

The JavaScript
PocketGuide

LennyBurdette

Ginormous knowledge, pocket-sized.

The JavaScript Pocket Guide
Lenny Burdette
Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)
Find us on the Web at: www.peachpit.com
To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.
Copyright © 2010 by Lenny Burdette
Executive Editor: Clifford Colby
Editor: Kim Wimpsett
Production Editor: Cory Borman
Compositor: David Van Ness
Indexer: Jack Lewis
Cover Design: Peachpit Press
Cover Illustrator: Lenny Burdette and Aren Howell
Interior Design: Peachpit Press
Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form
by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the publisher. For information on getting permission
for reprints and excerpts, contact permissions@peachpit.com.
Notice of Liability
The information in this book is distributed on an “As Is” basis without warranty. While
every precaution has been taken in the preparation of the book, neither the author
nor Peachpit shall have any liability to any person or entity with respect to any loss or
damage caused or alleged to be caused directly or indirectly by the instructions con-
tained in this book or by the computer software and hardware products described in it.
Trademarks
Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and
Peachpit was aware of a trademark claim, the designations appear as requested by the
owner of the trademark. All other product names and services identifi ed throughout
this book are used in editorial fashion only and for the benefi t of such companies with
no intention of infringement of the trademark. No such use, or the use of any trade
name, is intended to convey endorsement or other affi liation with this book.
ISBN-13: 978-0-321-70095-7
ISBN-10: 0-321-70095-3
9 8 7 6 5 4 3 2 1
Printed and bound in the United States of America

www.peachpit.com

To my mom and dad

About the Author
In the seventh grade, Lenny Burdette checked out the book Teach Yourself
HTML in 24 Hours from the public library, and the rest, as they say, is
history. Since graduating from UCLA, Burdette has worked at Schematic
in Los Angeles, California, where he is the reigning Guitar Hero cham-
pion. Schematic (http://www.schematic.com) is a digital marking agency
that has given him opportunities to develop JavaScript for Web sites,
e-commerce platforms, TV, and mobile.

Acknowledgments
I’d fi rst like to thank Cliff Colby and Bruce Hyslop for the opportunity to
write this book as well the faith that I could. Huge thanks go to editor
Kim Wimpsett and the rest of the team at Peachpit Press for making the
process go more smoothly than I ever imagined it would.

Adam Luikart’s feedback and sharp eye were invaluable throughout the
writing process. All of my colleagues at Schematic, especially Richard
Herrera and the rest of IEG, are a wealth of inspiration and support.
Additionally, Nick Rodriguez and Dan Duvall were incredibly gracious to
look over my work; I own them both many beers.

I wouldn’t be where I am without all the teachers I’ve had through my
life, from Mrs. Rhea all the way to Casey Reas. Much thanks to Mr. Fairchild
especially, since it was in his class where my love of the Web began.

And of course, thanks to my family, Mom, Dad, Julie, and Rachel, for their
love and support.

http://www.schematic.com

Introduction . xvii
Why JavaScript Is Cool . xviii

Who Should Read This Book . xix

What You Need to Follow Along . xix

What’s in This Book . xix

What’s Not in This Book . xx

Resources . xx

Writing JavaScript Code . xxi
Case Sensitivity . xxi
Comments . xxi
Semicolons . xxii
Whitespace and New Lines . xxii
Reserved Words . xxii
Balanced Brackets and Quotes . xxiv

Firebug . xxiv

Chapter 1: JavaScript Basics . 1
Expressions and Statements . 2

Variables and Data . 3
Values . 4
Comparison . 5
Truthiness and Falsiness . 6

Functions and Objects . 8
Objects . 9

Contents

The JavaScript Pocket Guidevi

Loops . 10

Control Flow . 11
if/if-else/else . 11
switch/case . 12
try/catch/fi nally . 13
throw . 13
break and continue . 14

Compound Expressions . 15
Boolean Operators . 15
Logical NOT: ! . 15
Logical AND: && . 16
Logical OR: || . 17
Combining Boolean Operators . 18
Ternary Expressions . 19

Chapter 2: Numbers . 21
Basic Math . 22

Number Formats . 24

Constants and Functions . 25
The Math Object . 25
Even More Properties and Methods . 26
Generating Random Integers . 26

Conversion . 26

Number Precision . 29

Chapter 3: Strings . 31
Escape Characters . 32

Operators . 32

Properties . 33

 Contents vii

Methods . 33
Changing Case: toUpperCase(), toLowerCase() 34
Extracting Parts of a String . 34
charAt(x), charCodeAt(x) . 34
slice(x[, y]) . 35
substr(x[, y]) . 36
Converting Strings to Arrays: split([delimiter, limit]) 36
Search and Replace . 37
indexOf(substring[, start]) . 37
lastIndexOf(substring[, start]) . 39
search(regexp) . 40
match(regexp) . 40
replace(pattern, replacement) . 40
Helper Functions . 42
stringTrim() . 42

Global Functions . 42
escape(string), unescape(string) . 42
encodeURI(string), decodeURI(string) . 43
encodeURIComponent(string), decodeURIComponent(string) 43

Chapter 4: Arrays . 45
Creating Arrays . 46

Properties . 46

Looping Over Arrays . 47
forEach(loopFunc) . 48

Methods . 49
Adding Items to Arrays . 49
concat(x[, y , z …]) . 50
push(x[, y, z …]) . 50
unshift(x[, y, z …]) . 50

The JavaScript Pocket Guideviii

Removing Items from Arrays . 51
pop() . 51
shift() . 51
Extracting Items from Arrays . 51
slice(x[, y]) . 52
splice(start[, length, newValue …]) . 52
Ordering Arrays . 53
reverse() . 54
sort([func]) . 54
Converting Arrays to Strings . 55
join([delimiter]) . 55
toString() . 56

Chapter 5: Functions . 57
Creating Functions . 58

Declarations . 58
Expressions . 58
Self-invoking Functions . 59

Arguments . 60
Default Values for Arguments . 61
Objects as Arguments . 63

Return Values . 65

Functions as Methods . 66

Context Binding . 68

Closures . 70

Recursion . 74

Caching . 75

Memoization . 77

 Contents ix

Chapter 6: Objects . 79
Basics . 80

Looping Over Properties . 81
Enumerable Properties . 83
Deleting Properties . 85

Constructor Functions . 86

Prototypes . 87
Changing Built-in Prototypes . 89
Adding Modern JavaScript to Older Browsers . 90
Prototypes for Custom Data Types . 91
How to Understand Constructor Functions and Prototypes 92

Object-Oriented Patterns . 94

Namespacing . 96
Local References . 98

Chapter 7: The Global Object . 99
Global Variables . 100

Accidentally Creating Global Variables . 101

Global Functions . 102
Timers . 102
setTimeout(func, delay) . 102
setInterval(func, delay) . 103
clearInterval(id), clearTimeout(id) . 104

Chapter 8: Client-Side Scripting . 107
Script Tags . 108

Inline Scripts . 108
Remote Scripts . 108
Where to Include the <script> Tag . 109

