
- . | 5 d t.body. dChild{out); 7
» &) (no domain) : } ity appoadind tdtaiet) ¥ Scope Variables
7 window.onload = sayHello; Not Patised
2 ot Paused
v Breakpoints
No Breakpoints
||| » DOM Breakpoints
[» XHR Breakpoints +
» Event Listener Breakpoints
|
4 ik | L
4 »| {} Line 1, Column 1 i
1 3

FIGURE 21.3 Inspecting the pop-up window

Try it Yourself: A Chrome Extension to Get Airport Information

This time you’re going to make a Chrome extension that’s a little more useful.
With the help of the jQuery library, your pop-up is going to retrieve current
information about U.S. airports.

Tip
Refer to Hour 15, “A Closer Look at jQuery,” if you need a refresher on the
jQuery library.

To do that, you’re going to have your code make an Ajax call to an information
feed at http://services.faa.gov/. To demonstrate how this service works, open
your browser and navigate to http://services.faa.gov/airport/status/SFO?

format=application/json.

“SFO” is the three-letter code for San Francisco International airport; you can
replace it in the preceding URL with the code for another U.S. airport; for
example, you could use LAX for Los Angeles International or SEA for Seattle-

http://services.faa.gov/
http://services.faa.gov/airport/status/SFO?format=application/json

Tacoma International.

Tip
You can read the airport codes and see their locations at

http://www fly.faa.gov/flyfaa/usmap.jsp.

The format parameter tells the service that you want the information returned as a
JSON string:

Click here to view code image

{"name":"San Francisco
International"”, "ICAO" :"KSFO", "state":"California", "status":
{"avgbDelay":"",
"closureEnd":"", "closureBegin":"","type":"","minDelay":"","trend":"",
"reason":"No known delays for this
airport.","maxDelay":"", "endTime":""},
"delay":"false","IATA":"SFO","city":"San Francisco","weather":
{"weather":"Partly
Cloudy",
"meta": {"credit":"NOAA's National Weather
Service","url":"http://weather.gov/",
"updated":"1:56 AM Local"},"wind":"Southwest at 9.2mph","temp":"44.0 F
(6.7 C)",
"visibility":"10.00"}}

Your code will parse this returned information and use it to construct a more

user-friendly display.
To begin the project, create a new directory somewhere on your computer and

call 1t “airport.” In this directory, you need three files, as in the previous
example.

An Icon File

Choose an icon to display on your Chrome toolbar and from which to launch the
extension. [used a 20 x 20 pixel airplane icon in a file called plane.png, but you
can use any icon you have on hand.

The manifest.json File

The manifest file will be pretty familiar from the previous example, but with one
notable addition: a new parameter, permissions. Youare going to make an
Ajax call to services.faa.gov to retrieve the information you want, and Ajax calls
can only be made to pages on the same domain as the caller; adding a
permissions entry allows Chrome to fulfil this requirement by sending a
suitable header to the server. The manifest.json file is shown in Listing 21.2.

http://www.fly.faa.gov/flyfaa/usmap.jsp

LISTING 21.2 The manifest.json File

Click here to view code image

"name": "Airport Information",
"version": "1.0",
"manifest version": 2,
"description": "Information on US airports",
"browser action": ({
"default icon": "plane.png",
"default popup": "popup.html"
by
"web accessible resources": |
"plane.png",
"popup.js"

"permissions": |
"http://services.faa.gov/"

The HTML File

Once again the main HTML file will be called popup.html. You can call it
something else if you want to, so long as you edit manifest.json and suitably set
the value of the “popup” parameter.

The simple HTML page 1s shown listed in Listing 21.3.

LISTING 21.3 The Basic HTML File popup.html

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>Airport Information</title>
<style>
body {
width:350px;
font: 12px normal arial, verdana, sans-serif;
}
#info {
border: 1lpx solid black;
padding: 10px;
}
</style>
</head>
<body>

<h2>Airport Information</h2>
<input type=Text id="airportCode" value="SFO" size="6" />
<input id="btn" type="button" value="Get Information" />
<div id="info"></div>

</body>

</html>

Apart from a little CSS styling, the page only contains a few items: an input field
to accept the airport code, with default value set to SFO, a button to request that
data is fetched, and a <div> to hold the returned results.

Now you need to start adding JavaScript to the page.

You’re going to use jQuery to simplify things, so first you need to include that.
The Google Chrome security policy doesn’t allow the use of a content delivery
network, so we need to download and include a copy of the jQuery library:

Click here to view code image

<script src="jquery-1.11.2.min.js" /></script>

When the page has fully loaded, you need to attach code to the Get Information
button. The button needs to assemble the required URL based on the airport code
value entered in the input field and instigate the Ajax call. Since the remote
service may take some moments to respond, it would also be good if the user
received a little message to indicate that the program was working.

Here’s the code to carry out these tasks:

Click here to view code image

$ (document) .ready (function () {
S ("#btn") .click (function () {
S("#info") .html ("Getting information ...");
var code = $("#airportCode") .val();
S.get ("http://services.faa.gov/airport/status/" + code + "?
format=application/json",

LI}
14

function (data) {
displayData (data) ;

}

b) s
});
Once the page has loaded, jQuery adds code to the onc1ick event handler of
the button.
First it uses jJQuery’s html () method to add a user message to the output
<div> element. This message will later be overwritten when the “real”
information is received.

Click here to view code image

S("#info") .html ("Getting information ...");

Next, the desired airport code is retrieved from the input field:

Click here to view code image

var code = $("#airportCode") .val ()

Then the Ajax call 1s assembled, here using GET:

Click here to view code image

S.get ("http://services.faa.gov/airport/status/"™ + code + "?
format=application/
json",
T
function (data) {
displayData (data) ;

}
N

The callback function specified for the Ajax call is displayData (), which
will format the returned data and display it to the user. Here’s the complete
contents of popup.js. including the callback function:

Click here to view code image

function displayData (data) {
var message = "Airport: " + data.name + "
";
message += "<h3>STATUS:</h3>";
for (i in data.status) {
if (data.status[i] != "") message += i + ": " + data.status[i] + "

";

}
message += "<h3>WEATHER:</h3>";

for (i in data.weather) {
if(i !'= "meta") message += 1 + ": " + data.weather[i] + "
";

}
S("#info") .html (message) ;
}
S (document) . ready (function () {
S ("#btn") .click (function () {
S("#info") .html ("Getting information ...");
var code = S$("#airportCode") .val ()
S.get ("http://services.faa.gov/airport/status/"™ + code + "?
format=application/json",

LI}
4

function (data

) {
displayData (

data) ;
}

1)
1)

Recall from Hour 10, “Meet JSON,” that JSON data can be interpreted directly
as a hierarchy of JavaScript objects. The displayData (data) function takes

the returned JSON object data and picks out data . name (a string),
data.status, and data.weather (themselves objects) from which to
construct the message.

Tip
Look back a few pages to the JSON data returned from the remote server to see
how these values were encoded.

The complete HTML page with code included is in Listing 21 .4.

LISTING 21.4 The Complete popup.html for the Extension

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>Airport Information</title>
<style>
body {
width:350px;
font: 12px normal arial, verdana, sans-serif;
}
#info {
border: 1lpx solid black;
padding: 10px;
}
</style>
<script src="jquery-1.11.2.min.js" /></script>
<script src="popup.js"></script>
</head>
<body>
<h2>Airport Information</h2>
<input type=Text id="airportCode" value="SFO" size="6" />
<input id="btn" type="button" value="Get Information" />
<div id="info"></div>
</body>
</html>

Having assembled the required files in their allocated directory, you can add the
extension to Google Chrome exactly as in the previous example.

Clicking on the associated icon brings up a small form where you can enter the

airport code of your choice. Clicking the Get Information button will cause the

program to consult the remote service, assemble the returned information into a
readable form, and present it in the pop-up window.

Figure 21.4 shows the extension in operation.

€ Flight Delay Informatio: »

@« > € | @ www.flyfaa.gov/flyfaa/usmap.jsp ke # v @ v | Ry
: o z N i
\ Federal Aviation Airport Information EAR Home
Administration
|F’H)(| Get Information | |
) Flight Delay Information - Air Airport: Phoenix Sky Harbor International
STATUS:
ATCSCC Home | Products | What's K o 7]
reason: Mo known delays for this airport,
View by Region: Sear "
| select a Region v |n IAirp: WEATHER: v |l
(Ente) | weather: A Few Clouds
wind: East at 8. 1mph
temp: 56,0 F (13,3 C)
visibility: 10.00

[4]

FIGURE 21.4 The Airport Information extension

Packaging the Extension

When you’ve finished developing your extension, click on the Pack Extension
button in the Extensions page. Your extension will be packed into a .crx file for
you. You can serve the .crx file from your web pages, and your visitors will be
able to install 1t on their own copy of Google Chrome.

Going Further

The exercises of this hour barely scratched the surface of what can be done with
Chrome extensions. Because Chrome has good support for HTMLS and CSS3, you can
use the latest web technologies such as canvas, localStorage, and CSS
animations in your extensions, as well as access to external APIs and data sources.
Your extensions can even add buttons to the Chrome browser’s user interface, or create
pop-up notifications that exist outside the browser window.

Summary
In this hour, you learned about some applications of JavaScript beyond its use in HTML

web pages. As an example, you wrote a small extension for Google’s Chrome browser
using JavaScript.

Q&A

Q. Can I write a Firefox extension in a similar way to the Chrome extension
described here?

A. The Mozilla way of creating extensions is a little more complex; in addition to
JavaScript, you’ll have to mess a little with XML too. You’ll find some good
information to help you get started at
https://developer.mozilla.org/en/XUL_School/Getting_Started with Firefox Exte

Q. Is it possible to write whole applications in JavaScript that don’t have to run
inside a browser?

A. Yes itis. As an example, take a look at Node.js (http://www.nodejs.org). Node.js
1s a platform built on top of Google Chrome’s JavaScript runtime engine and
designed for building server-side network applications such as web servers, chat
applications, network monitoring tools, and much more.

Workshop

Try to answer all the questions before reading the subsequent “Answers” section.

Quiz

1. Information about a Google Chrome extension is contained in a file called:
a. manifest.json
b. manifest.js
¢. manifest.txt

2. A Google Chrome extension is distributed as which type of file?
a. .Js
b. .xml

C. .Crx

Answers
1. a. manifest.json
2. c. Google Chrome extensions can be distributed as a .crx file.

Exercises
» Browse the available JSON APIs listed at

https://developer.mozilla.org/en/XUL_School/Getting_Started_with_Firefox_Extensions
http://www.nodejs.org

http://www.programmableweb.com/apitag/weather?format=JSON and try writing
your own simple Chrome extension to display the data.

» Take a look at the documentation for Node js (http://www.nodejs.org) to see how
JavaScript can be used to write server-side scripts.

http://www.programmableweb.com/apitag/weather?format=JSON
http://www.nodejs.org

Part VII: Learning the Trade

Good Coding Practice

What You’ll Learn in This Hour:
» How to avoid overuse of JavaScript
» Writing readable and maintainable code
» About graceful degradation
» About progressive enhancement
» How to separate style, content, and code
» Writing unobtrusive JavaScript
» Using feature detection
» Avoiding inline code such as event handlers
» How to handle errors well

JavaScript has gained an unfortunate reputation in certain circles. Since its main goal as
a scripting language was to add functionality to web page designs, accessibility for
first-time programmers has always been an important aspect of the language.
Unfortunately, that has often led to poorly written code being allowed into web pages,
leading to frustration for more software-savvy users.

Throughout the book so far I’ve made reference to aspects of coding that are good and
bad. In this hour we pull all that together to form some general guidelines for good
coding practice.

Don’t Overuse JavaScript

How much JavaScript do you need? There’s often a temptation to include JavaScript
code and enhanced interaction where it’s not strictly necessary or advisable.

» It’s important to remember that your users are likely to spend most of their Internet
time on sites other than yours. Experienced Internet users become accustomed to
popular interface components such as menus, breadcrumb trails, and tabbed
browsing. These elements are popular, in general, because they work well, can be
made to look good, and don’t require the user to read a manual first. Is familiarity
with a site’s operation likely to increase a user’s productivity more than the
potential benefits of your all-new whizz-bang design?

» Many of the visual effects that once needed to be coded in JavaScript can now be
achieved perfectly well using CSS. Where both approaches are possible (image
rollovers and some types of menus come immediately to mind), CSS is usually

preferable. It’s well supported across browsers (despite a few variations) and
1sn’t as commonly turned off by the user. In the rare case that CSS isn’t supported,
the page is rendered as standard HTML, usually leaving a page that’s at least
perfectly functional, even if it’s not so pretty.

» Users in many areas of the world are still using outdated, underpowered, hand-
me-down computers and may also have slow and/or unreliable Internet access.
The CPU cycles taken up by your unnecessary code may be precious to them.

» In some cases you may cost yourself a degree of search engine page rank, since
their spiders don’t always correctly index content that’s been generated by
JavaScript, or designs that require it for navigation.

Used carefully and with forethought, JavaScript can be a great tool, but sometimes you
can have too much of a good thing.

Writing Readable and Maintainable Code

There 1s no way of knowing who will one day need to read and understand your code.
Even if that person is you, several years and many projects may have intervened; the
code that 1s so familiar to you at the time of writing can seem mystifying further down
the line. If somebody else has to interpret your code, they may not share your coding
style, naming conventions, or areas of expertise, and you may not be available to help
them out.

Use Comments Sensibly

Well-chosen comments at critical places in your code can make all the difference in
such situations. Comments are your notes and pointers for those who come later. The
trick is in deciding what comments are likely to be helpful. The subject has often raised
debate, and opinions vary widely, so what follows is largely my own opinion.

It’s perhaps reasonable to assume that the person who ends up reading your code has an
understanding of JavaScript, so a commentary on the way the language itself works is
going too far; JavaScript developers may vary widely in their styles and abilities, but
the one thing we do all share is the language syntax!

Harder to interpret when reading code are the thought processes and algorithms that lie
behind the code’s operation. Personally, when reading code written by others I find it
helpful to see

» A prologue to any object or function containing more than a few lines of simple
code.

Click here to view code image

function calculateGroundAngle (x1, vy1, zl, x2, y2, z2) {
/**

Calculates the angle in radians at which
a line between two points intersects the
ground plane.

@author Phil Ballard phil@www.example.com

* % % % %

/
f(x1 > 0) {
more statements

i

» Inline comments wherever the code would otherwise be confusing or prone to
misinterpretation.

Click here to view code image

// need to use our custom sort method for performance reasons
var finalArray = rapidSort(allNodes, byAngle) {
more statements

» A comment wherever the original author can pass on specialist knowledge that the
reader is unlikely to know.

Click here to view code image

// workaround for image onload bug in browser X version Y
if(!loaded(imagel)) {
more statements

» Instructions for commonly used code modifications.

Click here to view code image

// You can change the following dimensions to your preference:
var height = 400px;
var width = 600px;

Tip
Various schemes use code comments to help you generate documentation for your
software. See, for example, http://code.google.com/p/jsdoc-toolkit/.

Choose Helpful File, Property, and Method Names

The amount of comments required in your source code can be greatly reduced by making
the code as self-commenting as possible. You can go some way toward this by choosing
meaningful human-readable names for methods and properties.

JavaScript has rules about the characters allowed in the names of methods (or functions)
and properties (or variables), but there’s still plenty of scope to be creative and
concise.

A popular convention is to put the names of constants into all uppercase:

MONTHS PER YEAR = 12;

For regular function, method, and variable names, so-called CamelCase is a popular

option; names constructed from multiple words are concatenated with each word except
the first initialized. The first letter can be upper- or lowercase:

var memberSurname = "Smith";
var lastGroupProcessed = 16;

It’s recommended that constructor functions for instantiating objects have the first
character capitalized:

Click here to view code image

function Car (make, model, color) {
statements

}
The capitalization provides a reminder that the new keyword needs to be used:

Click here to view code image

var herbie = new Car ('VW', 'Beetle', 'white');

Reuse Code Where You Can

Generally, the more you can modularize your code, the better. Take a look at this
function:

Click here to view code image

function getElementArea () {
var high = document.getElementById("idl") .style.height;
var wide document.getElementById ("idl") .style.width;
return high * wide;

}

The function attempts to return the area of screen covered by a particular HTML
element. Unfortunately it can only ever work with an element having id = "id1",
which is really not very helpful at all.

Collecting your code into modules such as functions and objects that you can use and
reuse throughout your code is a process known as abstraction. We can give the function
a higher level of abstraction to make its use more general by passing as an argument
the ID of the element to which the operation should be applied:

Click here to view code image

function getElementArea (elementId) {
var elem = document.getElementById(elementId) ;
var high = elem.style.height;
var wide = elem.style.width;
return parselnt (high) * parselnt (wide)

}
You could now call your function into action for any element having an ID:

Click here to view code image

var areal = getElementArea ("idl");

var area?2 = getElementArea ("id2");

Don’t Assume

What happens in the previous function when we pass a value for e lement Id that
doesn’t correspond to any element on the page? The function causes an error, and code
execution halts.

The error 1s to assume that an allowable value for elementId will be passed. Let’s
edit the function getElementArea () to carry out a check that the page element does
indeed exist, and also that it has a numeric area:

Click here to view code image

function getElementArea (elementId) {
if (document.getElementById (elementId)) {
var elem = document.getElementById(elementId);
var high elem.style.height;
var wide elem.style.width;
var area parselnt (high) * parselnt (wide);
if (!isNaN (area)) {
return area;
} else {
return false;

}
} else {
return false;
}
}
That’s an improvement. Now the function will return false if it cannot return a
numeric area, either because the relevant page element couldn’t be found, or because the

ID corresponded to a page element without accessible width and height properties.

Graceful Degradation

Among the earliest web browsers were some that didn’t even support the inclusion of
images in HTML. When the element was introduced, a way was needed to
allow those text-only browsers to present something helpful to the user whenever such a
nonsupported tag was encountered.

In the case of the tag, that facility was provided by the a1t (alternative text)
attribute. Web designers could assign a string of text to alt, and text-only browsers
would display this text to the user instead of showing the image. At the whim of the page
designer, the alt text might be simply a title for the image, a description of what the
picture would have displayed, or a suggestion for an alternative source of the
information that would have been carried in the graphic.

This was an early example of graceful degradation, the process by which a user whose
browser lacks the required technical features to make full use of a web page’s design—

or has those features disabled—can still benefit as fully as possible from the site’s
content.

Let’s take JavaScript itself as another example. Virtually every browser supports
JavaScript, and few users turn it off. So do you really need to worry about visitors who
don’t have JavaScript enabled? The answer is probably yes. One type of frequent
visitor to your site will no doubt be the spider program from one of the search engines,
busy indexing the pages of the Web. The spider will attempt to follow all the navigation
links on your pages to build a full index of your site’s content; if such navigation
requires the services of JavaScript, you may find some parts of your site not being
indexed. Your search ranking will probably suffer as a result.

Another important example lies in the realm of accessibility. No matter how capable a
browser program is, there are some users who suffer with other limitations, such as
perhaps the 1nability to use a mouse, or the necessity to use screen-reading software. If
your site does not cater to these users, they’re unlikely to return.

Progressive Enhancement

When we talk about graceful degradation, it’s easy to imagine a fully functional web
page with all the bells and whistles providing charitable assistance to users whose
browsers have lesser capabilities.

Supporters of progressive enhancement tend to look at the problem from the opposite
direction. They favor the building of a stable, accessible, and fully functional website,
the content of which can be accessed by just about any imaginable user and browser, to
which they can later add extra layers of additional usability for those who can take
advantage of them.

This ensures that the site will work for even the most basic browser setup, with more
advanced browsers simply gaining some additional enhancements.

Separate Style, Content, and Code

The key resource of a web page employing progressive enhancement techniques is the
content. HTML provides markup facilities to allow you to describe your content
semantically; the markup tags themselves identify page elements as being headings,
tables, paragraphs, and so on. We might refer to this as the semantic layer.

What this semantic layer should ideally not contain is any information about how the
page should appear. You can add this additional information afterwards, using CSS
techniques to form the presentation layer. By linking external CSS stylesheets into the
document, you avoid any appearance-related information from appearing in the HTML
markup itself. Even a browser having no understanding of CSS, however, can still
access and display all of the page’s information, even though it might not look so pretty.

When you now come to add JavaScript into the mix, you do so as yet another notional
layer—you might think of it as the behavior layer. Users without JavaScript still have
access to the page content via the semantic markup; if their browser understands CSS,
they’ll also benefit from the enhanced appearance of the presentation layer. If the
JavaScript of the behavior layer is applied correctly, it will offer more functionality to
those who can use it, without prejudicing the abilities of the preceding layers.

To achieve that, you need to write JavaScript that is unobtrusive.

Unobtrusive JavaScript

There is no formal definition of unobtrusive JavaScript, but the concepts upon which
1t’s built all involve maintaining the separation between the behavior layer and the
content and presentation layers.

Leave That HTML Alone

The first and perhaps most important consideration is the removal of JavaScript code
from the page markup. Early applications of JavaScript clutter the HTML with inline
event handlers such as the onC11ck event handler in this example:

Click here to view code image

<input type="button" style="border: lpx solid blue;color: white"
onclick="doSomething ()" />

Inline style attributes, such as the one in the preceding example, can make the situation
even worse.

Thankfully you can effectively remove the style information to the style layer, for
example, by adding a class attribute to the HTML tag referring to an associated style
declaration in an external CSS file:

Click here to view code image

<input type="button" class="blueButtons" onclick="doSomething()" />

And 1in the associated CSS definitions:

.blueButtons {
border: lpx solid blue;
color: white;

Tip
You could, of course, define your style rule for the button via any one of a number

of different selectors, including the input element or via an id instead of a
class attribute.

To make your JavaScript unobtrusive you can employ a similar technique to the one we
just used for CSS. By adding an id attribute to a page element within the HTML
markup, you can attach the required onC11ck event listener from within your external
JavaScript code, keeping it out of the HTML markup altogether. Here’s the revised
HTML element:

Click here to view code image

<input type="button" class="blueButtons" id="btnl" />

The onC11ick event handler is attached from within your JavaScript code:

Click here to view code image

function doSomething () {
. statements

}
document.getElementById ("btnl") .onclick = doSomething;

Caution

Remember that you can’t use DOM methods until the DOM is available, so any
such code must be attached via a method such as window.onload to guarantee
DOM availability. There are plenty of examples throughout this book.

Use JavaScript Only as an Enhancement

In the spirit of progressive enhancement, you want your page to work even if JavaScript
1s turned off. Any improvements in the usability of the page that JavaScript may add
should be seen as a bonus for those users whose browser setup permits them.

Let’s imagine you want to write some form validation code—a popular use for
JavaScript. Here’s a little HTML search form:

Click here to view code image

<form action="process.php">

<input id="searchTerm" name="term" type="text" />

<input type="button" id="btnl" value="Search" />

</form>
You want to write a routine to prevent the form from being submitted if the search field
1s blank. You might write this function checkform (), which will be attached to the

onC1lick handler of the search button:

Click here to view code image

function checkform() {
if (document.forms[0].term.value == "") {
alert ("Please enter a search term.");
return false;
} else {

document.forms[0] .submit () ;
}
}

window.onload = function () {
document.getElementById ("btnl") .onclick = checkform;
}
That should work just fine. But what happens when JavaScript is switched off? The
button now does nothing at all, and the form can’t be submitted by the user. Your users
would surely prefer that the form could be used, albeit without the enhancement of input

checking.

Let’s change the form slightly to use an input button of t ype="submit" rather than
type="button", and edit the checkform () function:

Click here to view code image

<form action="process.php">
<input id="searchTerm" name="term" type="text" />

<input type="submit" id="btnl" value="Search" />
</form>

Here’s the modified checkform () function:

Click here to view code image

function checkform() {
if (document.forms[0].term.value == "") {
alert ("Please enter a search term.");
return false;
} else {
return true;
}
}

window.onload = function () {
document.getElementById ("btnl") .onclick = checkform;
}

If JavaScript is active, returning a value of false to the submit button will prevent the
default operation of the button, preventing form submission. Without JavaScript,
however, the form will still submit when the button 1s clicked.

Feature Detection

Where possible, try to directly detect the presence or absence of browser features, and
have your code use those features only where available.

As an example, let’s look at the c1 ipboardData object, which at the time of writing
1s only supported in Internet Explorer. Before using this object in your code, it’s a good
1dea to perform a couple of tests:

» Does JavaScript recognize the object’s existence?
» If so, does the object support the method you want to use?

The following function setClipboard () attempts to write a particular piece of text
directly to the clipboard using the c1ipboardData object:

Click here to view code image

function setClipboard (myText) {
if((typeof clipboardData != 'undefined') &&
(clipboardData.setData)) {
clipboardData.setData ("text", myText);
} else {
document.getElementById ("copytext") .innerHTML = myText;
alert ("Please copy the text from the 'Copy Text' field to your
clipboard") ;
}
}

First it tests for the object’s existence using t ypeof:

Click here to view code image

if((typeof clipboardbData != 'undefined')

Note

The typeof operator returns one of the following, depending on the type of the
operand:

"undefined", "object", "function", "boolean", "string", or
"number"

Additionally, the function insists that the setData () method must be available:

Click here to view code image

&& (clipboardData.setData)) {

If either test fails, the user 1s offered an alternative, if less elegant, method of getting the
text to the clipboard; it is written to a page element and the user is invited to copy it:

Click here to view code image

document.getElementById ("copytext") .innerHTML = myText;

alert ("Please copy the text from the 'copytext' field to your

clipboard") ;
At no point does the code try to explicitly detect that the user’s browser is Internet
Explorer (or any other browser); should some other browser one day implement this
functionality, the code should detect it correctly.

Handling Errors Well

When your JavaScript program encounters an error of some sort, a warning or error
will be created inside the JavaScript interpreter. Whether and how this is displayed to

the user depends on the browser in use and the user’s settings; the user may see some
form of error message, or the failed program may simply remain silent but inactive.

Neither situation is good for the user; he or she is likely to have no idea what has gone
wrong, or what to do about it.

As you try to write your code to handle a wide range of browsers and circumstances,
it’s possible to foresee some areas in which errors might be generated. Examples
include

» The uncertainty over whether a browser fully supports a certain object, and
whether that support is standards compliant

» Whether an independent procedure has yet completed its execution, such as an
external file being loaded

Using try and catch

A useful way to try to intercept potential errors and deal with them cleanly is by using
the try and catch statements.

The try statement allows you to attempt to run a piece of code. If the code runs without
errors, all is well; however, should an error occur you can use the catch statement to
intervene before an error message is sent to the user, and determine what the program
should then do about the error.

try {

doSomething () ;
}

catch (err) {
doSomethingElse () ;

}
Note the syntax:

catch (identifier)

Here identifier is an object created when an error is caught. It contains
information about the error; for instance, if you wanted to alert the user to the nature of a
JavaScript runtime error, you could use a code construct like

catch (err) {
alert (err.description);

}
to open a dialog containing details of the error.

Try it Yourself: Converting Code into Unobtrusive Code

From time to time you may find yourself in the position of having to modernize
code to make it less obtrusive. Let’s do that with some code we wrote way back

in Hour 4, “DOM Objects and Built-in Objects,” presented once again here in
Listing 22.1.

LISTING 22.1 An Obtrusive Script

Click here to view code image

<!DOCTYPE html>

<html>
<head>
<title>Current Date and Time</title>
<style>
p {font: 14px normal arial, verdana, helvetica;}
</style>
<script>
function telltime () {
var out = "";
var now = new Date () ;
out += "
Date: " + now.getDate();
out += "
Month: " + now.getMonth () ;
out += "
Year: " + now.getFullYear();
out += "
Hours: " + now.getHours () ;
out += "
Minutes: " + now.getMinutes () ;
out += "
Seconds: " + now.getSeconds () ;
document.getElementById ("divl") .innerHTML = out;
}
</script>
</head>
<body>
The current date and time are:

<div id="divl"></div>
<script>
telltime () ;
</script>
<input type="button" onclick="location.reload()" value="Refresh" />
</body>
</html>

As it stands, this script has a number of areas of potential improvement:

The JavaScript statements are placed between <script>and </script>
tags on the page; they would be better in a separate file.

The button has an inline event handler.

A user without JavaScript would simply see a page with a nonfunctioning
button.

First, let’s move all the JavaScript to a separate file and remove the inline event
handler. We also give the button an id value, so we can identify it in JavaScript
to add the required event handler via our code.

Next, we need to address the issue of users without JavaScript enabled. We use
the <noscript> page element so that users without JavaScript enabled will
see, instead of the button, a short message with a link to an alternative source of
time information:

Click here to view code image

<noscript>

Your browser does not support JavaScript

Please consult your computer's operating system for local date and
time information or click HERE
to read the server time.
</noscript>

Tip
The <noscript> element provides additional page content for users with
disabled scripts or with a browser that can’t support client-side scripting. Any of
the elements that you can put in the <body> element of an HTML page can go
inside the <noscript> element, and will automatically be displayed if scripts
cannot be run in the user’s browser.

The HTML file after modification is listed in Listing 22.2.

LISTING 22.2 The Modified HTML Page

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>Current Date and Time</title>
<style>
p {font: 1l4px normal arial, verdana, helvetica;}
</style>
<script src="datetime.js"></script>
</head>
<body>
The current date and time are:

<div id="divl"></div>
<input id="btnl" type="button" value="Refresh" />
<noscript>
<p>Your browser does not support JavaScript.</p>
<p>Please consult your computer's operating system for local date
and time

information or click HERE to read
the server

time.</p>
</noscript>

</body>

</html>

Within our JavaScript source file telltime.js, we use window.onload to add
the event listener for the button. Finally we call telltime () to generate the
date and time information to display on the page. The JavaScript code is shown

in Listing 22.3.
LISTING 22.3 datetime.js

Click here to view code image

function telltime () {
var out = "";
var now = new Date();
out += "
Date: " + now.getDate();
out += "
Month: " + now.getMonth();
out += "
Year: " + now.getFullYear();
out += "
Hours: " + now.getHours();
out += "
Minutes: " + now.getMinutes();
out += "
Seconds: " + now.getSeconds () ;

document.getElementById ("divl") .innerHTML out;

}

window.onload = function() {
document.getElementById ("btnl") .onclick= function ()
{location.reload () ;}
telltime () ;
}

With JavaScript enabled, the script works just as it did in Hour 4. However, with
JavaScript disabled, the user now sees the page as shown in Figure 22.1.

- Current Date and Time - Mozilla Firefox s

File Edit View History Bookmarks Tools Help

{ | current Date and Time |] < | o
& @ @ |3 fileynhome/phil/sAMs testtime html O~

The current date and time are;
Refresh

Your browser does not support Javascript

Flease consult your computer's operating system for local date and time
information or click HERE to read the server time.

FIGURE 22.1 Extra information for users without JavaScript

Summary

In this hour we rounded up and presented various examples of good practice in writing
JavaScript. Used together they should help you deliver your code projects more quickly,
with higher quality and much easier maintenance.

Q&A
Q. Why would a user turn off JavaScript?

A. Remember that the browser might have been set up by the service provider or
employer with JavaScript turned off by default, in an effort to improve security.
This is particularly likely in an environment such as a school or an Internet cafe.

Additionally, some corporate firewalls, ad-blocking, and personal antivirus
software prevent JavaScript from running, and some mobile devices have web
browsers without complete JavaScript support.

Q. Are there any other options besides <noscript> for dealing with users who
don’t have JavaScript enabled?

A. An alternative that avoids <noscript> is to send users who do have
JavaScript support to an alternative page containing JavaScript-powered
enhancements:

Click here to view code image

<script>window.location="enhancedPage.html";</script>

If JavaScript 1s available and activated, the script redirects the user to the
enhanced page. If the browser doesn’t have JavaScript support, the script won’t
be executed, and the user is left viewing the more basic version.

Workshop

Try to answer all the questions before reading the subsequent “Answers” section.

Quiz

1. The modularization of code into reusable blocks for more general use is called:
a. Abstraction
b. Inheritance
c¢. Unobtrusive JavaScript

2. The CSS for your page should be confined as much as possible to the:
a. Semantic layer
b. Presentation layer
c. Behavior layer

3. Unobtrusive JavaScript code should, wherever possible, be placed
a. In an external file
b. Between <script> and </script> tags in the page <head>
c. Inline

Answers
1. a. Abstraction
2. b. Where possible, all CSS goes in the presentation layer.
3. a. Use external JavaScript files where it’s feasible to do so.

Exercises

» Pick some Try It Yourself sections from earlier in the book and see what you can
do to make the code more unobtrusive, without adversely affecting the script’s
operation.

» Can you work out how to further modify the code of Listing 22.2 and Listing 22.3
to ensure that users without JavaScript enabled see just the content of the
<noscript> tag, without the additional text and button being present? (Hint:
Write these items to the page with innerHTML or via DOM methods.)

Debugging Your Code

What You’ll Learn in This Hour:
» The types of errors common in JavaScript code
» How to carry out simple debugging withalert ()
» Using the browser console and console.log ()
» Grouping messages in the console
» Using breakpoints

As you delve into more advanced scripting, you’re going to now and then create
JavaScript programs that contain errors.

JavaScript errors can be caused by a variety of minor blunders, such as mismatched
opening and closing parentheses, mistyping of variable names or keywords, making
calls to nonexistent methods, and so on. This hour aims to offer some straightforward
tips and suggestions for diagnosing errors and correcting your code, making your
programming hours more pleasurable and productive.

An Introduction to Debugging

The process of locating and correcting bugs is known as debugging, and it can be one of
the most tricky and frustrating parts of the development process.

Types of Errors
The errors that can crop up in your code usually conform to one of three types:

» Syntax errors—These can include typographical and spelling errors, missing or
mismatched quote marks, missing or mismatched parentheses/braces, and case-
sensitivity errors.

» Runtime errors—Errors that occur when the JavaScript interpreter tries to do
something it can’t make sense of. Examples include trying to treat a string as if it
were a numerical value and trying to divide a number by zero.

» Faulty program logic—These mistakes don’t always generate error messages—
the code may be perfectly valid—but your script doesn’t do what you want it to.
These are usually problems associated with algorithms or logical flow within the
script.

Choosing a Programmer’s Editor

Whatever platform you work on, and whatever your browser of choice, it makes sense
to have a good code editor. While it’s certainly possible to write code in simple
programs like the Windows Notepad text editor, a dedicated editor makes life a lot
easier.

Many such programs are available, often free of charge under open source and similar
licenses. Here I list a small selection of no-cost editors, but look around for one that
suits your platform, your working style, and your pocket.

» Notepad++ (Windows)

» JEdit (should work on any platform that has Java installed)
» PSPad (Windows)

» JuffEd (Windows, Linux)

» Geany (Windows, Linux)

Editors offer a range of features and capabilities, but as a minimum I would suggest
looking for an editor with the following;

» Line numbering—This is especially useful if you store your JavaScript in
external files (and is yet another reason you should do so, wherever feasible).
That way the line numbers of any error messages generated by your browser’s
debugger will usually match those in the source file open in the editor.