The JavaScript Pocket Guidex

The Browser Problem . 111

Progressive Enhancement . 112
Handling Non-JavaScript Situations . 114
The <noscript> Tag . 114
JavaScript-Specifi c CSS Classes . 115

Chapter 9: Browsers and Windows . 117
Properties . 118

Global Functions . 119
Dialog Boxes . 119
Manipulating Browser Windows . 120

The history Object . 122

The location Object . 122

Cookies . 123
Setting Cookies . 123
Reading Cookies . 125
Deleting Cookies . 126

The navigator Object . 126

Chapter 10: The DOM . 129
Nodes . 130

Node Collections . 130
Node Trees . 131

Node Properties . 133
nodeName . 133
nodeType . 134
nodeValue . 134

 Contents xi

Walking the DOM . 135
Starting with document . 135
Managing Whitespace . 137
children . 138

Finding Nodes . 139
getElementById(domId) . 139
getElementsByTagName(name) . 139
getElementsByClassName(name) . 139
querySelector(selector) . 141
querySelectorAll(selector) . 142

Creating Nodes . 142
Using DOM Methods . 142
createElement(tagName) . 142
createTextNode(nodeValue) . 143
cloneNode(deep) . 143
Using innerHTML . 144
Using Document Fragments . 145
Adding, Removing, and Reordering Nodes . 145
appendChild(node) . 146
insertBefore(node, reference) . 146
removeChild(childNode) . 146
Utility Functions . 146

Inspecting and Changing Elements . 149
Attributes . 149
Calculated Attribute Values . 150
Special Properties . 152
Element Styles . 154
The class Attribute . 154
The style Attribute . 156
Computed Styles . 157

The JavaScript Pocket Guidexii

Chapter 11: Events . 159
Event Attributes . 160

Return Values . 161
Event Attribute Method Context . 161
Multiple Event Handlers . 162

Event Methods . 163
addEventListener(eventType, handler, capture) 164
removeEventListener(eventType, handler, capture) 164

The Event Object . 166
Properties . 166
Methods . 166

Event Bubbling and Capturing . 167
Bubbling . 168
Capturing . 169
Stop Propagation . 171
Event Delegation . 171

Event Examples . 173
Browser Events . 173
load . 173
unload . 173
beforeunload . 174
resize . 174
DOMContentLoaded . 175
Mouse Events . 175
click . 176
mousedown, mouseup . 177
dblclick . 177
mouseover, mouseout . 178
mouseenter, mouseleave . 179

 Contents xiii

Keyboard Events . 180
keydown . 180
keypress . 180
keyup . 181
Form Element Events . 182
change . 183
submit . 183
Other Events . 183
focus . 183
blur . 184

Chapter 12: Libraries . 185
Choosing a Library . 186

Using Libraries with This Book . 188

jQuery . 189
Coding with jQuery . 189
jQuery Objects . 190
jQuery Utilities . 191
jQuery UI . 192

YUI 3 . 192
Coding with YUI 3 . 192
YUI 3 Gallery . 194

MooTools . 194
Coding with MooTools . 194
Namespacing . 195
MooTools More . 195

The JavaScript Pocket Guidexiv

Chapter 13: Image Slideshow . 197
Debugging Your Code . 198

Slideshow Ingredients . 199
Slideshow HTML . 200
Slideshow CSS . 202

Slideshow JavaScript . 203
Creating the Slideshow Images . 204
Centering the Images . 206
The Slideshow Code . 208
Slideshow Controls . 209

jQuery Glossary . 212
The jQuery Function: $() . 212
jQuery Object Methods . 212

Chapter 14: Drop-Down Menus . 215
Menu HTML . 216

Menu Markup . 217

Menu CSS . 218

Progressive Enhancement . 219

Menu JavaScript . 221
MooTools Constructor Functions . 222
Arrays in MooTools . 223
Event Handlers in MooTools Classes . 223
Showing and Hiding Submenus . 226
Clicking Outside the Menus . 228

Extending the Menu Class . 229
Overriding Inherited Methods . 231
Using MooTools Effects . 231

 Contents xv

MooTools Glossary . 235
Element Utilities . 235
Element Methods . 235
Array Utilities . 236
Function Utilities . 236

Chapter 15: Ajax . 237
Ajax Considerations . 238

Servers . 238
Same-Origin Policy . 238
Data Formats . 238
User Experience . 239

Ajax Example . 240
Setup . 241
Data File . 241
Controller File . 242
Reading Data from the File . 243
Get the Page Number from the Query String . 243
Saving Form Data to the File . 244
Arrange the Data Just for the Page . 245
Send JSON for Ajax Requests . 245
Send an HTML Template for Normal Page Requests 245
The HTML Template . 246
HTML Page Outline . 246
Data Table Markup . 247
Navigation Links . 248
Form Markup . 248
Checking Your Work . 249
Ajaxifying the Page . 249
Script Outline . 249
Overriding the Previous and Next Links . 250

The JavaScript Pocket Guidexvi

Waiting for the Request to Load . 250
Error Handling . 251
Handling the Response . 251
Updating the User Interface . 253
Overriding the Form . 255

Getting Around the Same-Origin Policy . 256
Proxies . 256
JSON-P . 256

Chapter 16: Animation . 259
Simple Animation . 260

Time-Based Animation . 262
Easing . 265

Animation with Libraries . 267
YUI 3 Animation Objects . 268
The jQuery animate() Method . 269
Resetting Animation . 270

Using Animation . 271

Index . 273

Between e-mail applications, social networking sites, online word proces-
sors, and mobile Web browsers, the Internet is becoming more useful
and more powerful every day. A lot of that power comes from JavaScript,
a quirky little language available on nearly every computer in the world
through browsers such as Internet Explorer, Firefox, Safari, Opera, and
Chrome. Brendan Eich created the language for the Netscape browser
in 1995, naming it after Java even though the languages have only
super fi cial similarities. Its formal name is ECMAScript, governed by the
European Computer Manufacturers Association (ECMA), which published
the fi fth edition of the language in December 2009.

Introduction

The JavaScript Pocket Guidexviii

JavaScript is a scripting language, meaning it gives you the ability to
control an environment with code. In the case of JavaScript, the environ-
ment is usually a Web page in a browser, where you can react to the
mouse and keyboard, create and animate elements on the page, commu-
nicate with servers, and much more.

Why JavaScript Is Cool
The following are the reasons why JavaScript is cool—or at least why I
think it’s cool:

■ Low barrier to entry. Anyone can start writing and testing JavaScript
code with software they already have on their computer.

■ Easy of deployment. All you need to include JavaScript on your Web
site is a server to store the code fi les and the <script> tag.

■ Small language, big power. The language has a relatively small
number of features, but its fl exibility and expressiveness lets you
accomplish a great deal.

■ The quirkiness. JavaScript has a lot of little oddities and fl aws that
I fi nd fascinating. It seems like I learn a new nuance to the language
every week. Some nuances are even useful!