» Syntax highlighting—When you become familiar with your editor’s scheme of
syntax highlighting, you can on many occasions spot coding errors simply because
the code 1n the editor “looks wrong.” It’s surprising how quickly you get used to
the colors of keywords, variables, string literals, objects, and so on in your
favorite editing program. Many editors let you alter the syntax highlighting color
scheme to your own taste.

» Parentheses matching—As an error-seeking missile, parentheses matching is
invaluable. Good editors will show matching pairs of open/close occurrences and
for all types of brackets, braces, and parentheses. When your code has several
levels of nested parentheses it’s easy to lose count.

» Code completion or tooltip-style syntax help—Some editors offer pop-up
tooltip-style help for command functions and expressions. This can save you
having to take your eyes from the editor window to look up an external reference.

Simple Debugging with alert()

Sometimes you want a really simple and quick way to read a variable’s value, or to
track the order in which your code executes.

Perhaps the easiest way of all is to insert JavaScript alert () statements at
appropriate points in the code. Let’s suppose you want to know whether an apparently

unresponsive function is actually being called, and if so, with what parameters:

Click here to view code image

function myFunc(a, b) {
alert ("myFunc () called.\na: " + a + "\nb: " + b);
// .. rest of function code here ...

co)

When the function is called at runtime, the alert () method executes, producing a
dialog like the one in Figure 23.1.

@ JavaScript Alert
F. MyFunc() called.
0 a:12.5
b: south
|0

FIGURE 23.1 Using a JavaScript alert ()

Remember to put a little more information in the displayed message than just a variable
value or one-word comment; in the heat of battle, you’ll likely forget to what variable or
property the value inthe alert () refers.

More Advanced Debugging

Placing alert () calls in your code is perhaps OK for a quick-and-dirty debug of a
short piece of code. The technique does, however, have some serious drawbacks:

» You have to click OK on each dialog to allow processing to continue. This can be
demoralizing, especially when dealing with long loops!

» The messages received are not stored anywhere, and disappear when the dialog is
cleared; you can’t go back later and review what was reported.

» Youneed to go back into the editor and erase all the alert () calls before your
code can “go live.”

In this section, we’ll look at some more advanced debugging techniques.

The Console

Thankfully, most modern browsers provide a JavaScript Console that you can use to
better effect for logging debugging messages. How to open the console varies from
browser to browser:

» In Internet Explorer, to open the Developer Tools: F12

» For Chrome’s Developer Tools and Opera’s Dragonfly Debugger: Ctrl+Shift+]
» Using Firefox with the Firebug extension: F12

The examples in this section assume that you’re using one of the previous debuggers. If
not, you may have to consult your debugger’s documentation to see how to carry out
some of the tasks I describe. How your browser presents such errors to you differs from
browser to browser.

Try it Yourself: Using Your Browser’s Debugging Tools
Have a look at the code in Listing 23.1.

LISTING 23.1 A Program with Errors

Click here to view code image

<!DOCTYPE html>

<html>
<head>
<title>Strings and Arrays</title>
</head>
<body>
<script>
function sayHi () {
alert ("Hello!) ;
}
</script>
<input type="button" value="good" onclick="sayHi ()" />
<input type="button" value="bad" onclick="sayhi ()" />
</body>
</html>

This code listing has two different types of errors. First, in the call to the
alert () method, our argument is missing its closing quotation mark.

Second, the onc11ck handler of the second button calls the function
sayhi () —remember that function names are case sensitive, so in fact there is
no function defined with the name sayhi ().

Loading the page into Firefox, we can see the expected two buttons, one labeled
“good” and the other “bad.” Neither seems to do anything. I can open Firefox’s
Error Console by pressing Ctrl+Shft+]J, and the result is shown in Figure 23.2.

A Program With Errors - Mozilla Firefox
File Edit VWiew History Bookmarks Tools Help
| {}A Program with Errors | < | -

& 3 filefffhome/phil/SAMS/06listing02.htm

good || bad
b Error Console T
@ﬂll ﬁgrrnrs | Warnings ﬁﬂessages *glear
Code! Evaluate
unterminated string literal
file:tthome/phil/SAMS/06listing02 . html Line: 9
= alert ("Hello!) ;
____________ 2

FIGURE 23.2 The Firefox Error Console

That’s a helpful start. Firefox tells me it found an unterminated string literal,
gives me the line number, and even shows me the line of code with an arrow
pointed at the section where it has a problem.

With the error corrected and the file saved again, I’'m ready to try again. First I
click Clear on the toolbar of the Error Console to remove the old error message;
then I reload my test page.

That looks better. My page comes up again, and the Error Console stays blank.
Clicking on the button labeled “good” opens the expected alert () dialog—so
far, so good.

But clicking on the button labeled “bad” doesn’t seem to do anything—so I refer
again to the Error Console, as shown in Figure 23.3.

A Program With Errors - Mozilla Firefox

File Edit VWiew History Bookmarks Tools Help

JA Program With Errors " +| v
& C (3 fileysthomefphil/sAMS/06listing02.htm v
good | [bad |
r Error Console A~ = *
@5” ﬁgrrurs | Warnings @messages *Qlear
Code: | Evaluate

sayhi is not defined
file:fifthomefphil/SAMS[06listingd2 html Line: 1

X

FIGURE 23.3 The second error

Firefox again identifies the problem: “sayhi is not defined.” Now we’re well on
the way to having our code fully debugged and working correctly.

Every browser has its own way of dealing with errors. Figure 23.4 shows how
the Chromium browser reports the initial error of the unterminated string literal.

v A Program With Errors - Chromium A = 4+ X
@ A Program With Errors

C N O filey/home/phil/SAMS/0Elisting02 .html ke ,;‘ O3
[.good | [bad |
&8 Elements ﬁ___-IJ Resources @H--tr:--ul » Iﬂ. =arch
(ZIh | Errors Warnings Logs
@ Uncaught SyntaxError: Unexpected token ILLEGAL 06listing02, html:9
> |
2 = & | @ | <topframe> 3 o1 &

FIGURE 23.4 Google Chromium JavaScript console

Note

Google Chrome and Chromium are almost identical browsers, differing mainly in
how they are packaged and distributed. Essentially, Google Chrome is the
Chromium open source browser packaged and distributed by Google.

Chromium’s message is a slightly more cryptic “Uncaught syntax error:
Unexpected token ILLEGAL,” but it also gives the line number in a clickable link
that shows me the faulty line of code.

To open Internet Explorer’s developer tools, press F12 or select Developer Tools from
the IE9 Tools menu. Select the Console tab to view error messages returned by
JavaScript.

Tip
It’s worth getting to know the debugging tools in your favorite browser, and even
think about switching browsers if you particularly prefer the tools on offer in
another. If you plan to regularly write JavaScript code, it makes sense to do so in
a development environment in which you feel comfortable, where you’ll be more

productive and less frustrated.

Try it Yourself: A Banner-Cycling Script

Let’s put to use some of what you learned in this hour by writing a script to cycle
images on the page. I’'m sure you have seen this sort of program before, either as
an image slideshow, or perhaps to rotate advertisement banners.

First, I want to introduce you to two new items. The first is an event handler that
you haven’t met before—the onLoad method of the window object. Its
operation is simple: We can attach it to the <body> element like this:

Click here to view code image

<body onload="somefunction ()" >

When the page has finished loading completely, the onLoad event fires, and the
code specified in the event handler runs. We use this event handler to run our
banner rotator as soon as the page has loaded.

Second, we are going to use JavaScript’s setInterval () function. This
function allows us to run a JavaScript function repeatedly, with a preset delay
between successive executions.

The setInterval () function takes two arguments. The first is the name of the
function we want to run, the second the delay (in milliseconds) between
successive executions of the function. As an example, the line

setInterval (myFunc, 5000) ;
would execute the function myFunc () every five seconds.
We use setInterval () to rotate the banner image at a regular interval.

Create a new file named banner.html and enter the code from Listing 23.2.

LISTING 23.2 A Banner Rotator

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>Banner Cycler</title>
<script>
var banners
var counter
function run

= ["bannerl.jpg", "banner2.jpg", "banner3.jpg"l]l;
()
setInterval

0;
{
(cycle, 2000);
}

function cycle() {

counter++;

if (counter == banners.length) counter = 0;
document.getElementById ("banner") .src = banners[counter];
}
</script>
</head>
<body onload = "run() ;">

</body>
</html>

The HTML part of the page could hardly be simpler—the body of the page just
contains an image element. This image will form the banner, which will be
“rotated” by changing its src property.

Now let’s take a look at the code.

The function run () contains only one statement, the set Interval ()
function. This function executes another function, cycle (), every two seconds
(2000 milliseconds).

Every time the function cycle () executes, we carry out three operations:

1. Increment a counter.

counter++;

2. Use a conditional statement to check whether the counter has reached the
number of elements in the array of image names; if so, reset the counter to zero.

Click here to view code image

if (counter == banners.length) counter = 0;

3. Set the src property of the displayed image to the appropriate file name
selected from the array of images file names.

Click here to view code image

document.getElementById ("banner") .src = banners[counter];

The operation of the script is shown in Figure 23.5.

. OE.—-IIII—l Cycler

£

C fi © file:///nome/phil/SAMS/06listing03 html kAl + VN BN
OE:-I'IH—I Cycler L
& C # © filey/fhome/phil/sSAMS/06listingd3 html w B O A
O[‘.—-llll—l |ler
& C f O file///home/phi/SAMS/08listing03.htm ol + V)

cool lanquage

FIGURE 23.5 Our banner cycler

Now let’s examine the script operation using browser-based debug tools. I'm
using Chromium, so I open the Developer Tools console again like I did in Figure
23.4. In Chromium that’s Settings > More Tools > Developer Tools or the
shortcut Ctrl+Shift+1.

This time I select the Scripts tab in the lower pane. To the left of the lower pane,
the code 1is listed; I’'m going to click on the line number of line 15 to set a
breakpoint, as shown in Figure 23.6.

‘ﬁ;E“”“‘“I- ELjr'* urces (:>|L4;:.I| 15* Script '(ég‘ﬂnrduw &:? Profiles EEL

q > 06listing03.ntml
ik
2 |=html=
3 (<head=
4 | =title=Banner Cycler=/title=
S|=script=
& var banners = ["bannerl.jpg"., "banner2.jpg"., "banner3.jpg"l;
7 var counter = 0;
8 function runi) {
=] setIntervalicycle, 2000);
10 1
11 function cyclel) {
12 counter++;
13 iflcounter == banners.length) counter = ©;
14 document . getElementById("banner") .src = banners[counter];
| 3 }

16 |=fscript=
17 |=/head=
18 |=body onlead = "runl) ;"=

19 |=img id="banner" src="bannerl.jpg" /=
20 [=/body=
21 |=/html=

FIGURE 23.6 Setting a breakpoint

While this breakpoint remains set, code execution will halt every time this line of
code is reached, before executing the code in the line—in this case, before
completing the current execution of the function cycle ().

On the right-hand side of the same pane, our breakpoint now appears in the
Breakpoints panel. In the same pane, I can click in the Watch Expressions panel
and add the names of any variables or expressions whose values [want to
examine each time the program pauses; I’m going to enter counter and
getElementById ("Banner") .src to see what values they contain.

Figure 23.7 shows the display when the program next pauses, showing the values
of my two chosen expressions.

[| 7 + + r)/‘r P ausad

| ¥ Watch Expressions o
' counter: 1
document . getElementById("banner") . src: "file://fhome/phil fSAMS/banner2. jpa"
| » Call Stack
Pk Scope Variables

¥ Breakpoints
| o 08listing03. htmlk15
ek

B DOM Breakpoints

| pXHR Breakpoints =+
— B Event Listener Breakpoints
Pk Worker inspectors | Debug

FIGURE 23.7 Showing variable values at a breakpoint

Pressing the Play icon above the panel allows the script to restart.

Try using your own browser’s debugging tools to explore the program’s
operation.

Tip
I have only scratched the surface here of the capabilities of the debugger in
Google Chrome/Chromium. To learn more, there is a good tutorial at

https://developer.chrome.conv/devtools/docs/javascript-debugging to get you
started.

If Firefox is your browser of choice for development work, you would do well to
install the popular Firebug extension, which you can read about at
http://getfirebug.com/javascript and which has broadly similar capabilities.

Those using Microsoft Internet Explorer will find good information on debugging
with the F12 Developer Tools at https://msdn.microsoft.com/en-
us/library/ie/gg589512(v=vs.85).aspx.

Opera contains the Dragonfly debugging tool, which you can read about at
http://www.opera.com/dragonfly/documentation/.

The console provides a number of methods you can use in your code in place of the
cumbersome and limited alert () call, perhaps the most well-known being
console.log():

Click here to view code image

function myFunc(a, b) {

https://developer.chrome.com/devtools/docs/javascript-debugging
http://getfirebug.com/javascript
https://msdn.microsoft.com/en-us/library/ie/gg589512(v=vs.85).aspx
http://www.opera.com/dragonfly/documentation/

console.log("myFunc() called.\na: " + a + "\nb: " + b);
// .. rest of function code here
-}
Rather than interrupt program operation, console.log () operates invisibly to the
user unless he or she happens to be looking at the console. Figure 23.8 shows the result
of running the preceding code with the console open in Firefox with the Firebug
extension installed.

S v Console v | HTML €SS DOM b P =E0)
: 4 | . :
I3 clear Persist Profile |All| Errors warnings Info DebugInfo Cookies
myFunc(] called. a.html (line 7)
a: 12.5
b: south
= >>> &

FIGURE 23.8 A message logged in the console

In addition to console.log (), you can also take advantage of console.warn (),
console.info (), and console.error (). These all record messages at the
console in slightly different styles, allowing you to build up a picture of how your script
1S running.

Figure 23.9 shows how Firebug’s console displays each one; the display will be
slightly different in other browsers.

.\d' L 1

~ o[[P)=/

Console | HTML (C55 DOM

e Clear Persist Profile |All| Errors warnings Info DebugInfo Cookies

Object MessageClient instantiated a.html (line 7)
I CalcVolumel] returned MaM (Mot A Number) a.html (line 8)
oCunnected to Server on 192,.168.16.1 a.html (line 9)
9 # Invalid server response: Execution will be halted
console.error("Invalid server response: Execution will be halted"): a.html (line 10)
8 >>> F

FIGURE 23.9 Different types of console messages

Grouping Messages

Sorting console debugging messages into groups makes them even more readable. You
can name the individual message groups any way you like:

Click here to view code image

function myFunc(a, b) {
console.group ("myFunc execution");
console.log ("Executing myFunc()");
if (isNaN(a) || isNaN(b)) {
console.warn ("One or more arguments non-numeric");
}
console.groupEnd() ;
myOtherFunc (at+b) ;
}

function myOtherFunc(c) {
console.group ("myOtherFunc execution");
console.log ("Executing myOtherFunc () ")
if (isNaN(c)) {
console.info ("Argument is not numeric");

}
console.groupEnd() ;
// .. rest of function code here

}
In this code snippet I’ve defined two console.group () sections, and named them
to associate them with the functions in which they execute. Each group ends with a
console.groupEnd () statement. When the code runs, any console messages
display in groups, as shown in Figure 23.10.

W L d O
® k£ D | Y| | consolev | HTML CS5 Script DOM ‘ b P =[E]o
I_I
@ Clear Persist Profile |Alll Errors Warnings Info Debuginfo Cookies
= myFunc execution a.html (line 7)
Executing myFunci) a.html (line 8)
! One or more arguments non-numeric a.html (line 10)
= myOtherFunc execution a.html (line 16)
Executing myCOtherFuncl] a.html (line 17)
‘) Argument passed 1s not numeric a.html (line 19)
S >>> (o4

FIGURE 23.10 Grouped messages

Using Breakpoints to Halt Code Execution
As your scripts grow in complexity, you’re likely to find that even console logging isn’t

enough to let you debug effectively.

To perform more detailed debugging, you can set so-called breakpoints in the code at
places of interest. When code execution arrives at a breakpoint, it pauses; while time
remains frozen you can examine how your code is operating, check variable values,
read logged messages, and so on.

To set a breakpoint in most popular debuggers you need to go to the Scripts panel,
where you’ll see your code listed. Click on a line number (or just to the left of it) to set
a breakpoint at that line. In Figure 23.11, a breakpoint has been set on line 8 of the code.
The execution has stopped at this point, and you can see the current values of the
individual variables in the right panel. You can remove breakpoints by clicking again on
the breakpoint icon in the left margin.

s Ol = | o o
L S ¢ = |¥| con.. HIML css - D::-!"g | P HEU |
all = 2 hEml. ™ Q@ P L Watch + | Stack Breakpoints !
<1 DOCTYPE html= New watch expression...
2 <=html= + this Window a.htmi
: <head= _ _ a 12.5]
4 crtlt'l_.E:rTestlng:f'tlt'LE:: b "eouth®
5 <script=
6 function myFuncia, b) { =l arguments [12.5, "south"]
7 console.groupl "myFunc executl 0 12.5
> 8 console.logl "Executing my| 1 *south®
9 ifiisNaMlial || isMaM(b]) = - T 1
10 console.warni "0One or H Window Window a.htmi !
1 Gl I
1z console.groupEnd() ; K
13 myOtherFuncia+b) ; f
14 }
15 function myCtherFuncic) {
16 console.groupl "myJtherFunc ex
17 console.logl "Executing my
18 if(isNaMic)) {
19 console.infol "Argumen
b3 =
k

FIGURE 23.11 Execution stopped at a breakpoint

Conditional Breakpoints

Sometimes it helps to break code execution only when a particular situation occurs. You
can set a conditional breakpoint by right-clicking the breakpoint icon in the left column
and entering a conditional statement.

Your code will execute without interruption until the condition is fulfilled, at which
point execution will halt. For instance, in Figure 23.12, the code will halt if the sum of a
and b is less than 12. You can edit the expression at any time just by right-clicking once
more on the breakpoint icon.

<@ LRl = ——
¥k £ o> = |- Con... HTML ¢SS | Seript v | DO Ea =[5
b all = a html > e b3y A pF |wu:h b | Stack Breakpoints

1| <IDOCTYPE html> - Mew watch expression...

2 <=html=

3 =head=

4 =title=Testing=/title=

5 =script=

b6

function myFuncia, b) {

7 myﬂther%uncta+b];)
14 3}

15 function myCtherFuncic) {

16 console.groupl "myCtherFunc ex
17 console.logl "Executing my
18 iflisNaMNic)) {

19 console.infol "Argumen

"
FIGURE 23.12 A conditional breakpoint

When code execution halts at a breakpoint you can choose to continue code execution,
or step through your code one statement at a time, by using one of the code execution
buttons; these usually look something like VCR controls, and appear at the top of one of
the panels in the debugger. In most debuggers, the options are:

» Continue—Resume execution and only pause again if/when another breakpoint is
reached.

» Step Over—Execute the current line, including any functions that are called, then
move to the next line.

» Step Into—Move to the next line, as with Step Over, unless the line calls a
function; in that case jump to the first line of the function.

» Step Out—Leave the current function and return to the place from which it was
called.

Launching the Debugger from Your Code

It’s also possible, and often useful, to set breakpoints from within the JavaScript code.
We can do this by using the keyword debugger:

Click here to view code image

function myFunc(a, b) {
if (isNaN(a) || isNaN(b)) {
debugger;
}

// .. rest of function code here ...

}

In this example, code execution will be halted and the debugger opened only if the
conditional expression evaluates to true.

The debugging tools allow you to halt code execution in other circumstances too, such
as when the DOM has been altered, or when an uncaught exception has been detected,
but these are more advanced cases outside the scope of this discussion.

Watch Expressions

A watch expression is a valid JavaScript expression that the debugger continuously
evaluates, making the value available for you to inspect. Any valid expression can be
used, ranging from a simple variable name to a formula containing logical and
arithmetic expressions or calls to other functions.

You can enter a new watch expression via the right-hand panel of the Script tab, as
shown in Figure 23.13 (Firefox/Firebug).

- B I. = I) E
¥ ¢ | = ¥l con... HTML cSS ~ | po| "! | P Q@@:J
B Stack B k\n\

] all = a.html * Ll r»i e p [ac reakpoin

- =scripts — w watch expression...

[function myFuncia, b} { Window a. hird

7 if(isMaM(a) || isMaMib])

3 } dehugger; ¥ arguments ["12.5horse"]

10 myOtherFuncia+hb) ; + Window Window a.htmi A
11)y i
12 function myCOtherFuncic) { a
14 iflisMaMic)) { L

[15 debugger; "

16 }

17 ff .. rest of function code h

138 1 0
19 =fscript= I
20 =fhead= t
21 =body onload='myFunci(l2.5, "horse")'=

22 =input type="button" id="myButton" va

Z =/hodwv= T

FIGURE 23.13 A watch expression

Validating JavaScript

A different and complementary approach to checking your JavaScript code for problems
is to use a validation program. This will check that it conforms to the correct syntax
rules of the language. These programs are sometimes bundled with commercial
JavaScript editors, or you can simply use Douglas Crockford’s JavaScript Lint, which
is available free online at http://www.jslint.conmy.

Here you can simply paste your code into the displayed window and click the button.
Don’t be too dismayed if the program reports a lot of errors—just work through them

http://www.jslint.com/

one at a time. JSLint is very thorough and will even report various issues of coding style
that wouldn’t affect your code’s running at all, but do help to improve how you
program!

Summary

In this hour you learned a lot about debugging your JavaScript code, including using the
browser console, as well as setting breakpoints and stepping through code in the
debugger.

Q&A
Q. How should I choose a programmer’s editor?

A. It’s completely up to personal choice. Many are free or have a free version, so
there’s nothing to stop you from trying several before deciding.

Q. Where can I find out more about JavaScript debugging?

A. Many tutorials exist online. Start with the one published by W3Schools, at
http://www.w3schools.com/js/js_debugging.asp.

Workshop

Try to answer all the questions before reading the subsequent “Answers” section.

Quiz

1. Which of these error types are you not likely to find in your JavaScript programs?
a. Syntax errors
b. Compilation errors
c. Runtime errors

2. What does a breakpoint do?
a. Pauses code execution at a given place
b. Causes JavaScript to step out of a loop
c. Produces a JavaScript error

3. What line in your code will launch the debugger?
a. debug;
b. debugger;

¢. pause;

Answers

http://www.w3schools.com/js/js_debugging.asp

1. b. JavaScript is an interpreted, rather than a compiled, language, so you won’t
encounter compilation errors.

2. a. Pauses code execution at a given place.
3. b. To launch the debugger, type
debugger;

Exercises

» How would you modify the banner-cycling script to add links to the banners, such
that each image displayed linked to a different external page?

» Using your knowledge of random number generation using the Math object, can
you rewrite the banner-cycling script to show a random banner at each change,
instead of cycling through them in order? Use your browser’s built-in debugging
tools to help you.

JavaScript Unit Testing

What You’ll Learn in This Hour:
» What unit testing is and why it’s used
» How to make your JavaScript code more easily testable
» Some examples of JavaScript test suites
» About the QUnit test suite and the CommonJS unit testing specification

Often, a little JavaScript hack that started out as just a few lines of code subsequently
grows to ten, then twenty, then fifty. Meanwhile, functions are tweaked to do a little
more, conditional statements gain a few extra conditions, or a couple extra variables are
created.

When such an application (inevitably) breaks, it can be a nightmare to unravel the code
and find the problem.

As you already read in Hour 22, “Good Coding Practice,” good coding practice can
help to make your code easier to understand and to maintain, but there’s something else
you can do, too. As your JavaScript applications grow in size, complexity, and
sophistication, it becomes even more important to write code that can be easily tested.

In this hour you’ll learn some ways to write your code to make it suitable for unit
testing, and how to write and perform such tests.

What Is Unit Testing?

If you’re unfamiliar with the concept of unit testing, don’t worry, as it’s not too
complicated to understand.

Usually when somebody thinks about testing a JavaScript application, they imagine
testing the completed system to see if it works as expected. This is essentially a test to
see if the various pieces of the application work correctly together, and 1s often known
as integration testing.

Unit testing is a software verification and validation method in which an application is
broken down into its smallest testable parts, called units, then these units are
individually examined and tested for proper operation. A unit is the smallest testable
part of an application, such as an individual function or method.

Unit testing can be done manually, but such testing is usually automated.

Essentially, you write a series of tests for each fundamental element of your code, to test
that unit’s performance under all conceivable types of input. If all of these tests are
passed, you can be confident that each tested element is fit for purpose.

Try it Yourself: A Home-Cooked Unit Test
Let’s jump right in and perform a unit test from scratch.

In this example we’ll write some tests, perform them on a sample unit, and send a
summary of the results to the browser console.

Let’s look at a function we wrote way back in Hour 3, “Using Functions,” to add
tax at a given percentage to a net figure and return the gross amount:

Click here to view code image

function addTax (subtotal, taxRate) {
var total = subtotal * (1 + (taxRate/100));
return total;

}
This function forms the unit that we’ll subject to some tests.

We’ll save this function in a file tax.js, and include it in the HTML page that will
serve as a test suite. In the real world, it’s more likely that tax.js would contain a
number of different functions, perhaps as part of a financial application, but for
this example 1t’1l do just fine. The HTML code 1s shown in Listing 24.1.

LISTING 24.1 HTML Code for the Test Suite

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>Manual Unit Testing Examples</title>
<script src="tax.]js"></script>
<script>
function test (amount, rate, expected) {
results.total++;
var result = addTax (amount, rate);
if (result !== expected) {
results.failed++;
console.log ("Expected " + expected + ", but instead got " + result);
}
}
var results = {
total: O,
failed: O

) g

// Our unit tests
test (1, 10, 1.1);
test (5, 12, 5.6);
test (100, 17.5, 117.5);

// Output results to the console
console.log(results.total + " tests carried out, " + results.failed + "
failed, " +(results.total - results.failed) + " passed.");
</script>
</head>
<body>
</body>
</html>

In a script element on this page I’ve defined a function called test (), which
takes three arguments. The parameters amount and rate are the values to be
passed to the function under test (in this case addTax ()) while the third
parameter, expected, is the result we expect to have returned if the
addTax () function is working the way we want it to.

If the function under test returns the expected result, the test () function
increments a counter of successful tests; if not, it increments a counter of failed
tests and also logs a message to the console indicating which test failed, and the
incorrect value that was returned.

To run the test I can simply save the code as an .html file and load this page into
my browser. The result is shown in Figure 24.1.

/ | Manual Unit Testing Ex: x .:"-L o

i @ [4 filez///home/phil/Desktop/manual_tests.html SE O @ =
Q, [] Elements Network Sources Timeline Profiles Resources Audits | Console | = £ 0,
& Y <topframe> ¥ Preserve log
Expected 5.6, but instead got 5.6000000000000005% manual _tests. html:12
3 tests carried out, 1 failed, 2 passed. manual_tests. html:26

FIGURE 24.1 The results of our unit tests

As you can see, one of our tests failed; JavaScript added a small rounding error.
This result is a starting point from which I can reexamine the code of the function

addTax () to remove this anomaly—perhaps by using rounding on the output
value before returning it.

Of course, you don’t have to log the results to the console; they could just as
easily be printed to the page, saved to a database, and so on. Later we’ll look at
QUnit, an open source unit testing application that displays a nicely formatted test
result directly in the HTML of the test page.

Writing JavaScript for Unit Testing
Looking again at the preceding example, some things immediately become clear:

» The function addTax () was, of course, a named function. Had it been an
anonymous function, it would have been much harder—perhaps impossible—to
test this way.

» The function having been contained in an external JavaScript file (here tax.js) also
aided in its inclusion in our test suite.

These are just a couple of examples of how coding style can affect the testability of your
JavaScript code.

Applications written in the old-fashioned procedural manner of coding can be hard to
unit test. However, if you write your code with unit testing in mind, you’ll not only make
it easier to write those tests, but also write code that’s so much easier to read, maintain,
and extend.

In the next section I’ll round up a few coding techniques that will make your code easier
to test.

Refactoring Code

The process of reorganizing your JavaScript code into a different form, but without
modifying its operation, is known as refactoring. Refactoring is a great method of
improving the design of a program, as it generally involves separating the program logic
from the user interaction and display elements.

Where your code is based around a library such as jQuery and/or a framework such as
Angular]JS, some of that discipline might already have been imposed on your code.
Where JavaScript has been written from scratch, however, there’s more likelihood that
a lot of refactoring will be needed. This is especially true where code has been initially
written with little or no concern for separating HTML and program logic—for instance,
where inline event handlers have been used.

Here are a few of the things you can do to make your code easier to test.

Externalize Scripts

JavaScript code collected into external files and later linked into your application is
generally easier to test. In an 1deal case, the same JavaScript file to be included in your
production application can simply be linked into your test harness instead in order to
have the tests performed.

Keep Functions and Methods Simple

The more you try to do with a single procedure, the more complex and numerous your
tests will have to be, and the more difficult it may be to untangle that function from the
code around it in order to test it.

The QUnit Test Suite

The previous example shows that you can run practical unit tests without a huge amount
of code. However, for more than just a few tests it’s much more productive to use a
purpose-designed unit testing framework providing more advanced tools for writing and
running your tests. In this section we’ll look at one such framework, QUnit.

QUnit is a powerful, open source JavaScript unit testing framework. It’s written by
members of the jQuery team, and is used in the jQuery, jQuery Ul, and jQuery Mobile
projects. However, QUnit is capable of testing any regular JavaScript code.

Installing QUnit

QUnit is a self-contained library, needing only one JavaScript file (qunit. js) and
one CSS file (qunit.css), both of which you can download from the QUnit website.
Alternatively, you can use versions that are hosted on a CDN, as in the following
examples.

A Minimal QUnit Setup

Once again, our test setup will be a simple HTML page, as shown in Listing 24.2. This
time, QUnit is included from a CDN.

LISTING 24.2 Code for QUnit Test Suite

Click here to view code image

<!DOCTYPE html>

<html>

<head>

<title>Hello QUnit Example</title>

<link rel="stylesheet" href="http://code.jquery.com/qunit/qunit-
1.16.0.css">

</head>

<body>

<div id="qunit"></div>

<div id="qunit-fixture"></div>

<script src="http://code.jquery.com/qunit/qunit-1.16.0.3js"></script>
<script src="tests.js"></script>

</body>

</html>

Note the layout of this file, and how similar it is to our manual test suite used in the
previous section. There are a few differences, however:

» Instead of logging information to the console, QUnit outputs nicely formatted
results into the <div> having ID #qunit.

» The #qunit-fixture element is required in instances where you need to set
up a so-called mock DOM of elements that are used during testing, usually things
like form elements. The mock DOM is reset after every unit test. QUnit expects the
mock DOM to be inthe #qunit-fixture element.

We include the CSS file in the head, while the body includes the QUnit JavaScript file,
followed by a further file called tests.js that contains just the following code:

Click here to view code image

QUnit.test ("Hello QUnit test", function(assert) {

assert.ok(1 == "1", "Passed!");

});
Let’s see what’s happening here. The test method is called, giving a name to the test as
the first argument, and passing a function as the second argument. It’s this function that
will run our test.

Click here to view code image

assert.ok(1 == "1", "Passed!");

In this trivial example the test will always be passed. The ok method is one of several
assertions that QUnit provides, and returns a value of true if the first parameter passed
to it returns something that itself evaluates to true.

QUnit Assertions

An assertion evaluates expressions to true or false. QUnit’s assert has a
number of additional methods you can use to build your tests. Examples include
equal (), which unsurprisingly, tests equality; notEqual (), which tests for
inequality; and strictEqual (), which once again tests equality, but this time
with a strict type and value comparison.

Check out all of the assertions in QUnit’s documentation at

http://api.qunitjs.com/category/assert/.

http://api.qunitjs.com/category/assert/

The result is shown in Figure 24.2.

)f] # Hello QUnit Example x \ \

<t & 4 [Yfile///home/phil/Desktop/test.html w E O § =

| Hide passed tests | Check for Globals ' No try-catch

Mozilla/5.0 (X11; Linux i686) AppleWebKit'537.36 (KHTML, like Gecko) Chrome/39.0.2171.71
Safarif537.36

Tests completed in 11 milliseconds.
1 assertions of 1 passed, 0 failed.

1. Helle QUnit test (1) 2ms

FIGURE 24.2 The result of our sample unit test

Retesting Our addTax() Function

Now let’s modify the preceding example to retest our function addTax (), this time
using QUnit. The test harness is similar to before, except it now includes the file tax.js:

Click here to view code image

<!DOCTYPE html>

<html>

<head>

<title>Test of addTax Function with QUnit</title>

<link rel="stylesheet" href="http://code.jquery.com/qunit/qunit-
1.16.0.css">

<script src="tax.]js"></script>

</head>

<body>

<div id="qunit"></div>

<div id="qunit-fixture"></div>

<script src="http://code.]jquery.com/qunit/qunit-1.16.0.3Js"></script>
<script src="tests.js"></script>

</body>

</html>

Now we need to modify the file tests.js to include the tests we want to run. Here, I’ve
used a different assertion, assert.equal, which is passed if the two parameters
offered to it are equal. The first parameter in each test is the value returned from the
addTax () function being tested, while the second parameter is our expected result:

Click here to view code image

QUnit.test ("addTax test", function(assert) {
assert.equal (addTax (1, 10), 1.1);
assert.equal (addTax (5, 12), 5.6);
assert.equal (addTax (100, 17.5), 117.5);

b

When the test harness is loaded into a browser, the output is as shown in Figure 24.3.

- : | B | [= (=
/ [% Test of AddTax Fun x '\ |

-

O & [file:///home/guest/Desktop/qunit_tax.htr 57 MO ® =

|l Hide passed tests [J Check for Globals || No try-catch

Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/39.0.2171.71 Safari/537.36

Tests completed in 24 milliseconds.
2 assertions of 3 passed, 1 failed.

Rerun

1. okay

2. failed
Expected:

Result:
Diff: 5.6 5.6000000000000005

Source: at Object.<=anonymous= (file:///home/guest/Desktop/tests.js:3:9)

3. okay @ 8 ms

FIGURE 24.3 Testing our addTax function with QUnit

You’ll notice that the formatting is much more user-friendly than our previous home-
cooked version, but the result is identical; one test of the three failed.

Summary

In this hour, you learned some methods for unit testing your JavaScript code.

Testing JavaScript often requires some important changes in the structure of your code,
and you read about some of the coding techniques you might employ to make code
testing easier.

You saw how to run some tests with a home-cooked testing framework, then replaced
that with the purpose-designed QUnit framework to carry out further testing.

Q&A
Q. Is there a common standard for unit testing?

A. Although there is no universal standard, the CommonJS project
(http://en.wikipedia.org/wiki/CommonJS) has a unit testing specification
(http://wiki.commonjs.org/wiki/Unit_Testing), which is the one utilized by the
QUnit test suite described in this hour.

Q. Where did QUnit come from?

A. Originally, QUnit was developed by John Resig as part of the jQuery library. In
2008 it became a self-contained project, allowing non-jQuery users to use it for
their own unit testing. A rewrite in 2009 removed its dependence on jQuery, and
now QUnit runs standalone.