■ The language of the moment. JavaScript is becoming more impor-
tant and more powerful as our lives are increasingly impacted by the
Internet.

■ The community. I’m continually amazed at the brilliance and ingenu-
ity of the JavaScript community, most of whom release their code for
anyone to use for free.

 Introduction xix

Who Should Read This Book
You’ll need a solid foundation of HTML and CSS because there’s little
room to explain either of those languages in this book. Ideally, you’ve
seen JavaScript before; maybe you’ve even copied some code from an
online tutorial into your blog. If you’re coming from a different program-
ming background, I’ll briefl y touch on the factors that make JavaScript
fairly unique among popular languages today.

What You Need to Follow Along
You need a text editor to write JavaScript fi les, ideally one with syntax
highlighting such as Notepad2 for Windows or TextWrangler for Mac OS X
(both free). Also, because of security restrictions in Web browsers, you
will need a server to try the Ajax examples, either running on your own
computer or running on the Web. XAMPP (http://www.apachefriends.org/
en/xampp.html) is a good program to get a server running quickly on your
own computer.

What’s in This Book
The fi rst half of this book (Chapters 1–8) begins with some basics
followed by explanations of the fundamental parts of the language. You
won’t learn too many practical uses of JavaScript until the second half
(Chapters 9–17), which covers programming Web pages and contains
in-depth tutorials for a variety of tasks. Throughout the chapters and
code examples, I emphasize the important concepts more than the
minute details, but you’ll also be able to take much of this code and use
it in your own sites right away.

http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html

The JavaScript Pocket Guidexx

What’s Not in This Book
I’m not trying to cover everything about JavaScript. Some parts of the
scripting language are problematic and not worth using. Other parts are
used too infrequently to mention; if I haven’t used it in my own code in
the last few years, I’m not including it here. And many parts are just too
new to be useful, because browser makers still have yet to implement
them (which is a shame because there’s some exciting stuff just around
the corner).

Also, I’m not diving into performance and optimization. JavaScript is
tricky enough to learn without getting into the obscure tricks that make
your code slightly faster. Once you get the hang of it, though, plenty
of books and online resources are available to help you write effi cient
JavaScript code.

You can fi nd all of the code examples from the tutorial chapters of
this book, as well as a few bonus chapters, on its companion Web site
http://www.peachpit.com/javascriptpocketguide.

Resources
While you’re online, here are two of my favorite JavaScript resources on
the Web for further reading:

YUI Theater. I especially like Douglas Crockford’s presentations about the
language and its history. http://developer.yahoo.com/yui/theater/

Mozilla Developer Center. This site covers more than just JavaScript,
but it’s one of the most comprehensive resources, especially for new
language features. https://developer.mozilla.org/

http://www.peachpit.com/javascriptpocketguide
http://developer.yahoo.com/yui/theater/
https://developer.mozilla.org/

 Introduction xxi

Writing JavaScript Code
When learning to write JavaScript, it’s easy to make simple mistakes that
cause your whole script to fail. Here are some tips and guidelines to keep
you from pulling your hair out.

Case Sensitivity
When you name a variable or function, pay attention to your uppercase
and lowercase letters. JavaScript is not that same thing as javascript.
Also, you must refer to built-in objects with the proper casing. Math and
Date start with uppercase letters, but not window and document. Most
built-in methods are combined words by capitalizing all but the fi rst,
such as getElementById (often referred to as camelCase).

Comments
Comments are an important part of the coding process even though they
don’t actually do anything. They are helpful hints for other people who
might read your code. More often, they remind me of why I wrote that
weird piece of code yesterday.

Single-line comments look like this:

// This is a single-line comment

return true; // Comment after code

Multiline comments look like this:

/* This comment can wrap

into the next line */

The JavaScript Pocket Guidexxii

Semicolons
JavaScript statements should end with semicolon like sentences end with
a period. Technically they are optional, but that’s only because JavaScript
interpreters add them automatically at the end of most lines. It’s best to
get into the habit of adding the semicolons yourself because there can
be strange side effects when you let the interpreter do it for you. All of
the examples in this book strive to demonstrate proper semicolon usage.

Whitespace and New Lines
Most whitespace such as spaces, tabs, and empty lines is ignored in
JavaScript and usually just aids readability. In fact, on large-scale produc-
tion code, all nonessential whitespace is usually stripped out so that
script fi les download quicker. In my examples, I’ll try to demonstrate how
best to use whitespace for readability.

Reserved Words
JavaScript reserves certain words for specifi c uses, so be careful to avoid
the following unless you mean to use them:

break

case

catch

continue

default

delete

do

else

fi nally

for

function

if

in

instanceof

new

return

switch

this

throw

try

typeof

var

void

while

with

 Introduction xxiii

You should also avoid these words because they may be used in future
versions of JavaScript:

abstract

boolean

byte

char

class

const

debugger

double

enum

export

extends

fi nal

fl oat

goto

implements

import

int

interface

long

native

package

private

protected

public

short

static

super

synchronized

throws

transient

volatile

These words refer to useful objects in the language and Web pages, so be
careful not to redefi ne them with your own values:

arguments

Array

Boolean

Date

decodeURI

decodeURIComponent

encodeURI

Error

escape

eval

EvalError

Function

Infi nity

isFinite

isNaN

Math

NaN

Number

Object

parseFloat

parseInt

RangeError

ReferenceError

RegExp

String

SyntaxError

TypeError

undefi ned

unescape

URIError

The JavaScript Pocket Guidexxiv

Balanced Brackets and Quotes
It is easy to make mistakes when it comes to punctuation. Remember
that every time you open a bracket, such as [, (, or {, or a quote mark,
such as ‘ or “, you must close it in the correct order. It can be trickier than
you think.

(function() {

 alert([1,2,3].join(“,”));

})();

Firebug
My favorite way to explore JavaScript is to use the Firebug extension
for Mozilla Firefox, because its Console tab gives you a way to run
a snippet of JavaScript and quickly see the result. I’ll use Firebug to
demonstrate how JavaScript works throughout most of the book, so to
follow along with the examples, you’ll want to download and install it
(http://getfi rebug.com).

After you install Firebug, load up a Web page and click the Firebug
icon (Figure I.1) in the lower-right corner of Firefox. You type single-
line JavaScript statements into the bottom of the Console tab and hit
Enter/Return to execute the code. To type multiple lines at once, expand
the text box by clicking the arrow on the right (Figure I.2). In this book,
the regular code in the examples demonstrates what you enter into
Firebug, and the highlighted code gives you an example of the result.
(The function console.log() is another way to print output to the
console; I’ll cover functions in Chapter 5.)

http://getfirebug.com

 Introduction xxv

Figure I.1
Firebug open
in Firefox.

Console tab

Firebug output

Firebug icon

Single-line text box

Button to switch between single-line
and multiline text box

Figure I.2
The multiline text
box in Firebug.

The JavaScript Pocket Guidexxvi

tip You may need to “enable” the console (Figure I.3) and refresh the Web
page. The console doesn’t work unless you’ve visited a page fi rst, so I

usually load Google.com.