Workshop

Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. In unit testing, the term unit refers to:

a. The smallest testable part of an application, such as an individual function or
method

b. All of the JavaScript code active on a single web page

c. All of the JavaScript code in a .js file included in your web page
2. An assertion:

a. Always declares a test experssion to be true

b. Evaluates a test expression as being true or false

c. Sets the value of a JavaScript variable

3. Reworking your JavaScript code to make it more testable is usually referred to
as:

a. Restructuring your code

http://en.wikipedia.org/wiki/CommonJS
http://wiki.commonjs.org/wiki/Unit_Testing

b. Refactoring your code

¢. Recompiling your code

Answers

1. a. The smallest testable part of an application, such as an individual function or
method

2. b. Evaluates an expression as being true or false
3. b. Refactoring your code

Exercises

» Modify the “home cooked” unit testing code to display a neatly formatted report
into the HTML page instead of logging it to the console (as QUnit does).

» Pick some other functions from throughout the book and subject them to unit tests
using QUnit. Do they all work as you expected?

Part IX: Appendices

Tools for JavaScript Development

JavaScript development doesn’t require any special tools or software other than a text
editor and a browser.

Most operating systems come bundled with at least one of each, and in many cases these
tools will be more than sufficient for you to write your code.

However, many alternative and additional tools are available, some of which are
described here.

Tip
Be sure to check the license terms on the individual websites and/or included in
the download package.

Editors

The choice of an editor program is a personal thing, and most programmers have their
favorite. Listed in the following sections are some popular, free editors that you can try.

Notepad++

If you develop on the Windows platform, you’re probably already aware of the Notepad
editor usually bundled with Windows. Notepad++ (http://notepad-plus-plus.org/) is a
free application that aims to be a more powerful replacement, while still being light and

fast.

Notepad++ offers line numbering, syntax and brace highlighting, macros, search and
replace, and a whole lot more.

jEdit
jEdit is a free editor written in Java. It can therefore be installed on any platform having
a Java virtual machine available, such as Windows, Mac OS X, OS/2, Linux, and so on.

A fully featured editor in its own right, jEdit can also be extended via 200+ available
plug-ins to become, for example, a complete development environment or an advanced
XML/HTML editor.

Download jEdit from www.jedit.org.

SciTE

Initially developed as a demonstrator for the Scintilla editing component, SciTE has
developed into a complete and useful editor in its own right.

http://notepad-plus-plus.org/
http://www.jedit.org

A free version of SciTE is available for Windows and Linux users via download from

www.scintilla.org/SciTE.html, while a commercial version is available via the Mac
Apps Store for Mac OS X users.

Geany

Geany (www.geany.org/) is a capable editor that can also be used as a basic integrated
development environment (IDE). It was developed to provide a small and fast IDE, and
can be installed on pretty much any platform supported by the GTK toolkit, including
Windows, Linux, Mac OS X, and FreeBSD.

Geany is free to download and use under the terms of the GNU General Public License.

Validators

To make sure your pages work as intended regardless of the user’s browser and
operating system, it’s always advisable to check your HTML code for correctness and
conformance to standards.

A number of online tools and facilities are available to help you, as discussed next.

The W3C Validation Services

The W3C offers an online validator at http://validator.w3.org/ that will check the
markup validity of web documents in HTML, XHTML, SMIL, MathML, and other
markup languages. You can enter the URL of the page to be checked, or cut-and-paste
your code directly into the validator.

CSS can be validated in a similar way at http://jigsaw.w3.0org/css-
validator/validator.html.en.

Web Design Group (WDG)

WDG also offers an online validation service at www.htmlhelp.com/tools/validator/.

This is similar to the W3C validator, but in some circumstances gives slightly more
helpful information, such as warnings about valid but dangerous code, or highlighting
undefined references rather than simply listing them as errors.

Debugging and Verifying Tools

Debugging tools can save you hours when trying to track down elusive problems in your
JavaScript code and help you speed up your scripts by analyzing execution timing.

Verifying tools help you to write tidy, concise, readable, and problem-free code.
Numerous debugging and verifying tools are available, including the following.

Firebug

http://www.scintilla.org/SciTE.html
http://www.geany.org/
http://validator.w3.org/
http://jigsaw.w3.org/css-validator/validator.html.en
http://www.htmlhelp.com/tools/validator/

o

Firebug integrates with the Mozilla Firefox browser to offer excellent debugging,
editing, and profiling tools. Go to http://getfirebug.com/javascript.

JSLint

JSLint (http://www.jslint.com/), written by Douglas Crockford, analyzes your
JavaScript source code and reports potential problems, including both style conventions
and coding errors.

http://getfirebug.com/javascript
http://www.jslint.com/

JavaScript Quick Reference

Table B.1, Table B.2, Table B.3, and Table B.4 in this appendix contain a quick look-
up for some of the more commonly used elements of JavaScript syntax, along with
properties and methods for a selection of the built-in objects.

Operator Description

Arithmetic Operators

* Multiplies two numbers.

/ Divides two numbers.

% (Modulus) Returns the remainder left after dividing two numbers using integer division.
String Operators

+ (String addition) Joins two strings.

+= Joins two strings and assigns the joined string to the first operand.

Logical Operators

B (Logical AND) Returns a value of true if both operands are true; otherwise, returns
false.

|| (Logical OR) Returns a value of true if either operand is true. However, if both
operands are false, returns false.

! (Logical NOT) Returns a value of false if its operand is true; true if its operand is
false.

Bitwise Operators
& (Bitwise AND) Returns a one in each bit position if both operands’ bits are one.

(Bitwise XOR) Returns a one in a bit position if the bits of one operand, but not
both operands, are one.

(Bitwise OR) Returns a one in a bit if either operand has a one in that position.

~ (Bitwise NOT) Changes ones to zeros and zeros to ones in all bit positions—that
is, flips each bit.

<< (Left shift) Shifts the bits of its first operand to the left by the number of places
given in the second operand.

>3

353

(Sign-propagating right shift) Shifts the bits of the first operand to the right by the
number of places given in the second operand.

(Zero-fill right shift) Shifts the bits of the first operand to the right by the number of
places given in the second operand, and then shifts in zeros from the left.

Assignment Operators

co=

===

2aa=

Assigns the value of the second operand to the first operand, if the first operand
is a variable.

Adds two operands and assigns the result to the first operand, if it is a variable.

Subtracts two operands and assigns the result to the first operand, if itis a
variable.

Multiplies two operands and assigns the result to the first operand, if it is a
variable.

Divides two operands and assigns the result to the first operand, if it is a variable.

Calculates the modulus of two operands and assigns the result to the first oper-
and, if it is a variable.

Executes a bitwise AND operation on two operands and assigns the result to the
first operand, if it is a variable.

Executes a bitwise exclusive OR operation on two operands and assigns the result
to the first operand, if it is a variable.

Executes a bitwise OR operation on two operands and assigns the result to the
first operand, if it is a variable.

Executes a left shift operation on two operands and assigns the result to the first
operand, if it is a variable.

Executes a sign-propagating right shift operation on two operands and assigns the
result to the first operand, if it is a variable.

Executes a zero-fill right shift operation on two operands and assigns the result to
the first operand, if it is a variable.

Comparison Operators

1=

(Equality operator) Returns true if the two operands are equal to each other.

(Not-equalto) Returns true if the two operands are not equal to each other.

(Strict equality) Returns true if the two operands are both equal and of the same

type.

(Strict not-equal-to) Returns true if the two operands are either not equal and/or
not of the same type.

(Greaterthan) Returns true if the first operand’s value is greater than the second
operand’s value.

(Greaterthan-or-equal-to) Returns true if the first operand’s value is greater than or
equal to the second operand’s value.

(Less-than) Returns true if the first operand’s value is less than the second oper-
and’s value.

(Less-than-orequal-to) Returns true if the first operand’s value is less than or
equal to the second operand’s value.

Special Operators

o

delete

function
in
instanceof
new

typeotf

vold

(Conditional operator) Executes an “if...else” test.

(Comma operator) Evaluates two expressions and returns the result of evaluating
the second expression.

(Deletion) Deletes an object and removes it from memory, or deletes an object’s
property, or deletes an element in an array.

Creates an anonymous function.

Returns true if the property you're testing is supported by a specific object.
Returns true if the given object is an instance of the specified type.
Creates a new object from the specified obhject type.

Returns the name of the type of the operand.

Allows evaluation of an expression without returning a value.

TABLE B.1 The JavaScript Operators

Method Description

substring Returns a portion of the string.

toUpperCase Converts all characters in the string to uppercase.
toLowerCase Converts all characters in the string to lowercase.
indexOf Finds an occurrence of a string within the string.

lastIndexOf Finds an occurrence of a string within the string, starting at the end of the string.

replace Searches for a match between a substring and a string, and replaces the sub-
string with a new substring.
split Splits a string into an array of substrings, and returns the new array.
link Creates an HTML link using the string’s text.
anchor Creates an HTML anchor within the current page.
TABLE B.2 String Methods
Property Description
Constants
E Base of natural logarithms (approximately 2.718).
LN2 Matural logarithm of 2 (approximately 0.693).
LN10 Matural logarithm of 10 (approximately 2.302).
LOG2E Base 2 logarithm of e (approximately 1.442).
LOG10E Base 10 logarithm of e (approximately 0.434).
PI Ratio of a circle’s circumference to its diameter (approximately
3.14159).
SQRT1 2 Square root of one half (approximately 0.707).
SQRTZ Square root of two (approximately 1.4142).
Method Description
Algebraic
acos Arc cosine of a number in radians.
asin Arc sine of a number.
atan Arc tangent of a number.
cos Cosine of a number.
gin Sine of a number.
tan Tangent of a number.

Statistical and Logarithmic
exp
log
mazx
min

Property

Returns e (the base of natural logarithms) raised to a power.
Returns the natural logarithm of a number.

Accepts two numbers and returns whichever is greater.
Accepts two numbers and returns the smaller of the two.

Description

Basic and Rounding
abs

ceil

floor

pow

round

aqrt

Random Numbers

random

Absolute value of a number.

Rounds a number up to the nearest integer.
Rounds a number down to the nearest integer.
One number to the power of another.

Rounds a number to the nearest integer.

Square root of a number.

Random number between O and 1.

TABLE B.3 The Math Object

Method

Description

getDate ()

getDay ()
getFullYear()
getHours ()
getMilliseconds ()
getMinutes ()
getMonth ()
getSeconds ()
getTime ()
getTimezoneOffaet ()
getUTCDate ()
getUTCDay ()
getUTCFul l1Year ()
getUTCHours ()
getUTCMilliseconds ()
getUTCMinutes ()

getUTCMonth ()

Returns day of the month (1-31).

Returns day of the week (0-6).

Returns year (four digits).

Returmns hour (0-23).

Returns milliseconds (0-999).

Returmns minutes (0-59).

Returns month (0-11).

Retumns seconds (0-59).

Returns number of milliseconds since midnight Jan 1, 1970.
Returns time difference between GMT and local time, in minutes.
Returns day of the month, according to Universal Time (1-31).
Retumns day of the week, according to Universal Time (0-G6).
Returns year, according to Universal Time (4 digit).

Returns hour, according to Universal Time (0-23).

Returns milliseconds, according to Universal Time (0-999).
Returns minutes, according to Universal Time (0-59).

Returns month, according to Universal Time (0-11).

getUTCSeconds ()

parse ()

setDate ()
gsetFullYear ()
setHours ()
getMilliseconds ()
setMinutes ()
getMonth ()
setSeconds ()

getTime ()

setUTCDate ()
getUTCFullYear ()
setUTCHours ()
getUTCMilliseconds ()
setUTCMinutes ()
gsetUTCMonth ()
setUTCEeconds ()
toDateString ()

toLocaleDateString ()

toLocaleTimeString()

toLocaleString()
toString ()
toTimeString ()
toUTCString ()

UTC()

valueOf ()

Returns seconds, according to Universal Time (0-59).

Parses a date string and Returns number of milliseconds since mid-

night of January 1, 1970,

Sets the day of the month (1-31).
Sets the year (four digits).

Sets the hour (0-23).

Sets the milliseconds (0-999).
Set the minutes (0-59).

Sets the month (O-11).

Sets the seconds (0-59).

Sets a date and time by adding or subtracting a specified number of

milliseconds to or from midnight January 1, 1970.

Sets the day of the month, according to Universal Time (1-31).
Sets the year, according to Universal Time (four digits).

Sets the hour, according to Universal Time (0-23).

Sets the milliseconds, according to Universal Time (0-999).
Set the minutes, according to Universal Time (0-59).

Sets the month, according to Universal Time (O-11).

Set the seconds, according to Universal Time (0-59).

Converts the date part of a Date object into a readable string.

Returns the date part of a Date object as a string, using locale
conventions.

Returns the time part of a Date object as a string, using locale
conventions.

Converts a Date object to a string, using locale conventions.
Converts a Date object to a string.
Converts the time part of a Date object to a string.

Converts a Date object to a string, according to Universal Time.

Returns the number of milliseconds in a date string since midnight

of January 1, 1970, according to Universal Time.

Returns the primitive value of a Date object.

TABLE B.4 The Date Object

Index

Symbols

$() function, 225

$(“”) wrapper, 233-234
$(document).ready handler, 233
$F() function, 225

& & (logical AND), 96

+ operator, 29

! character, 79

A

accessing
browser history, 55
classes with className property, 192-193
JSON data
eval() function, 153-154
native browser support, 154
accordion widget, 253-254
ActiveX objects, creating, 264
adding comments to code, 24-25
addTax() function, testing, 365-366
advantages
of JSON, 152-153
of OOP, 106
Ajax, 261-262
asynchronous requests, 265-266
browser support, 264
client-server interaction, 262-263
form submission, 268-270
implementing with jQuery, 266-270
ajax() method, 268
get() method, 267
load() method, 266-267
post() method, 267

XMLHttpRequest object, 263
ajax() method, 268
alert() method, 51-52, 343
AngularJS, 300-304
building an application, 305-308
directives, 302-304
filters, 304
ng- directives, 300-302
scopes, 302
animate() function, 173
animation
CSS3, 213-214
fading, 237
jQuery, 238-241
sliding elements, 237-238
anonymous functions, 110-111, 289-290
arguments
for constructor functions, 113-114
multiple arguments, passing to functions, 41
passing to functions, 40-43
arithmetic operators, 27-28
+ operator, 29

\®)

incrementing/decrementing value of variables, 27-2

modulus division operator, 27

precedence, 28
arrays

associative arrays, simulating, 158-159

creating, 81

initializing, 81-82

length property, 82

manipulating, 84-86

methods, 82-86
arrow functions, 289-290
<article> tag (HTMLS), 168
<aside> tag (HTMLS), 168
assigning values to variables, 25-2

associative arrays, simulating, 158-159
asynchronous requests (Ajax), 265-266
attaching event handlers to elements, 239-243
attr() method, 235
attributes (HTMLS)

of <video> tag, 169

reading, 133-134
<audio> tag (HTMLS), 171-172

B
background-origin property (CSS3), 208
background-size property (CSS3), 207
backgrounds, 207-209

multiple background images, 208-209
banner-cycling script, writing, 347-351
beginPath() method, 173
best practices for writing JavaScript code, 325-326, 329

commenting, 326-327

error handling, 335-338

feature detection, 333-334

graceful degradation, 329-330

naming conventions, 327-328
progressive enhancement, 330-331
reusing code, 328-329
writing unobtrusively, 331-333

Boolean values, 75-79
negation operator, 79

border-radius property (CSS3), 206-207

box-shadow property (CSS3), 205

break command, 99

breakpoints, 353

browsers
Ajax support, 264
cookies, 273-274

deleting, 280-281
document.cookie property, 274

domain attribute, 276
escaping and unescaping data, 275
expires date, 276
limitations of, 274
path attribute, 276
reading, 280
secure flag, 276
testing, 281-284
value, 276
writing, 276-279
CSS3 vendor prefixes, 203-205
debugging tools, 344-347
ECMAScript 6 compatibility, 287
feature detection, 119-120
Google Chrome extensions, writing, 312-316
launching the extension, 315
manifest.json file, 316-317
history, accessing, 55
JavaScript console, 351-352
grouping messages, 352-353
opening, 344, 347-351
Mozilla Firefox, DOM Inspector, 134-147
child nodes, manipulating, 136-141
dynamic menu creation, 142-147
loading JavaScript files, 141-147
nodes, creating, 135-136
native browser support, accessing JSON data, 154
navigator object, 57-59
reloading current page, 57
building
Angular]JS application, 305-308
extensions, 312-314
built-in objects, extending, 117-118