Figure I.3
Enabling the
console.

Most modern browsers—including Apple’s Safari, Google’s Chrome,
Opera Software’s Opera, and Microsoft’s Internet Explorer 8—have a
built-in JavaScript console if you prefer to use a browser other than
Firefox. I fi nd Firebug’s output to be the most useful, however, so the
example output printed in this book may not match what you see if
you use another browser.

Now that you have the Firebug extension for Firefox set up (or are
using another browser), you’re ready to write some JavaScript code.

A lot of people learn JavaScript by copying and pasting code they fi nd on
the Web without really understanding it. In this book, you’ll start from
the very beginning.

A language is a system for organizing and transmitting meaning through
symbols. A computer language uses symbols you can type with any
 average keyboard to organize and transmit instructions to hardware and
software.

The JavaScript language doesn’t have a large number of symbols. Instead,
it’s very fl exible in how you can combine those symbols. That fl exibility
allows you to produce expressive and powerful code, but it also creates
the potential for ambiguity and confusion. Symbols in the language
combine to create syntax, which acts as the structure or grammar of the
language. Values, variables, and functions are the subjects and actions.

JavaScript Basics

1

The JavaScript Pocket Guide2

Once you get the hang of the symbols and syntax, learning JavaScript is
a matter of understanding the various data types you can use. JavaScript
includes a few built-in data types, most of which I’ll cover in Chapters 2
through 7. If you’re using JavaScript in a browser, you have access to many
more data types, which will be the focus of Chapters 9, 10, and 11.

Expressions and Statements
Expressions are phrases that produce a value. JavaScript code is made up
mostly of expressions in various forms.

Statements are phrases that don’t produce a value but instead have some
sort of side effect. Examples of side effects include storing variables in
memory and jumping to a different part of the script. Statements often
combine keywords such as var, if, or while with one or more expres-
sions so that the side effects have values to work with.

Firebug makes it easy to differentiate between expressions and state-
ments. When you enter an expression, it outputs the resulting value:

1 + 2;

3

When you enter a statement, Firebug doesn’t show you any output,
even if the statement includes some expressions. That’s why I have to
use console.log() in some of my examples. This if statement doesn’t
produce a value. Instead, it controls whether to evaluate the block (the
code in curly braces).

if (true) {

 console.log("expression");

}

Chapter 1: JavaScript Basics 3

note Enter this code example into the multiline text box in Firefox, because
hitting Enter/Return in the single-line text box will execute the incom-

plete code and cause an error.

Variables and Data
Variables store a value you can refer to later in the script. Variable names
can be nearly any valid identifi er. A JavaScript identifi er is a word that
contains only letters, numbers, $, and _, and that doesn’t start with a
number.

Variables are a great demonstration of how statements and expressions
can be combined. You use a variable declaration statement to create a
variable.

var myVariable;

If you already have a variable, you can use a variable assignment expres-
sion to assign it a value.

myVariable = 42;

42

You can combine a variable declaration with an assignment expression.

var myVariable = 42;

You can also string together several variable declarations with commas.
Don’t forget the commas, though! Leaving off a comma can have the
unintended side effect of declaring a global variable when you don’t
mean to do that. I’ll explain that more in Chapter 5.

var variable1 = 4,

 variable2 = 8,

 variable3 = 15;

The JavaScript Pocket Guide4

Values
JavaScript has a relatively small number of built-in data types, including
these common types:

var myNumber = 42;

var myString = "A string of text";

var myBoolean = true;

var myArray = [myNumber, myString, myBoolean];

Arrays are ordered lists of values, and you can access a particular value by
its index, or its position in the list. Indices always start at zero.

myArray[0];

42

myArray[2];

true

For primitive values (Number, String, and Boolean), you can fi nd the data
type of the variable with the typeof operator.

typeof myNumber;

"number"

typeof myString;

"string"

typeof myBoolean;

"boolean"

typeof myArray;

"object"

Whoops! Arrays are not primitive values but examples of objects, or
collections of values. The quick-and-dirty way of checking whether a vari-
able is an array is to use the instanceof operator.

myArray instanceof Array;

true

Chapter 1: JavaScript Basics 5

You can also declare a variable without a value, in case you want to
assign the value later.

var myVariable;

typeof myVariable;

"undefi ned"

And unlike strongly typed languages such as C and Java, you can change
the type of data stored on a variable.

myVariable = 42;

myVariable = "Now it's a string";

myVariable = true;

The null value represents the intentional absence of any other value.

myVariable = null;

Comparison
Comparison expressions return a Boolean. Booleans are the simplest data
type, representing either true or false. There are two comparison opera-
tors, equality (==) and identity (===). Don’t confuse them with the assign-
ment (=) operator that you’ve already used to assign values to variables.

var myNumber = 42;

42

myNumber == 42; // Does it equal the number 42?

true

myNumber == "42"; // Does it equal the string "42"?

true

myNumber === "42"; // Is it identical to the string "42"?

false

The JavaScript Pocket Guide6

The equality operator tries to reconcile different data types, such as
converting the string “42” to the number 42, before making the compari-
son. The identity operator does not do any type coercion. The comparison
operators have not (!) versions for checking inequality and nonidentity.

myNumber != 108;

true

myNumber !== "42";

true

Comparing composite values such as arrays and objects is different from
comparing primitive values such as numbers and strings.

var array1 = [1, 2, 3];

var array2 = [1, 2, 3];

array1 == array2;

false

array1 === array2;

false

array1 == array1; // Same object

true

array1 === array1; // Equal and identical

true

The comparison operators check whether the values are actually the
same object instead of checking to see whether it is composed of all the
same values in the same order.

Truthiness and Falsiness
All values in JavaScript have a notion of “truthiness” and “falsiness,”
meaning they can often be treated as true or false values without actu-
ally being Booleans. Here are some examples of truthiness:

Chapter 1: JavaScript Basics 7

if (1) {

 console.log(true);

}

if ("Nonempty string") {

 console.log(true);

}

if ([]) { // Empty array; all composite values are truthy

 console.log(true);

}

Zero, null, undefi ned, and empty string values are all “falsey,” and every
other value is “truthy.” Both of these examples output false to the
console:

if (0) {

 console.log(true);

} else {

 console.log(false);

}

if ("") { // Empty string

 console.log(true);

} else {

 console.log(false);

}

Use the identity (===) operator if you need to know that a value is actu-
ally true or false.

myBoolean === true; true

// Truthy but not true

myBoolean === 1; false

The JavaScript Pocket Guide8

Functions and Objects
Primitive data types such as Numbers, Strings, and Booleans are fairly
straightforward, but the real power of JavaScript comes from functions
and objects.

You can break up your code into logical, reusable chunks by using func-
tions. Functions can take input, called arguments, and execute differently
based on that input. In the following example, name is an argument
passed to the sayHello() function:

function sayHello(name) {

 console.log("Hello, " + name + "!");

}

sayHello("Lenny");

"Hello Lenny!"

sayHello("Sally");

"Hello Sally!"