C

calculations, simplifying with Math object, 62-66
finding minimum and maximum, 62-63

rounding, 62
calling functions, 38-40
CamelCase convention, 25
canPlayType() method, 170
<canvas> tag (HTMLS), 172-175
capabilities of JavaScript, 7
CDNs (Content Delivery Networks), jQuery, 232
Celsius, converting to Fahrenheit, 29-30
Changing Classes Using className listing, 192
character strings, assigning as value of variable, 26
child nodes, manipulating, 136-141
childNodes property, 126-129
classes, 288
accessing with className property, 192-193
className property, accessing classes, 192-193
clearRect() method, 174
client-side scripting, 6
closePath() method, 173
code
debugging, 341
alert() method, 343
breakpoints, 353
conditional breakpoints, 354-355
editor, selecting, 342-343
types of errors, 341-342
watch expressions, 355
libraries
Dojo, 223
jQuery, 224, 231
MooTools, 223
Prototype Framework, 223
prototype.js, 224-228
purpose of, 222
reasons for using, 221-222
refactoring, 363
writing, best practices, 325-326, 329

commenting, 326-327

error handling, 335-338

feature detection, 333-33

graceful degradation, 329-330
naming conventions, 327-328
progressive enhancement, 330-331
reusing code, 328-329
writing unobtrusively, 331-333

combining

conditions, 96

JavaScript statements, 24
command chaining, 238-242
commenting, 24-25

best practices, 326-327

comparison operators, 90

concat() method, 74, 83

concatenating strings, 29

conditional breakpoints, 354-355

conditional statements

comparison operators, 90

if() statement, 89-90, 94-95
libraries, Yahoo! Ul library, 223
logical operators, 96

switch statement, 95-96

testing for equality, 91-94
testing multiple conditions, 95

confirm() method, 52

const keyword, 290-293

constructor functions, 111-114

for-of construct, 294

content, separating from style with CSS, 186

controllers, 298

controlling lighting effects, 214-217

converting

Celsius to Fahrenheit, 29-30
CSS3 property names to JavaScript, 214

data serialization, 155
strings to numbers, 71
cookies, 273-274
deleting, 280-281
document.cookie property, 274
domain attribute, 276
escaping and unescaping data, 275
expires date, 276
limitations of, 274
path attribute, 276
reading, 280
secure flag, 276
testing, 281-284
value, 276
retrieving, 283
setting multiple values, 284
writing, 276-279
creating
arrays, 81
date object
with current date and time, 60
with given date and time, 60
gradients
linear gradients, 209-210
radial gradients, 210-212
image rollovers, 33-35
nodes, 135-136
objects, 107-114
anonymous functions, 110-111
constructor functions, 111-11
direct instances, 107-110
with JSON, 159-163
CSS (Cascading Style Sheets)
classes, accessing, 192-193
DOM nodes
style property, 188-191
stylesheets, 194-199

~

naming conventions, 191
separating style and content, 186
style declarations

syntax of, 186-187

where to place, 187-188

CSS3

background-origin property, 208
background-size property, 207
backgrounds, 207-209

multiple background images, 208-209
border-radius property, 206-207
box-shadow property, 205
gradients, 209-212
gradients, creating

linear gradients, 209-210

radial gradients, 210-212
lighting effects, controlling, 214-217
properties

converting to JavaScript, 214

setting with vendor prefixes, 215-218
text effects

text shadow, 212

word wrap, 213
transitions, 204, 213-214
vendor prefixes, 203-205

D

data serialization, 155
data types
Boolean values, 75-79
JSON, 157-158
numbers, 69-72
floating-point numbers, 70
integers, 70
NaN, 71
strings, 72-75
empty strings, 72

escape sequences, 72-73
dataTransfer property (HTMLS), 176
Date object, 276

creating with current date and time, 60
creating with given date and time, 60
editing dates and times, 61
methods, 377
date picker widget, 255-256
debugging
browser debugging tools, 344-347
code, 341

alert() method, 343

breakpoints, 353

conditional breakpoints, 354-355

editor, selecting, 342-343

grouping messages, 352-353

types of errors, 341-342

watch expressions, 355

extensions, 315
Firebug, 371
JSLint, 371
decrementing value of variables, 27-28
deleting cookies, 280-281
detecting browser features, 119-120
direct instances, 107-110
directives (AngularJS), 302-304
disabling stylesheets (DOM object), 194-195
do...while statement, 98
document object (DOM), 11
reading properties of, 16-17
document.cookie property, 274
document.write() method, 15-16
Dojo, 223
DOM (Document Object Model), 10-13
browser support for, 11
Date object, 60-61

methods, 377
document object, 11
reading properties, 16-17
document.write() method, 15-16
getComputedStyle() method, 214-217
history object, 55
location object, 56-57
Math object, 62-66
finding minimum and maximum, 62-63
generating random numbers, 63
with keyword, 64
mathematical constants, 64
properties, 376
rounding, 62
navigator object, 57-59
nodeName property, 130
nodes, 123-130
childNodes property, 126-129
types of, 125-126
values, 129-130
object notation, 12-13
parentNode property, 129
scripting, 123
window object, 11
window.alert() method, 13-14
DOM Inspector, 134-147
child nodes, manipulating, 136-141
dynamically loading JavaScript files, 141-147
editing element attributes, 141
nodes, creating, 135-136
DOM Level 0, 10
DOM nodes
style property, 188-191
stylesheets, 194
enabling, disabling, switching, 194-195
selecting, 195-199
dot notation, 12-13

downloading
jQuery, 231-232
drag and drop
in HTMLS, 175-178
with jQuery UL, 247-250
draggable attribute (HTMLS), 175
drawing with <canvas> tag (HTMLS), 172-175
dynamic menu, creating, 142-147

E
ECMA (European Computer Manufacturers Association), 8
ECMAScript 6, 287
editor program, selecting, 369-370
elements
attributes
editing, 141
reading, 133-134
selecting
with getElementsByTagName() method, 130-132
by ID, 54-55
empty strings, 72
enabling stylesheets (DOM object), 194-195
encapsulation, 118-119
error handling, 335-338
escape() function, 275
escape sequences, 41, 72-73
eval() function, 153-154
event handlers, 31-35
jQuery, 239-243
onClick event handler, 31-32
onMouseOut, 32-33
onMouseOver, 32-33
events
for drag and drop, 175-178
mouse events, creating image rollovers, 33-35
expires date (cookies), 276

exponential notation, 70
extending
objects with prototype, 114-11

extensions
debugging, 315
Google Chrome extensions, writing, 312-316
launching, 315
packaging, 321
external stylesheets (CSS), referencing, 187-188
externalizing scripts, 363

F

fading elements, 237
“falsy” values, 76
faulty program logic, 342
feature detection, 119-120, 333-334
<figcaption> tag (HTMLS), 168
<figure> tag (HTMLS), 168
file access in HTMLS5, 179-182
File API (HTMLS), 179-182
fill() method, 173
filters (AngularJS), 304
Firebug, 371
flickr.com, 153
floating-point numbers, 70
<footer> tag (HTMLS), 168
for loops, 98
for...in loops, 99-100
for-of construct, 294
forms, Ajax, 268-270
frameworks, 297-298. See also libraries
AngularJS, 300-304
building an application, 305-308
directives, 302-304
filters, 304
ng- directives, 300-30

scopes, 302
MVC architecture, 298

example of, 298

for web apps, 299-300

functions, 37

$0), 225
$F(), 225
addTax(), testing, 365-366
anonymous functions, 110-111
arrow functions, 289-290
calling, 38-40
constructor functions, 111-11
escape(), 275
eval(), 153-154
getCss3Property(), 218
isFinite(), 71-72
jsonParse(), 156
parseFloat(), 71
parselnt(), 71
passing arguments to, 40-43

multiple arguments, 41
returning values from, 42-45
sending messages with, 41-43
simplicity in, 363
spam detector, 76-78, 91-93
storing JavaScript in head section, 39-40
syntax, 38
variables

global, 47

local, 46

scope of, 45-47
wrapper function (jQuery), 233-234

~

G

Geany, 370
generating random numbers, 63
get() method, 267

getComputedStyle() method, 214-217
getCss3Property() function, 218
getData() method, 176
getElements() method, 226-228
getElementsByTagName() method, 130-132
global variables, 47
Google Ajax API CDN, 232
Google Chrome extensions, writing, 312-316
HTML file, 317-320
launching the extension, 315
manifest.json file, 316-317
packaging the extension, 321
graceful degradation, 329-330
gradients, 209-212
gradients, creating
linear gradients, 209-210
radial gradients, 210-212
grouping messages, 352-353

H
<header> tag (HTMLS), 168
“Hello World!” example, 15-16
hide() method, 236
history object, 55
history of JavaScript, 8-9
HTML (Hypertext Markup Language), 5
separating style and content with CSS, 186
html() method, 234
HTMLS, 167
drag and drop, 175-178
element attributes, reading, 133-134
file access, 179-182
local storage, 178-179
src attribute, 22-23
tags
<article>, 168

<aside>, 168

<audio>, 171-172
<canvas>, 172-1
<figcaption>, 168
<figure>, 168
<footer>, 168
<header>, 168
<nav>, 168
new tags, 168
<script>, 9-10, 21
<section>, 168
<summary>, 168
<video>, 168-170

HTMLS Drag and Drop listing, 176

~J

5

I
if() statement, 89-90, 94-95
image rollovers, creating, 33-35
implementing Ajax with jQuery, 266-270
ajax() method, 268
get() method, 267
load() method, 266-267
post() method, 267
incrementing value of variables, 27-28
indexOf() method, 74, 83
inheritance, 115-117
initializing arrays, 81-82
innerHTML property, 54-55
installing
QUnit test suite, 363
instances, 106
integers, 70
Interacting with the Local File System listing, 181
interactions, 247-252
drag and drop, 247-250
resize, 251

sort, 251-252
interpreted languages, 9
isFinite() function, 71-72

J

JavaScript
adding to HTML documents, 22-23
applications, 311-312
capabilities of, 7
dynamically loading files, 141-147
“Hello World!” example, 15-16
history of, 8-9
new features
arrow functions, 289-290
classes, 288
const keyword, 290-293
for-of construct, 294
let keyword, 290-293
modules, 290
template strings, 293-294
transpilation, 294-295
statements, 24-25
combining, 24
commenting, 24-25
storing in head section, 39-40
validating, 356
jEdit, 369
join() method, 83
jQuery, 224, 231. See also jQuery Ul
$(document).ready handler, 233
Ajax, implementing, 266-270
animation, 238-241
fading elements, 237
sliding elements, 237-238
attr() method, 235
command chaining, 238-242
downloading, 231-232

event handlers, 239-243
hide() method, 236
html() method, 234
page elements, selecting, 233-234
remote versions, 232
show() method, 236
text() method, 234-235
toggle() method, 236-237
jQuery UI, 245-246
interactions, 247-252
drag and drop, 247-250
resize, 251
sort, 251-252
ThemeRoller, 246
widgets, 253-258
accordion, 253-254
date picker, 255-256
tabs, 256-258
JSLint, 371
JSON (JavaScript Object Notation), 151
accessing data
eval() function, 153-154
native browser support, 154
advantages of, 152-153
associative arrays, simulating, 158-159
data serialization, 155
data types, 157-158
objects
creating, 159-163
manipulating, 161-163
parameter/value pairs, 152
security, 163
strings, parsing, 155-157
syntax, 152-153
website, 151
jsonParse() function, 156
JSON.parse() method, 154

JSON.stringify() method, 155

K

keywords

const, 290-293

function, 38

let, 290-293

null, 79

object literals, 79

prototype keyword
extending objects, 114-115
inheritance, 115-117

return, 42

undefined, 79

var, 25

with, 64

L

lastIndexOf() method, 74, 83
launching Google Chrome extensions, 315
length property, 82
let keyword, 290-293
libraries
Dojo, 223
versus frameworks, 298
jQuery, 224, 231
$(document).ready handler, 233
animation, 238-241
attr() method, 235
command chaining, 238-242
downloading, 231-232
event handlers, 239-243
hide() method, 236
html() method, 234
page elements, selecting, 233-234
remote versions, 232
show() method, 236

text() method, 234-235
toggle() method, 236-237
MooTools, 223
Prototype Framework, 223
prototype.js, 224-228
$() function, 225
$F() function, 225
Form object, 226
getElements() method, 226-228
purpose of, 222
reasons for using, 221-222
Yahoo! Ul library, 223
lighting effects, controlling, 214-217
limitations of cookies, 274
linear gradients, 209-210
listings
Changing Classes Using className, 192
HTMLS Drag and Drop, 176
Interacting with the Local File System, 181
Moving a Ball Using <canvas>, 174
Selecting Stylesheets by Title, 197
Styling Using the DOM style Object, 190
Toggling Between Stylesheets Using the styleSheets Property, 199
load() method, 266-267
local files, accessing in HTMLS, 179-182
local storage in HTMLS, 178-179
local variables, 46
location object (DOM), 56-57
logical operators, 96
loops
do...while statement, 98
for loop, 98
for...in, 99-100
terminating, 99
while statement, 97
loosely typed languages, 69

M

manifest.json file for Google Chrome extension, 316-317
manipulating
arrays, 84-86
child nodes, 136-141
JSON objects, 161-163
markup languages, 5
Math object, 62-66
finding minimum and maximum, 62-63
generating random numbers, 63
with keyword, 64
mathematical constants, 64
properties, 376
rounding, 62
messages, sending with functions, 41-43
methods
ajax(), 268
alert(), 51-52
attr(), 235
concat(), 74, 83
confirm(), 52
for Date object, 377
document.write() method, 15-16
get(), 267
getComputedStyle(), 214-217
getElements(), 226-228
getElementsByTagName(), 130-132
hide(), 236
html(), 234
indexOf(), 74, 83
join(), 83
JSON.parse(), 154
JSON.stringify(), 155
lastIndexOf(), 74, 83
load(), 266-267
on(), 243

post(), 267
prompt(), 52-53
replace(), 74
serialize(), 226
setlnterval(), 101-102
setTimeout(), 101
show(), 236
simplicity in, 363
slice(), 84
sort(), 84
sortable(), 251-252
splice(), 84-86
split(), 74-75
string methods, 375
substr(), 75
text(), 234-235
toggle(), 236-237
toLowerCase(), 75
toString(), 83
toUpperCase(), 75
window.alert() method, 13-14
Microsoft CDN, 232
minimum and maximum, finding, 62-63
models, 298
modules, 290
modulus division operator, 27
MooTools, 223
mouse events
drag and drop, 247-250
event handlers, 31-35
onClick, 31-32
onMouseOut, 32-33
onMouseOver, 32-33
image rollovers, creating, 33-35
Moving a Ball Using <canvas> listing, 174
Mozilla Firefox, DOM Inspector, 134-147

attributes, editing, 141
dynamically loading JavaScript files, 141-147
nodes
child nodes, manipulating, 136-141
creating, 135-136
multiline comments, adding to statements, 24-25
multiple arguments, passing to functions, 41
multiple conditions
testing, 95
MVC (Model-View-Controller) architecture, 298
example of, 298
for web apps, 299-300

N
naming conventions
CSS (Cascading Style Sheets), 191
naming variables, 26
NaN (not a number), 71
native browser support, accessing JSON data, 154
<nav> tag (HTMLS), 168
navigating with location object, 56
navigator object, 57-59
negation operator, 79
ng- directives, 300-302
nodeName property, 130
nodes (DOM), 123-130
child nodes, manipulating, 136-141
childNodes property, 126-129
creating, 135-136
nodeName property, 130
parentNode property, 129
types of, 125-126
values, 129-130
Notepad++, 369
null keyword, 79
numbers, 69-72

floating-point numbers, 70
Infinity, 71-72

integers, 70

NaN, 71

Q)

object-oriented languages, 106
objects
ActiveX, creating, 264
creating, 107-114
anonymous functions, 110-111
constructor functions, 111-114
direct instances, 107-110
with JSON, 159-163
Date object, 276
methods, 377
date object
creating with current date and time, 60
editing dates and times, 61
encapsulation, 118-119
extending with prototype, 114-115
Form, 226
history object, 55
inheritance, 115-117
instances, 106
JSON, manipulating, 161-163
location object, 56-57
looping through, 99-100
Math object, 62-66
finding minimum and maximum, 62-63
generating random numbers, 63
with keyword, 64
mathematical constants, 64
properties, 376
rounding, 62
navigator object, 57-5

serializing, 155

syntax, 12-13
XMLHttpRequest object, 263
properties, 264-265

on() method, 243
onClick event handler, 31-32
onMouseOut event handler, 32-33
onMouseOver event handler, 32-33
OOP (object-oriented programming), 105-106

advantages of, 106

encapsulation, 118-119
opening

JavaScript console, 347-351
opening JavaScript console, 344
OpenOffice.org, 312
operators, 26-30, 373

arithmetic operators, 27-28

modulus division operator, 27
comparison operators, 90
logical operators, 96
negation operator, 79
precedence, 28

P

packaging Google Chrome extension, 321
parameters
for box-shadow property (CSS), 205
JSON, 152
passing to functions, 40-43
parentNode property, 129
parseFloat() function, 71
parselnt() function, 71
parsing JSON strings, 155-157
passing arguments to functions, 40-43
multiple arguments, 41
pause() command, 170

incrementing/decrementing value of variables, 27-2

play() command, 170
playing
sound, <audio> tag (HTMLS), 171-172
videos
pause() and play() commands, 170
<video> tag (HTMLYS), 168-170
post() method, 267
precedence rules for operators, 28
prefixes, CSS3, 203-205
procedural programming, 105
progressive enhancement, 330-331
prompt() method, 52-53
properties
of arrays, length, 82
background-origin property (CSS3), 208
background-size property (CSS3), 207
border-radius property (CSS3), 206-207
box-shadow property (CSS3), 205
childNodes property, 126-129
CSS3
setting with vendor prefixes, 215-218
CSS3, converting to JavaScript, 214
document.cookie property, 274
imerHTML, 54-55
of Math object, 376
nodeName property, 130
of objects, reading, 16-17
parentNode property, 129
prefixed versions, 205
text-shadow (CSS3), 212
word-wrap (CSS3), 213
of XMLHttpRequest object, 264-265
properties (HTMLS). See attributes (HTMLS)
Prototype Framework library, 223
prototype keyword
extending objects, 114-11

inheritance, 115-117
prototype.js, 224-228

$() function, 225

$F() function, 225

Form object, 226

getElements() method, 226-228

purpose of libraries, 222

Q

QUnit test suite, 363-366
addTax() function, testing, 365-366
installing, 363
setup, 364-365

R

radial gradients, creating, 210-212
random numbers, generating, 63
reading

cookies, 280

date and time, 64-66

element attributes, 133-134

properties of document object, 16-17
refactoring code, 363
referencing external stylesheets (CSS), 187-188
reloading current browser page, 57
remote versions of jQuery, 232
replace() method, 74
resize interaction, 251
return keyword, 42
returning values from functions, 42-45
reusing code, 328-329
rounding with Math object, 62
runtime errors, 342