Functions can also return a value. Here’s a function that calculates the
hypotenuse of a right triangle based on the lengths of the other two
sides, using the square root function (Math.sqrt()):

function hypontenuse(sideA, sideB) {

 return Math.sqrt(sideA * sideA + sideB * sideB);

}

var sideC = hypotenuse(3, 4);

console.log(sideC); 5

In JavaScript, functions are just another data type, so you can assign a
function to a variable.

Chapter 1: JavaScript Basics 9

var myFunc = function() {

 return 42;

};

typeof myFunc; "function"

myFunc(); 42

Functions are also an incredibly useful tool for organizing your code and
acting upon values. You’ll use them throughout the fi rst few chapters
before exploring them in more depth in Chapter 5.

Objects
Objects are so fundamental to JavaScript that it is considered an object-
oriented language. An object is a collection of values called properties. You
usually access a property of an object with the dot (.) operator followed
by the name of the property.

var myObject = {};

myObject.property = 42;

42

myObject.anotherProperty = "value";

"value"

myObject;

Object property=42 anotherProperty="value"

note Clicking an object in the Firebug console takes you to the DOM tab
and shows you all the object’s properties and values.

You can create any number of objects with any number of properties.
Properties can be any value, including other objects and functions.

When a property is function, it’s referred to as a method. The fi rst several
chapters cover many of the methods for built-in data types, after which

The JavaScript Pocket Guide10

you’ll learn to create your own methods. Together, objects and functions
make JavaScript a powerful and fl exible language. I’ll cover the various
uses of objects in Chapter 6.

Loops
Computers are great at doing something over and over, making our
human lives easier. Say you wanted to print “I am awesome!” in the
console 10 times. Instead of typing console.log("I am awesome!") over
and over, you can use a loop.

var times = 10;

while (times--) {

 console.log("I am awesome!");

}

The while statement tests the expression inside the parentheses for
truthiness and executes the code block repeatedly. times-- is shorthand
for times = times - 1 (also called the decrement operator). When times
reaches 0, the expression evaluates to false, and the while loop ends.

Another common loop is the for statement, which takes three expres-
sions separated by semicolons.

for (var i = 0; i < 10; i++) {

 console.log("Loop number " + i);

}

The fi rst expression, var i = 0, is the setup, which runs once. The second,
i < 10, is the test, which runs each time the loop executes until i is no
longer less than 10. The last is the increment—in this case, it actually uses
the increment (++) operator, which adds 1 to i each time around. You can
often use while and for interchangeably.

Chapter 1: JavaScript Basics 11

Make sure that your test expressions eventually become “falsey,” or the
loop will never end:

var counter = 0;

while (counter < 10) {

 console.log("counter is: " + counter);

}

If you encounter code like this, the most likely situation is that the author
forgot to add a line to increment the value of counter. This code will
output “counter is: 0” until the browser gives up and shows a warning to
the user. Here is a better loop that eventually ends:

var counter = 0;

while (counter < 10) {

 console.log("counter is: " + counter);

 counter = counter + 1;

}

Control Flow
The most common statements after variable declarations are control fl ow
statements. These statements instruct the script to follow a particular
path, skipping or returning to different blocks of code based on certain
criteria.

if/if-else/else

The if keyword lets you make decisions about what your code should
do next. You can use any number of conditional expressions to create
complex decisions trees.

The JavaScript Pocket Guide12

if (expression) {

 console.log("expression is truthy");

} else if (expression2) {

 console.log("expression2 is truthy");

} else if (expression3) {

 console.log("expression3 is truthy");

} else {

 console.log("all of these expressions are falsey");

}

switch/case

The switch keyword is another way to make decisions in your code. I
don’t use it very often, but here’s an example:

switch (letter) {

 case "a":

 case "e":

 case "i":

 case "o":

 case "u":

 console.log("letter is defi nitely a vowel");

 break;

 case "y":

 console.log("letter might be a vowel");

 break;

 default:

 console.log("letter isn't a vowel");

 break;

}

Chapter 1: JavaScript Basics 13

This switch statement compares the value of letter to each case, one by
one. If the values match, it executes any given code or continues on down
the list. The break keyword stops it from continuing any further.

try/catch/fi nally

Chances are your code will throw an error on occasion. Sometimes your
code is perfectly valid, but maybe the page is missing an element it relies
on. You can trap potential errors and handle them gracefully. The try
keyword sets up that trap.

try {

 // Declaring a variable without an identifi er

 // throws an error

 var;

} catch (exception) {

 // The exception object has a message

 // that describes the error

 console.log(exception);

} fi nally {

 // This code always runs regardless of

 // whether an error occurred

 console.log("Always executes");

}

The fi nally block of this statement is optional, but the catch block is not.

throw

On occasion, you may want to throw your own errors. This is especially
useful when someone else will use your code and you want to alert them
when they do something wrong. The throw keyword lets you raise this
alert in a way that disrupts the script from continuing (unless you catch
the error with a try/catch statement).

The JavaScript Pocket Guide14

function argumentRequired(arg) {

 if (arg == null) {

 throw new Error("arg cannot be null or undefi ned.");

 }

}

argumentRequired(); // Whoops, no argument given

Error: arg cannot be null or undefi ned.

break and continue

Two keywords, break and continue, manage control fl ow inside loops.
The break keywords can stop a loop. This loop runs only while i equals 0,
1, 2, 3, and 4; it stops when it equals 5.

for (var i = 0; i < 10; i++) {

 if (i == 5) {

 break;

 }

 console.log(i);

}

You can also skip a loop with the continue keyword. This loop runs from
0 to 9 but skips 5:

for (var i = 0; i < 10; i++) {

 if (i == 5) {

 continue;

 }

 console.log(i);

}

Both of these keywords also work inside while loops.

Chapter 1: JavaScript Basics 15

Compound Expressions
Expressions are the building blocks of JavaScript. Most of the time they’re
very simple, but like anything else, if you put a whole bunch of them
together, they can get pretty complicated.

The simplest expression is a value by itself.

16;

16

The next-simplest expression contains two values and an operator.

15 + 16;

31

You can combine any number of values and operators to create complex
compound expressions. Different data types work with various operators
in specifi c ways. Chapters 2 through 4 will cover important operators for
Numbers, Strings, and Arrays, but since all values are “truthy” or “falsey,”
it’s useful to cover the Boolean operators on their own.

Boolean Operators
Boolean operators help manage “truthy” and “falsey” values. They are
most useful in if statements and the like, but they also have some inter-
esting uses in and of themselves.

Logical NOT: !