S
SciTE, 370

scope of variables, 45-47
scopes (AngularJS), 302
<script> tag, 9-10, 21
src attribute, 22-23
scripts, 6
array manipulation script, 84-86
banner-cycling script, writing, 347-351
client-side scripting, 6
DOM, 123
externalizing, 363
server-side scripting, 6
<section> tag (HTMLS), 168
security, JSON, 163
selecting
editor program, 369-370
elements
with getElementsByTagName() method, 130-132
by ID, 54-55
program editor, 342-343
stylesheets (DOM object), 195-199
Selecting Stylesheets by Title listing, 197
selectors (jQuery), 234
sending messages with functions, 41-43
separating style and content with CSS, 186
serialization, 155
serialize() method, 226
server-side scripting, 6
setData() method, 176
setInterval() method, 101-102, 174
setTimeout() method, 101
setting up
QUnit test suite, 364-365
show() method, 236
simulating associative arrays, 158-159
slice() method, 84
sliding elements, 237-238

software frameworks, 297-298
sort interaction, 251-252
sort() method, 84
sortable() method, 251-252
sound, playing, 171-172
spam detector function, 76-78, 91-93
splice() method, 84-86
split() method, 74-75
src attribute, 22-23
statements, 24-25
combining, 24
commenting, 24-25
conditional statements
if() statement, 89-90, 94-95
switch statement, 95-96
testing for equality, 91-94
testing multiple conditions, 95
do...while statement, 98
while statement, 97
storing
data in HTMLS, 178-179
JavaScript in head section, 39-40
strings, 72-75
concatenating, 29
converting to numbers, 71
empty strings, 72
escape sequences, 72-73
JSON strings, parsing, 155-157
template strings, 293-294
stroke() method, 173
style, separating from content with CSS, 186
style declarations (CSS)
syntax of, 186-187
where to place, 187-188
style property (DOM nodes), 188-191
stylesheets (DOM object), 194

enabling, disabling, switching, 194-195
selecting, 195-199
Styling Using the DOM style Object listing, 190
substr() method, 75
<summary> tag (HTMLS), 168
switch statement, 95-96
switching stylesheets (DOM object), 194-195
syntax
CamelCase convention, 25
DOM object notation, 12-13
errors, 341
functions, 38
JSON, 152-153

T
tabs widget, 256-258
tags, HTMLS5S
<article>, 168
<aside>, 168
<audio>, 171-17
<canvas>, 172-1
<figcaption>, 168
<figure>, 168
<footer>, 168
<header>, 168
<nav>, 168
new tags, 168
<script>, 9-10, 21
<section>, 168
src attribute, 22-23
<summary>, 168
<video>, 168-170
template strings, 293-294
terminating loops, 99
testing
cookies, 281-284

[\

~

5

for equality, 91-94
multiple conditions, 95
unit testing
explained, 359-360, 362
QUnit test suite, 363-366
refactoring code, 363
simple example, 360-362
video format support, canPlayType() method, 170
text effects
text shadow, 212
word wrap, 213
text() method, 234-235
text-shadow property (CSS3), 212
ThemeRoller, 246
timers
setlnterval() method, 101-102
setTimeout() method, 101
toggle() method, 236-237
Toggling Between Stylesheets Using the styleSheets Property listing, 199
toLowerCase() method, 75
toString() method, 83
toUpperCase() method, 75
Traceur, 294-295
transformations, 213-214
transitions, 204, 213-214
transpilation, 294-295
“truthy” values, 76

U

undefined keyword, 79
unescaping data, 275
unit testing
explained, 359-360, 362
QUnit test suite, 363-366
addTax() function, testing, 365-366
installing, 363

setup, 364-365
refactoring code, 363
simple example, 360-36

v
validating JavaScript, 356
validators, 370
values
assigning to variables, 25-26
of cookies, 276
retrieving, 283
setting multiple values, 284
“falsy,” 76
in JSON objects, 157-158
of nodes, 129-130
returning from functions, 42-45
“truthy,” 76
var keyword, 25
variables, 25-26
arrays
associative arrays, simulating, 158-159
creating, 81
initializing, 81-82
length property, 82
manipulating, 84-86
methods, 82-86
assigning values to, 25-26
global variables, 47
incrementing/decrementing value of, 27-28
local variables, 46
naming, 26
scope of, 45-47
vendor prefixes, setting CSS3 properties, 215-218
<video> tag (HTMLS), 168-170
videos
playing
pause() and play() commands, 170

<video> tag (HTMLYS), 168-170
testing format support, canPlayType() method, 170
views, 298

W

W3C (World Wide Web Consortium), 8
validation services, 370
watch expressions, 355
WDG (Web Design Group), 370
web apps, MVC architecture, 299-300
WebM website, 169
websites
CDNs, 232
Dojo, 223
flickr.com, 153
jQuery, 224
JSON, 151
MooTools, 223
Prototype Framework, 223
prototype.js, 224
ThemeRoller, 246
Traceur, 294-295
Yahoo! Ul library, 223
while statement, 97
widgets (jQuery Ul), 253-258
accordion widget, 253-254
date picker, 255-256
tabs, 256-258
window object (DOM), 11
window.alert() method, 13-14
with keyword, 64
word wrap, 213
word-wrap property (CSS3), 213
wrappers, $(*’), 233-234
writing
banner-cycling script, 347-351

code, best practices, 311-312, 329
commenting, 326-327
error handling, 335-338
feature detection, 333-334
graceful degradation, 329-330
naming conventions, 327-328
progressive enhancement, 330-331
reusing code, 328-329
writing unobtrusively, 331-333

cookies, 276-279

Google Chrome extensions, 312-316
HTML file, 317-320
manifest.json file, 316-317
packaging the extension, 321

X-Y-Z

XHTML, 167

XMLHttpRequest object, 263
properties, 264-265

Yahoo! Ul library, 223

Learning Labs!

Learn online with videos, live code
editing, and quizzes

SPECIAL 50% OFF — Introductory Offer

Discount Code: STYLL50

FOR A LIMITED TIME, we are offering readers of Sams Teach Yourself books a 50% OFF
discount to ANY online Learning Lab through Dec 31, 2016.

Visit informit.com/leaminglabs to see available labs, try out full samples, and order today.

Try it ~urself
Adding Forms to Web Pages

m Read the complete text of the book
online in your web browser

® Try your hand at coding in an interactive
code-editing sandbox in select products

ALWAYS LEARMNING

m Watch an expert instructor show you how
to perform tasks in easy-to-follow videos

FEARSON

ST FERLP VTRt IGRETY sl AvESaTn I 34 MO

Cauter

i
Giveri the HTML markup <p align="cemter"»,
wihiat s the component that is represented

by “align™?

m Test yourself with interactive quizzes

PEARSON

Code Snippets

<gcripts
JavaScript statements
</script>

<gcript type="text/javascript"s
JavaScript statements
</scripts>

<script>window.alert ("Here is my message");</scripts

<gscript=alert ("Here is my message") ;</script>

<gcript>document .write ("Here is another message");</script>

< !|DOCTYPE html=
<html=
<heads>
<titles=Hello from JavaScript!</titles
</heads
<body=>
zgoript=>
alert ("Hello World!"™) ;
</seripts
</body=
</html=

<gcripts>
Javascript statements are written here
</script>

<gcript src='mycode.js8'></script>

<gcript sre='/path/to/mycode.js'></scripts>

<script srec='http://www.example.com/path/to/mycode.js'></scripts>

< |DOCTYPE html=s
<html=>
<head>
<title=A Simple Page=/title=
</head=
<body=>
<p=Some content ...</p=>
<gcript sre="mycode.js'></scripts
</body>
</html=

<gcripts

el==
Javagcript statements are written here

-==

</socript s>

this is statement 1; this is statement 2;

var productMName = "Leather wallet";

var productCount = 2;

var subtotal = 14.98;

var shipping = 2.75;

var total = subtotal + shipping;

subtotal = total - shipping;
var salesTax = total *# 0.15;

var productPrice = subtotal / productCount;

var itemsPerBox = 12;
var itemsToBeBoxed = 40;
var itemsInLastBox = itemsToBeBoxed % itemsPerBox;

productCount = productCount + 1;

var average = (a + b + ¢} J/ 3;

var firstname = "John";

var surnames = "Doe";

var fullname = firstname + " " + surname;

// the variable fullname now contains the value "John Doe"

var cTemp = 100; // temperature in Celsius
// Let's be generous with parentheses
var hTemp = ({cTemp * 9) /5)} + 32;

< | DOCTYPE html=
<html =
<head=>
=titlesFahrenheit From Celsius</title=
</head=>
<body >
<=gcripts
var cTemp = 100; // temperature in Celsius
// Let's be generous with parentheses
var hTemp = ((cTemp * 9) /5) + 32;
document .write ("Temperature in Celsius: " + cTemp + " degrees
");
document .write ("Temperature in Fahrenheit: " + hTemp + " degrees");
</scripts
</body=>
</html=

onclick=" ...some JavaScript code... "

< |DOCTYPE html=>
<html >
<heads=
<title=onClick Demo</titles=
</head=
<body=>

<input type="button" onclick="alert('You clicked the button!')" walue="Click
-Me s

</body=>
</html=

alert{'You clicked the button!')

< |DOCTYPE html=
<html >
<heads=
<title=onMouseOver Demo</title=
</head=
<body=>

<img src="imagel.png" alt="image 1" onmousecver="alert('You entered the
mimage!')" />

</body=>

</html=

< |DOCTYPE html=
<html=>
<head=
=titlesOnMouseOver Demoe</title=
</head>
<body >
<img src="tick.gif" alt="tick" onmousecver="this.sre="tick2.gif';"
onmousecut="this.sre="tick.gif';" /=
</body=
</html=

function sayHello() {
alert ("Hello") ;
/f ... more statements can go here

<input type="button" value="Say Hello" onclick="sayHello()" /=

< |DOCTYPE html=>
<html >
<heads>
<title=Calling Functions</titles
<scripts
function sayHello() {
alert ("Hellao") ;
}
</scripts>
</head=
<body=>
<input type="button" wvalue="Say Hello"
</body=>
</html=

onclick="gayHello ()" />

function buttonReport (buttonId, buttonMName, buttonValue) {
// information about the id of the button

var userMessagel = "Button id: " + buttonId + "\n";

// then about the button name

var userMessageZ = "Button name: " + buttonName + "\n";
// and the button value

var userMessage3 = "Button wvalue: " + buttonValue;

// alert the user
alert (userMessagel + userMessageZ + userMessagei);

<input type="button" id="idl" name="Button 1" value="Something" /=

onclick = "buttonReport(this.id, this.name, this.wvalue)"

< !|DOCTYPE html=
<html=
<heads>
<title>Calling Functions</titlex
zgcripts
function buttonReport (buttonId, buttonName, buttonValue) {
J/ information about the id of the button

var userMessagel = "Button id: " + buttonId + "\n";

// then about the button name

var userMessageZ = "Button name: " + buttonName + "\n";
// and the button wvalue

var userMessage3 = "Button wvalue: " + buttonValue;

// alert the user
alert (userMessagel + userMessage + userMessagel) ;
</soript>
z/heads=
<body=>

<input type="button" id="idl" name="Left Hand Button" wvalue="Left" onclick
w="hbut tonReport (this.id, this.name, this.value)"/>

zinput type="button" id="id2" name="Center Button" walue="Center" onclick
m="hbut tonReport (this.id, this.name, this.value)"/>

zinput type="button" id="id3" name="Right Hand Button" walue="Right" onclick
="buttonReport (this.id, this.name, this.value)"/>

</body>
z/html=

// Define our function addTax()
function addTax(subtotal, taxRate) |

var total = subtotal * (1 + {taxRate/100));

return total;
// now let's call the function
var invoiceValue = addTax (50, 10} ;
alert (invoiceValue); // works correctly
alert (total); // deoesn't work

var a = 10;
var b = 10;
function showVars() ({
var a = 20; // declare a new local wvariable 'a’
b = 20; // change the walue of global variable 'b'
return "Local wariable 'a' = " + a + "\nGlebal wariable 'bk' = " + b;
}
var message = showVars();
alert (message + "\nGlobal variable 'a' = " + a);

"name": "My First Extension",
"versicn®: "1.0",
"manifest wversicn": 2,
"degcription": "Hello World extension.",
"browser action": {
"default icon": "icon.png”,
"default popup": "popup.html”
b
"web accessible resources": |
"icon.png”,
"popup.js”

< !DOCTYPE html=>
<html=>
<heads
<gtyle=
body {
width: 350px;
}
div {
border: 1px solid black;
padding: 20px;

font: 20px normal helvetica, wverdana,

}
</styles
<script src="popup.js"=</script=>
</head>
<body>
</body>
</html =

gans-serif;

function sayHello() |

var message = document.createTextNode ("Hello World!"™) ;
var out = document.createElement ("div");

out . appendChild (message) ;

document . body. appendChild (out]) ;

}

window.onload = sayHello;

"name":"San Francisco

International“,“ICAO“:"KSFO","state“:“Califarnia","statua“:{“angelay":"",
"closureEnd":"", "closureBegin":"","type":"", "minDelay":"","trend":"",
"reason":"No known delays for this airport.","maxDelay":"","endTime":""},

"delay":"false", "IATA" :"SFO", "city" : "San Francisca","weather“:{“weather":"Partly
Cloudy",

"meta":{"credit":"NOAA's National Weather Service","url":"http://weather.gov/",
"ypdated":"1:56 LM Lﬂcal"},"wind":"Southwest at 9.2mph","temp":"44.0 F (6.7 C)",
"vigibility":"10.00"})

"name": "Airport Information",
"yergion”: "1.0",
"manifest version": 2,
"description": "Information on US airporta",
"browser action": {
"default icon": "plane.png",
"default popup": "popup.html"
1
"web accessible resources": |
"plane.png",
"popup. ja"
1.
"permissions": [
"http://services.faa.gov/"

< |DOCTYPE html>
<html=>
<heads
<title=Airport Information</title=
<gtyle=
body {
width:350px;
font: 12px normal arial, werdana, sans-serif;
}
#info {
border: 1px solid black;
padding: 10px;
}
</styles
z/heads>
<body>
<hZ2zAdrport Informations</h2>
<input type=Text id="airportCode" walue="SFO" gize="&" />
<input id="btn" type="button" walue="Get Information" /=
zdiv id="info"s</div=
</body=
</html=

<gcript src="jquery-1.11.2.min.js" /></script>

${dﬂcument}.ready{functiﬂnf]{
$ ("#btn") .click (function{) {
4 ("#info") .html ("Getting information ...");
var code = $("#airportCode") .wvall();
$.get ("http://services.faa.gov/airport/status/" + code +
w"?format=application/json",
11
function(data) {
displayData (data) ;

S("#info") .html ("Getting information ...");

var code = & ("#airportCode").val();

S%.get ("http://services.faa.gov/airport/atatus/" + code + "?format=application/
json",
ll;
function (data) {
displayData(data) ;

function displayData(data) {
var message = "Alrport: " + data.name + "<br /=";
message += "<h2=8TATUS:</h3=";
for (i in data.status) {
if (data.status[i] != "") message += 1 + ": " + data.status[i] + "
";
}
message += "<h3>WEATHER:</h3>";
for (i in data.weather) |
if(i != "meta") message += i + ": " 4+ data.weather[i] + "<br /a»";

}

S("#info") .html (message) ;
}
% (document) .ready (function() {
S("#btn") .click (function() {
S("#info") .html ("Getting information ...");
var code = g ("#airportCode") .vall);

8.get("http: //services.faa.gov/airport/status/" + code +
m"2format=application/json",

L]
I

function (data) {
displayData(data);

< !DOCTYPE html=>
<html=>
<head=>
<title=Airport Information</title=
<gtyvlex>
body {
width:350px;
font: 12px normal arial, wverdana, sans-gerif;
}
#info {
border: 1lpx sclid black;
padding: 10px;
}
</style=
<goript sre="jquery-1.11.2.min.Jjs" /=</scripts
<script src="popup.js"s</scripts
</head=
<body >
<h2=Airport Information</h2=
<input type=Text id="airportCode" walue="SF0O" gize="&" />
<input id="btn" type="button" wvalue="Get Information" /=
zdiv id="info"s></div>
</body>
</html=

function calculateGroundhAngle(xl, vy1l, zl, x2, y2, z2) {
[H*
* Calculates the angle in radians at which
* a line between two points intersects the
* ground plane.
* @author Phil Ballard phil@www.example.com
xf
if(x1 > 0} {
more statements

// need to use our custom sort method for performance reasons
var finalArray = rapidSort(allNodes, byAngle) {
more statements

// workaround for image onload bug in browser X wversion Y
if (!loaded(imagel)} {
. more statements

// You can change the following dimensions to your preference:
var height = 400px;
var width = &00px;

funection Car (make, model, color) {
statements

var herbie = new Car('VW', 'Beetle', 'white') ;

function getElementArea () {
var high = document.getElementById("idl") .stvle.height;
var wide = document.getElementById("idl") .style.width;

return high * wide;

function getElementArea (elementId) {
var elem = document.getElementById{elementId) ;
var high = elem.style.height;
var wide = elem.style.width;

return parselnt (high) * parselnt (wide) ;

var areal getElementhArea ("idl")} ;

getElementArea ("id2") ;

var areaz

function getElementArea(elementId) {
if (document.getElementById (elementId)) {
var elem = document.getElementByld(elementId) ;
var high = elem.style.height;
var wide = elem.style.width;
var area = parselnt(high) * parselInt(wide);
if (!isNaN(area)) |
return area;
} else |
return false;
}
} else {
return false;

<input type="button" style="border: 1lpx solid blue;color: white"
onclick="doSomething ()" />

<input type="button" class="blueButtons" onclick="doSomething ()" /=

<input type="button" class="blueButtons" id="btnl" />

function doSomething() {
statements

}

document .getElementById ("btnl") .onclick = doSomething;

<form action="process.php">
<input id="searchTerm" name="term" type="text" />

<input type="button" id="btnl" walue="Search" /=

< /form>

function checkform() {
if (document .forms [0] .term.value == "") {
alert ("Please enter a search term.");
return false;
} else |

document . forms [0] . submit () ;

}

window.onload = function() |
document .getElementById("btnl") .onclick = checkform;

<form action="process.php">
<input id="searchTerm" name="term" type="text" /><br /=
<input type="submit" id="btnl" value="Search" />
</form=

function checkform() {
if (document. forms [0] .term.value == "") {
alert ("Please enter a search term.");
return false;
} else |
return true;

}

window.onload = function() {

document .getElementById("btnl") .onclick = checkform;

function setClipboard(myText) {
if { (typeof clipboardData != 'undefined'} && (clipboardData.setData)){
clipboardData.setData ("text", myText) ;

} else {
document .getElementById ("copytext") .innerHTML = myText;

alert ("Please copy the text from the 'Copy Text' field to your clipboard");

if ((tyvpeof clipboardData != 'undefined')

&& (clipboardData.setData)) {

document .getElementById ("copyvtext") .innerHTML = myText;
alert ("Please copy the text from the 'copytext' field to your clipboard");

< |DOCTYPE html=
<html=>
<head>
<title=Current Date and Time</titles
=gtyle=
p {font: 1l4px normal arial, wverdana, helvetica;}
</style>
<gcript=
function telltime() {
var out = "";
var now = new Date{);

out += "<br /sDate: " + now.getDate();

out += "<br /sMonth: " + now.getMonth () ;

out += "<br /=¥Year: " + now.getFull¥Year();
out += "
Hours: " + now.getHours () ;

out += "<br /=Minutes: " + now.getMinutes();
out += "
Seconds: " + now.getSeconds();

document .getElementById ("divl")} .innerHTML = out;
}
</scripts>
< /head=
<body=
The current date and time are:<br/=
cdiv id="divl"s</div=
<gcripts
telltime() ;
</script>
<input type="button" onclick="location.reload()" walue="Refresh" /=
< /body=>
</html=

<noscript>

Your browser does not support JavaScript<br /=

Please consult your computer's operating system for local date and
time information or click HERE
to read the server time.

</noscript>

< !DOCTYPE htmls
<html=>
<heads=>
ztitle=Current Date and Time</title=

z=gtylex
p {font: 14px normal arial, wverdana, helvetica;}
</styles
<gcript sro="datetime.js"=</gcript>
z/heads>
<body>

The current date and time are:<br/=
cdiv id="divl"=</div>
<input id="btnl" type="button" wvalue="Refresh" /=
<noscripts
<p=Your browser does not support JavaScript.</p=>
<zp=Please consult your computer's operating system for local date and time

information or click HERE to read the server

time.</p=
</noscripts

</body>

=/html=

function telltime() {
var cut = "";

var now = new Date();

out += "<br /=Date: " + now.getDate();

out += "<br /sMonth: " + now.getMonth() ;

out += "<br [s>Year: " + now.getFullYear();
out += "<br /s=Hours: " + now.getHours();

out += "<br /sMinutes: " + now.getMinutes();
out += "<br /s>Seconds: " + now.getSeconds|();

document .getElementById ("divl") .innerHTML = out;

window.onload = function() {
document .getElementById ("btnl") .onclick= function() {location.relocad() ;}
telltime() ;

<scripts>window. location="enhancedPage.html";</script>

function myFunc(a, b) {
alert ("myFunc() called.\na: " + a + "\nb: " + b};
// .. rest of function code here

-}

< !DOCTYPE htmls
<html=>
<head>
<title=Strings and Arrays</titles
</head=>
<body >
<=gcripts
function sayHi() {
alert("Hello!);
}
</scripts
<input type="button" wvalue="good" onclick="sayHi()" /=
<input type="button" wvalue="bad" onclick="sayhi()" /=
</body=
</html=

<body onload="somefunction()" >

< |DOCTYPE html=
<html=>

<head=

<titlesBanner Cycler</title>

z=gcripts
var banners = ["bannerl.jpg", "bannerZ.jpg", "banner3.jpg"]:
var counter = 0;

function runf() {
getInterval (cycle, 2000);
}
function cycle() {
counter++;
if (counter == banners.length) counter
document .getElementById ("banner") .sxrc

0;

banners [counter] ;

}

</seripts
</heads>
<body onload = "runf() ;">

<img id="banner" alt="banner" src="bannerl.jpg" /=
</body=>

</html=

if (counter == banners.length) counter = 0;

document .getElementByvId ("banner") .src = banners [counter] ;

function myFunc(a, b) {
console.log ("myFunc() called.\na: " + a + "\nb: " + b);
// .. rest of function code here

)

function myFunc(a, b) {
congole.group ("myFunc execution") ;
console. log("Executing myFunc() ") ;
if (isNaN(a) || isWawm(b}) {
console.warn("One or more arguments non-numeric") ;
}
console.groupEnd() ;
myOtherFunc (a+b) ;

function myOtherFunc(c) {
congole.group ("myOtherFunc execution") ;
congole. log("Executing myOtherFunc() "} ;
if (isNaN(c)) |
console.info ("Argument is not numeric") ;

}

console.groupEnd () ;
// .. rest of function code here

function myFunc(a, b) {
if (isNaN(a) || isNaN(b)) {
debugger ;

}

f/ .. regt of function code here

}

function addTax(subtotal, taxRate) {
var total = subtotal * {1 + {taxRate/100)}};
return total;

< !DOCTYPE html=>
<html=
<head=
<titlesManual Unit Testing Examples</titles
<gcript sro="tax.js"s</scripts
<goript=
function test(amount, rate, expected) {
results.total++;
wvar result = addTax(amount, rate);
if (result !== expected) {
results.failed++;
console.log ("Expected " + expected + ", but instead got " + result);

}

var results = |
total: 0O,
failed: 0

¥

// Our unit tests
test (1, 10, 1.1);
test (5, 12, 5.68);
test (100, 17.5, 117.5);

// Output results to the consocle
congole. log{results.total + " tests carried out, " + results.failed + " failed, "
w+ (results.total - results.failed) + " passed.");
</soript=>
z/head>
<bodys>
</body=
</html=>

< IDOCTYPE htmls

<html=>

<head>

<titlesHello QUnit Example</title=

<link rel="stylesheet" href="http://code.jquery.com/qunit/qunit-1.16.0.cs8"=>
</head>

<body=>

<div id="qunit"s</div>

<div id="gqunit-fixture"s</div=

<gcript sre="http://code.jquery.com/qunit/qunit-1.16.0.j8"></gcript>
<gcript sre="tests.je"s</gcripts

</body=

z/html >

QUnit.test{ "Hello QUnit test", function(assert) {

aggsert.ok{ 1 == "1", "Pagged!");

}};

aggert.ck{ 1 == "1", "Pagged!") ;

< |DOCTYPE html=>

<html=>

<heads=

ztitles>Test of addTax Function with QUnite/title=

<link rel="stylesheet" href="http://code.jquery.com/qunit/qunit-1.16.0.ces">
<geript sro="tax.js"»</Becripts

= /heads>

<body>

<div id="qunit"s</divs>

<div id="qunit-fixture"s</div>

<gcript sre="http://code.jquery.com/qunit/qunit-1.16.0.js8"></g5cript>
<gcript src="tests.js"=</scripts

</body=>

=/html=

QUnit.teast("addTax test", function(assert) {
assert.equal (addTax (1, 10), 1.1);
assert.equal (addTax (5, 12), 5.6);
assgsert.equal (addTax (100, 17.5), 117.5};

b}

	About This eBook
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Author
	We Want to Hear from You!
	Reader Services
	Introduction
	Who This Book Is For
	The Aims of This Book
	Conventions Used
	Q&A, Workshop, and Exercises
	How the Book Is Organized
	Tools You’ll Need

	Part I: First Steps with JavaScript
	Hour 1. Introducing JavaScript
	Web Scripting Fundamentals
	Server- Versus Client-Side Programming
	JavaScript in a Nutshell
	Where JavaScript Came From
	The Browser Wars

	The <script> Tag
	Introducing the DOM
	The W3C and Standards Compliance
	The window and document Objects
	Object Notation

	Talking to the User
	window.alert�⠀)
	document.write�⠀)
	Reading a Property of the document Object

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 2. Writing Simple Scripts
	Including JavaScript in Your Web Page
	JavaScript Statements
	Commenting Your Code

	Variables
	Operators
	Arithmetic Operations
	Operator Precedence
	Using the + Operator with Strings

	Capturing Mouse Events
	The onClick Event Handler
	onMouseOver and onMouseOut Event Handlers

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 3. Using Functions
	General Syntax
	Calling Functions
	Putting JavaScript Code in the Page <head>

	Passing Arguments to Functions
	Multiple Arguments

	Returning Values from Functions
	Scope of Variables
	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 4. DOM Objects and Built-in Objects
	Interacting with the User
	alert�⠀)
	confirm�⠀)
	prompt�⠀)

	Selecting Elements by Their ID
	The innerHTML Property

	Accessing Browser History
	Using the location Object
	Navigating Using the location Object
	Reloading the Page

	Browser Information—The navigator Object
	Dates and Times
	Create a Date Object with the Current Date and Time
	Creating a Date Object with a Given Date and Time
	Setting and Editing Dates and Times

	Simplifying Calculation with the Math Object
	Rounding
	Finding Minimum and Maximum
	Random Numbers
	Mathematical Constants
	The with Keyword

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Part II: Cooking with Code
	Hour 5. Numbers and Strings
	Numbers
	Integers
	Floating-Point Numbers
	Not a Number �⠀一愀一)
	Using parseFloat�⠀) and parseInt�⠀)
	Infinity

	Strings
	Escape Sequences
	String Methods

	Boolean Values
	The Negation Operator �⠀℀)

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 6. Arrays
	Arrays
	Creating a New Array
	Initializing an Array
	Array Methods

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercise

	Hour 7. Program Control
	Conditional Statements
	The if�⠀) Statement
	Comparison Operators
	Testing for Equality
	More about if�⠀)
	Testing Multiple Conditions
	The switch Statement
	Logical Operators

	Loops and Control Structures
	while
	do ... while
	for
	Leaving a Loop with break
	Looping Through Objects with for ... in

	Setting and Using Timers
	setTimeout�⠀)
	setInterval�⠀)

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Part III: Objects
	Hour 8. Object-Oriented Programming
	What Is Object-Oriented Programming?
	Object Creation
	Create a Direct Instance
	Anonymous Functions
	Using a Constructor Function

	Extending and Inheriting Objects Using prototype
	Extending Objects
	Inheritance

	Encapsulation
	Using Feature Detection
	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 9. Scripting with the DOM
	DOM Nodes
	Types of Nodes
	The childNodes Property
	firstChild and lastChild
	The parentNode Property
	nextSibling and previousSibling
	Node Value
	Node Name

	Selecting Elements with getElementsByTagName�⠀)
	Reading an Element’s Attributes
	Mozilla’s DOM Inspector
	Creating New Nodes
	Manipulating Child Nodes
	appendChild�⠀)
	insertBefore�⠀)
	replaceChild�⠀)
	removeChild�⠀)
	Editing Element Attributes
	Dynamically Loading JavaScript Files

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 10. Meet JSON
	What Is JSON?
	JSON Syntax

	Accessing JSON Data
	Using eval�⠀)
	Using Native Browser Support

	Data Serialization with JSON
	JSON.stringify�⠀)

	JSON Data Types
	Simulating Associative Arrays
	Creating Objects with JSON
	Properties
	Methods
	Arrays
	Objects

	JSON Security
	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Part IV: HTML and CSS
	Hour 11. JavaScript and HTML5
	New Markup for HTML5
	Some Important New Elements
	Video Playback with <video>
	Testing Format Support with canPlayType�⠀)
	Controlling Playback
	Playing Sound with the <audio> Tag
	Drawing on the Page with <canvas>

	Drag and Drop
	Local Storage
	Working with Local Files
	Checking for Browser Support

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 12. JavaScript and CSS
	A Ten-Minute CSS Primer
	Separating Style from Content
	CSS Style Declarations
	Where to Place Style Declarations

	The DOM style Property
	Accessing Classes Using className
	The DOM styleSheets Object
	Enabling, Disabling, and Switching Stylesheets

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 13. Introducing CSS3
	Vendor-Specific Properties and Prefixes
	CSS3 Borders
	Create Box Shadows
	Rounding Corners with the border-radius property

	CSS3 Backgrounds
	The background-size Property
	The background-origin Property
	Multiple Background Images

	CSS3 Gradients
	Linear Gradients
	Radial Gradients

	CSS3 Text Effects
	Text Shadow
	Word Wrap

	CSS3 Transitions, Transformations, and Animations
	Referencing CSS3 Properties in JavaScript
	Converting CSS Property Names to JavaScript
	The DOM getComputedStyle�⠀) Method

	Setting CSS3 Properties with Vendor Prefixes
	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Part V: Using JavaScript Libraries
	Hour 14. Using Libraries
	Why Use a Library?
	What Sorts of Things Can Libraries Do?
	Some Popular Libraries
	Prototype Framework
	Dojo
	The Yahoo! UI Library
	MooTools
	jQuery

	Introducing prototype.js
	The $�⠀) Function
	The $F�⠀) Function
	The Form Object

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 15. A Closer Look at jQuery
	Including jQuery in Your Pages
	Download jQuery
	Use a Remote Version

	jQuery’s $�⠀搀漀挀甀洀攀渀琀).ready Handler
	Selecting Page Elements
	Working with HTML Content
	html�⠀)
	text�⠀)
	attr�⠀)

	Showing and Hiding Elements
	show�⠀)
	hide�⠀)
	toggle�⠀)

	Animating Elements
	Fading
	Sliding
	Animation

	Command Chaining
	Handling Events
	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 16. The jQuery UI User Interface Library
	What jQuery UI Is All About
	How to Include jQuery UI in Your Pages
	Using the ThemeRoller

	Interactions
	Drag and Drop
	Resize
	Sort

	Using Widgets
	Accordion
	Date Picker
	Tabs

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 17. Ajax with jQuery
	The Anatomy of Ajax
	Introducing Ajax
	The XMLHttpRequest Object
	Different Rules for Different Browsers
	Methods and Properties
	Talking with the Server
	What Happens at the Server?
	Dealing with the Server Response
	But There’s an Easier Way, Right?

	Using jQuery to Implement Ajax
	load�⠀)
	get�⠀) and post�⠀)

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Part VI: Advanced Topics
	Hour 18. Reading and Writing Cookies
	What Are Cookies?
	Limitations of Cookies

	The document.cookie Property
	Escaping and Unescaping Data

	Cookie Ingredients
	cookieName and cookieValue
	domain

	Writing a Cookie
	A Function to Write a Cookie
	Reading a Cookie
	Deleting Cookies
	Setting Multiple Values in a Single Cookie
	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 19. Coming Soon to JavaScript
	Classes
	Arrow Functions
	Modules
	Using let and const
	Template Strings
	Access Arrays with for-of
	Transpilation
	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 20. Using Frameworks
	Software Frameworks
	Why Use a Framework?
	Frameworks Are Not the Same as Libraries

	Model-View-Controller �⠀䴀嘀䌀) Architecture
	Models
	Views
	Controllers

	Using an MVC Framework for Web Apps
	The AngularJS Framework
	An Overview of AngularJS
	Including AngularJS in your page
	Extending HTML with ng- directives
	Scopes
	Directives
	Filters

	Building an AngularJS Application
	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 21. JavaScript Beyond the Web Page
	JavaScript Outside the Browser
	Writing Google Chrome Extensions
	Building a Simple Extension
	Debugging the Extension

	Going Further
	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Part VII: Learning the Trade
	Hour 22. Good Coding Practice
	Don’t Overuse JavaScript
	Writing Readable and Maintainable Code
	Use Comments Sensibly
	Choose Helpful File, Property, and Method Names
	Reuse Code Where You Can
	Don’t Assume

	Graceful Degradation
	Progressive Enhancement
	Separate Style, Content, and Code

	Unobtrusive JavaScript
	Leave That HTML Alone
	Use JavaScript Only as an Enhancement

	Feature Detection
	Handling Errors Well
	Using try and catch

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 23. Debugging Your Code
	An Introduction to Debugging
	Types of Errors
	Choosing a Programmer’s Editor
	Simple Debugging with alert�⠀)

	More Advanced Debugging
	The Console
	Grouping Messages
	Using Breakpoints to Halt Code Execution
	Conditional Breakpoints
	Launching the Debugger from Your Code
	Watch Expressions
	Validating JavaScript

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 24. JavaScript Unit Testing
	What Is Unit Testing?
	Writing JavaScript for Unit Testing
	Refactoring Code

	The QUnit Test Suite
	Installing QUnit
	A Minimal QUnit Setup
	Retesting Our addTax�⠀) Function

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Part IX: Appendices
	Appendix A. Tools for JavaScript Development
	Editors
	Notepad++
	jEdit
	SciTE
	Geany

	Validators
	The W3C Validation Services
	Web Design Group �⠀圀䐀䜀)

	Debugging and Verifying Tools
	Firebug
	JSLint

	Appendix B. JavaScript Quick Reference

	Index
	Code Snippets