The logical NOT operator turns a “truthy” value into false and a “falsey”
value into true. It’s another way of determining inequality. These two if
statements operate identically:

The JavaScript Pocket Guide16

if (myVar != true) {

 // It's not true

}

if (! myVar) {

 // It's still not true

}

It’s useful for determining that something isn’t true or that it’s missing.

var element = document.getElementById("mayNotExist");

if (! element) {

 console.log("The element is falsey, so it must not exist");

}

Logical AND: &&

The logical AND operator (&&) takes two operands. It returns the right
operand only if the left operand is “truthy.” If the left operand is “falsey,”
it returns that value.

var truthyValue = 1;

var falseyValue = null;

// Left operand && right operand

true && truthyValue;

1

falseyValue && truthyValue;

null

The interesting thing about the logical AND operator is that it stops eval-
uating and immediately returns if the left operand is “falsey.” Consider
this example:

Chapter 1: JavaScript Basics 17

function myFunc() {

 alert("executing myFunc!");

 return true;

}

falseyValue && myFunc();

null

Because the left operand is “falsey,” the expression stops there and
doesn’t execute myFunc(). In this case, you’ll never see the alert dialog
box.

This is useful for safeguarding yourself against potential errors.
JavaScript will throw an error if you try to access a property on null.

var element = document.getElementById("doesNotExist");

element.nodeName;

TypeError: element is null

element && element.nodeName;

null

var element2 = document.getElementById("exists");

element2 && element2.nodeName;

"DIV"

Evaluating the nodeName property of a nonexistent element returns an
error, but you can quickly determine whether the element exists with the
logical AND operator.

Logical OR: ||

The logical OR operator (||) returns the left operand if it’s “truthy,” and the
right operand otherwise. You can think of it as “Keep trying until you fi nd
the truth (or something like it).”

The JavaScript Pocket Guide18

falseyValue || truthyValue; // Second value

1

truthyValue || falseyValue; // First value

1

false || falseyValue || anotherFalseyValue || truthyValue;

1

Combining Boolean Operators

The fun part of Boolean operators comes from combining them to create
complex logical expressions.

var element = document.body.fi rstChild;

if (element &&

 (element.nodeName === "DIV" ||

 element.nodeName === "SPAN") &&

 element.childNodes.length) {

 alert("All of these expressions are true");

}

Learning to read and write complex expressions like this is a challenge,
but it just amounts to understanding the smaller expressions one at a
time. Sometimes it helps to store some of the smaller expressions on
variables to enhance readability.

var isDiv = element && element.nodeName === "DIV"

var isSpan = element && element.nodeName === "SPAN";

var isDivOrSpan = isDiv || isSpan;

if (isDivOrSpan && element.childNodes.length) {

 alert("All of these expressions are true");

}

Coding often requires balancing the number of lines and the readability
of the code.

Chapter 1: JavaScript Basics 19

Ternary Expressions

Ternary expressions are a slightly more effi cient way to manage values
based on truthiness. I used them a lot because they let you write a basic
if/else statement in one line of code.

result = expression ? "it's true" : "it's false";

This expression is equivalent to the following:

if (expression) {

 result = "it's true";

} else {

 result = "it's false";

}

This page intentionally left blank

There aren’t very many surprising aspects to using numbers and math
in JavaScript. In fact, most of my scripts use numbers for little more than
counters and simple addition. But when you’re creating complex layouts
or programming animation, it’s helpful to know the ins and outs of
numbers in JavaScript.

Numbers

2

The JavaScript Pocket Guide22

Basic Math
Most of the time you use numbers for simple math, using familiar
operators.

1 + 2; // Addition

3

5.1 * -10.5; // Multiplication

-53.55

100 - 10; // Subtraction

90

2 / 3; // Division

0.6666666666666666

10 % 4; // Modulus, or the remainder of 10 / 4

2

The modulus operator (%) is great for determining whether a number is
odd or even.

if (num % 2 === 1) {

 console.log("num is odd");

} else {

 console.log("num is even");

}

Operators have a specifi c precedence, just like we all learned in algebra
class. You can use parentheses to ensure you get the desired result.

1 + 2 * 3;

7

(1 + 2) * 3;

9

Chapter 2: Numbers 23

The increment (++) and decrement (--) operators work differently on the
left side of a variable than on the right.

var fi rst = 0;

var second = fi rst++;

[fi rst, second];

[1, 0]

In the previous example, the value of fi rst is assigned to second before
the increment operator adds 1. Put the operator on the other side of the
variable, and you’ll get a different result, as shown here:

var fi rst = 0;

var second = ++second;

[fi rst, second];

[1, 1]

This time, the value of fi rst is assigned to second after incrementing by 1.

Most math operators have assignment versions, which perform the oper-
ation and assign the value to the same variable with one operator.

var num = 2;

num += 5; // Same as num = num + 5;

7

num /= 2;

3.5

num *= 4;

14

num -= 5;

9

num %= 2;

1

The JavaScript Pocket Guide24

Number Formats
You can express numbers in a few different ways, though I rarely have a
reason to do so. JavaScript doesn’t differentiate between integers and
real numbers. I tend to refer to numbers with decimal points as fl oat-
ing-point numbers, though technically all numbers are fl oating-point
numbers.

var myInteger = 16;

var myFloat = 1.08;

If you need to express really big or really small numbers, you can use
scientifi c notation.

var reallyBig = 8.67e100;

var reallySmall = 15e-42;

Most JavaScript numbers use the base-10 number system, but you can
also express numbers in base-8 or base-16. Base-8 numbers start with a
zero and only use zero through seven. Base-16 numbers start with 0x or
0X and use zero through nine and A through F. Colors are often expressed
in base-16, or hexadecimal, digits.

0123; // Base-8

83

0xFFF; // Base-16

4095

Be careful not to start numbers with a zero unless you really mean to
express a base-8 number!

Chapter 2: Numbers 25

Constants and Functions
JavaScript has a number of built-in constants and functions that you can
use:

■ isNaN(x) Returns true if x is not a number or easily converted to a
number.

■ Number.MAX_VALUE The largest number you can express in
JavaScript.

■ Number.MIN_VALUE The lowest negative number you can express in
JavaScript.

■ Infi nity A global variable that represents infi nity. This is the result if
you try to divide by zero.

The Math Object
The Math object provides many constants and functions for more
complex operations.

■ Math.PI An approximate value of pi

■ Math.abs(x) The absolute value of x

■ Math.ceil(x) The closest integer greater than x

■ Math.fl oor(x) The closest integer less than x

■ Math.max(x, y, …) The largest of all arguments

■ Math.min(x, y, …) The smallest of all arguments

■ Math.random() A pseudorandom number between 0 and 1

■ Math.round(x) The closest integer to x

■ Math.sqrt(x) The square root of x

The JavaScript Pocket Guide26

Even More Properties and Methods

The following lesser-used Math properties and methods are good for
more complex math and trigonometry:

Math.E

Math.LN10

Math.LN2

Math.LOG10E

Math.LOG2E

Math.SQRT1_2

Math.SQRT2

Math.acos()

Math.asin()

Math.atan()

Math.atan2()

Math.cos()

Math.exp()

Math.log()

Math.pow()

Math.sin()

Math.tan()

Generating Random Integers

Math.random() only returns numbers between zero and one, but you can
easily generate a random integer between two integers with a little extra
math.

var lower = 2;

var higher = 10;

Math.round(Math.random() * (higher - lower)) + lower;

Conversion
Because JavaScript is a “loosely typed” language, data changes from one
type to another easily. This lets you use Booleans, Numbers, and Strings
interchangeably in many cases. Some values don’t easily convert to
another data type, however, so it’s useful to understand the conversion
rules.

The easiest way to convert a number to a string is add a string to it.

Chapter 2: Numbers 27

var myNumber = 42;

typeof myNumber;

"number"

myNumber + "";

"42"

typeof (myNumber + "");

"string"

Any time you use a number in a string context, it’s automatically
converted to a string. But be careful because this is another place where
operator precedent rules come into play.

"The answer is " + 40 + 2;

"The answer is 402"

"The answer is " + (40 + 2);

"The answer is 42"

Converting strings to numbers can be a little trickier. If the string is basi-
cally a number primitive wrapped in quotes, you can put the unary plus
(+) operator in front of it.

+"1.5";

1.5

+"5px";

NaN

If the string contains any non-numeric characters, the result is NaN, or Not
a Number. You can test for this with the isNaN() function.

isNaN("5px");

true

isNaN("123456");

false

The JavaScript Pocket Guide28

The parseInt() and parseFloat() functions are more fl exible but may
also return NaN.

parseInt("5.1 inches", 10);

5

parseFloat("1.5f", 10);

1.5

parseInt("a1", 10);

NaN

The second argument is the radix, or the base system you’re using. It’s
almost always 10, unless you are parsing a base-8 or base-16 number. If
your number starts with a zero, make sure to defi ne the radix.

parseInt("07");

0

parseInt("07", 10);

7

You can use the toFixed() method to convert a number to a string and
determine the number of decimal places displayed.

var interest = 100 * 2.95 / 12;

interest.toFixed(0);

"24"

interest.toFixed(2);

"24.58"

Chapter 2: Numbers 29

Number Precision
JavaScript is a great language for many things, but I don’t recommend
using it to design your trip to the moon. You might crash and burn if your
calculations work out like this:

0.1 + 0.2;

0.30000000000000004

The fl oating-point number system in JavaScript is fl awed and introduces
tiny rounding errors in many operations. To be honest, you probably will
not need that much accuracy in your code, but it’s still worth noting.

This page intentionally left blank

The Web is made up of text: HTTP is a text-based protocol, and browsers
consume Web content in HTML text fi les. JavaScript handles text in a
fl exible, capable manner with the powerful String data type.

Strings

3

The JavaScript Pocket Guide32

Escape Characters
You can surround characters with either single primes (') or double
primes (") to create a string. But whichever symbol you use, you can’t use
it again in the middle of the string because that will end the string early.
However, you can escape any character with a backslash (\) to solve this
or use single primes inside double primes (and vice versa).

"He said "hello!"";

SyntaxError: missing ; before statement

"She said \"hello!\"";

"She said "hello!""

'They say "hello!"';

"They say "hello!""

Escape sequences are useful for other things too, such as for newlines (\n),
tabs (\t), and Unicode character codes (\u00A3 is £ and \u2603 is).

Operators
The plus sign (+) operator concatenates strings together. Concatenation
isn’t the same as addition, so watch out when you’re adding strings and
numbers together.

"hello" + " world";

"hello world"

"2" + "2";

"22"

Like numbers, the plus operator also has an assignment version (+=) so
you can concatenate a string in place. These two examples are identical if
myString equals "hello".

Chapter 3: Strings 33

myString = myString + " world";

"hello world"

myString += " world";

"hello world"

The greater-than (>) and less-than (<) operators compare strings in alpha-
betical order...sort of. A is less than Z, but uppercase letters are “lower”
than lowercase letters, so Z is less than a.

"Alpha" < "Zeta";

true

"Zeta" > "alpha";

false

Properties
Strings have one built-in property, length, which is the number of char-
acters in a string.

"abcdefghijklmnopqrstuvwxyz".length;

26

Methods
All string methods return a new string, leaving the original string
unchanged.

var myString = "hello";

var myTransformedString = myString.toUpperCase();

myTransformedString;

"HELLO"

myString; // Remains the same

"hello"

The JavaScript Pocket Guide34

Changing Case: toUpperCase(), toLowerCase()
The methods toUpperCase() and toLowerCase() are pretty self-evident.
I mentioned earlier that uppercase letters are “lower” than lowercase
letters, so these methods are useful when you want to reliably compare
strings in alphabetical order.

var string1 = "B comes after (is greater than) a";

var string2 = "a comes before (is less than) b";

string1 > string2;

false

string1.toLowerCase() > string2.toLowerCase();

true

string2.toUpperCase() < string1.toUpperCase();

true

It doesn’t really matter which method you use as long as you’re
consistent.

Extracting Parts of a String
Extracting bits and pieces from strings is such a common task that
JavaScript has several functions for doing so. Some of these functions are
so similar that you’ll want to return to the following sections when you
need a reminder of the distinctions between them.

charAt(x), charCodeAt(x)

The charAt() method returns a string with the character at the specifi ed
index in the string. Like arrays, indices start at zero.

"abcde".charAt(0);

"a"

Chapter 3: Strings 35

"abcde".charAt(3);

"d"

// Using an index greater than the string's length

"abcde".charAt(10);

""

The charCodeAt() method is similar, except that it returns the numeric
encoding for the found character. You’ll see in Chapter 11 that key presses
are returned as character encodings, so it’s helpful to know how to
convert characters and character codes.

"a".charCodeAt(0);

97

The fromCharCode() method is available on the String object—not on a
specifi c string instance—to turn a character code back into string.

String.fromCharCode(97);

"a"

slice(x[, y])

note When I specify function arguments in brackets, as in (x[, y]), I’m
indicating that those arguments are optional. In this case, y is optional

but x is not. The brackets aren’t part of the code, but the parentheses are.

The slice() method returns a subsection of the string, starting at posi-
tion x and including the characters up to (but not including) position y.
The arguments can both be negative, which means that they start count-
ing the position from the end of the string instead of the beginning. If
the second argument isn’t specifi ed, slice(x) returns the subsection of
the string starting at position x through the end of the string.

The JavaScript Pocket Guide36

"abcde".slice(0, 2);

"ab"

"abcde".slice(1, -1);

"bcd"

"abcde".slice(-2);

"de"

substr(x[, y])
The substr() method is similar to slice() except that y is the length
of the resulting substring instead of the position at which the substring
ends. The fi rst argument can still be negative, and the second argument
is still optional.

// Looks the same as slice

"abcde".substr(0, 2);

"ab"

// Not the same; specifi es the length of the substring

"abcde".substr(1, 3);

"bcd"

// Since the second argument is still

// optional, it looks the same as slice

"abcde".substr(-2);

"de"

Converting Strings to Arrays: split([delimiter, limit])
The split() method breaks a string up into parts and returns an array.
The delimiter argument determines where to split the string. If the
delimiter isn’t specifi ed, it returns an array containing the whole string as
its fi rst item.

"a,b,c,d,e".split(","); // Split on commas

Chapter 3: Strings 37

["a", "b", "c", "d", "e"]

"a sentence split by words".split(" "); // Split on spaces

["a", "sentence", "split", "by", "words"]

"|a|b|c|".split("|"); // The parts can be empty strings

["", "a", "b", "c", ""]

"a,b,c,d,e".split(); // No delimiter

["a,b,c,d,e"]

If you specify a numeric limit as the second argument, the resulting array
contains only the specifi ed number of items.

"a,b,c,d,e".split(",", 3);

["a", "b", "c"]

Search and Replace
You often need to know whether a string contains another string or
matches a certain pattern. Once you’ve found the string or pattern, you
can replace it with another string. It’s surprising how many different
ways you can use the following methods.

indexOf(substring[, start])
The indexOf() method returns the position of the fi rst occurrence of a
substring. If the substring doesn’t exist inside the string, it returns -1. If
you specify a start argument, it starts searching for the substring after
that position in the string.

"hello world".indexOf("world");

6

"hello world".indexOf("World"); // It's case sensitive

-1

"hello world".indexOf("o", 5); // Skips the fi rst o

7

The JavaScript Pocket Guide38

The fact that indexOf() returns -1 instead of false can easily trip you up.
If you’re not careful, you can write code that works exactly the opposite
of how you would expect.

var myString = "hello world";

// If the string does *not* contain the substring:

if (! myString.indexOf("not found")) {

 console.log("Substring not found!");

}

// If the string *does* contain the substring:

if (myString.indexOf("hello")) {

 console.log("String contains 'hello'");

}

In the fi rst example of the previous code, indexOf() doesn’t fi nd the
substring and returns -1, which is a “truthy” value. I wanted to print to
the console if I couldn’t fi nd the substring, but because I used the not (!)
operator, it does the opposite of what I expect.

In the second example of the previous code, indexOf() fi nds the
substring at position 0, which is a “falsey” value. Because the substring is
the start of myString, this test also does the opposite of what I expect.

The only safe way to use indexOf() is to test explicitly against -1, as
shown here:

if (myString.indexOf("not found") === -1) {

 console.log("Substring not found!");

}

if (myString.indexOf("hello") !== -1) {

 console.log("String contains 'hello'");

}

Chapter 3: Strings 39

lastIndexOf(substring[, start])
The lastIndexOf() method is the same as indexOf() except that it
starts searching at the end of the string instead of at the beginning.

"hello world".lastIndexOf("o");

7

Regular Expressions
The following methods, search(), match(), and replace(), get
their power from another built-in JavaScript data type: Regular
Expressions.

Regular expressions, or RegExps, are complicated enough to basically
be a mini-language inside JavaScript. It takes a while to get the hang
of them—far longer than I can cover in this book. I’ll explain the
regular expressions used in my examples, but I recommend looking
for examples, tutorials, and reference material in other books and
online.

JavaScript regular expressions have a lot of features, but they aren’t
as fully featured as Perl-compatible regular expressions and RegExp
engines found in other languages. Make sure you’re looking for ref-
erences and examples specifi cally for the JavaScript language.

A regular expression describes a pattern. You can search for that pat-
tern in a string. The most basic pattern is a series of alphanumeric
characters.

var myPattern = /matching characters/;

Regular expressions sort of look like strings, except they use forward
slashes (/) instead of quote marks to delineate the beginning and
end. Like strings, you have to escape special characters with back-
slashes (\). Unlike strings, there are several special characters in
regular expressions: ^ $. * + ? = ! : | \ / () [] { }.

The JavaScript Pocket Guide40

search(regexp)

The search() method is the same as indexOf() except that it takes a
regular expression pattern instead of a substring. It also returns -1 if the
pattern isn’t found.

"hello world".search(/[aeiou]/); // Find the fi rst vowel

1

"hello world".search(/\d/); // Find the fi rst digit

-1

match(regexp)

The match() method returns an array containing all the substrings
matching the regular expression and its subpatterns. Unlike the other
search-and-replace methods, it returns null if the pattern doesn’t match.
Here are some simple examples, but I’ll cover this function more in
Chapter 8:

// Find all the vowels

"hello world".match(/[aeiou]/g);

["e", "o", "o"]

// Find "world" regardless of capitalization

"hElLo WoRlD".match(/world/i);

["WoRlD"]

replace(pattern, replacement)

The replace() method works like match() except that it returns a string
with all instances of pattern replaced by the string replacement.

// Remove all non-numeric characters from a phone number

"(310) 555-9876".replace(/\D/g, "");

"3105559876"

Chapter 3: Strings 41

The pattern argument can just be a simple substring instead of a regular
expression, but it will replace only the fi rst occurrence.

"favorite color: red".replace("red", "blue");

"favorite color: blue"

To replace every occurrence, use a pattern with the global (g) option.

// Without using the global option

"red, red, red".replace(/red/, "blue");

"blue, red, red"

"red, red, red".replace(/red/g, "blue");

"blue, blue, blue"

If the pattern argument has subpatterns, you can access them in the
replacement string with placeholders in the form of $1 up to $99.

// \w+ matches multiple "word" characters,

// like letters and numbers. That word is inserted

// into the replacement with the $1 placeholder

"Name: Lenny".replace(/Name: (\w+)/, "Hi $1!");

"Hi Lenny!"

The replacement argument can also be a function that returns a string.
The following sample matches all lowercase vowels and replaces them
with uppercased vowels:

var replacementFunc = function(vowel) {

 return vowel.toUpperCase();

};

"hello world".replace(/[aeiou]/g, replacementFunc);

"hEllO wOrld"

The JavaScript Pocket Guide42

Helper Functions
The JavaScript language is relatively small. Sometimes you need to add
your own functions to expand the operations you can perform. Here is
just one example.

stringTrim()

JavaScript didn’t include a method for trimming whitespace off the
beginning and ending of a string until recently, so for most browsers you
have to provide your own. The jQuery library includes this helper function
(where it is available as jQuery.trim()).

function stringTrim(s) {

 return s.replace(/^(\s|\u00A0)+|(\s|\u00A0)+$/g, "");

}

stringTrim(" hello ");

"hello"

You’ll learn how to turn this into a string method in the “Prototype”
section of Chapter 6.

Global Functions
JavaScript includes a few global functions for encoding and decoding
strings.

escape(string), unescape(string)

The escape() function converts most special characters to hexadecimal
character codes. It leaves letters, digits, and the following characters alone:

@ * _ + - . /

Chapter 3: Strings 43

Hexadecimal character codes look like %20 (which represents a space) or
%u20AC (which represents).

The unescape() function performs the reverse operation.

encodeURI(string), decodeURI(string)

The encodeURI() method is similar to escape(), but it’s specifi cally
meant for encoding Web addresses. It converts all characters to hexadeci-
mal characters codes except letters, digits, and the following characters:

@ * _ + - . / ! ~ ` () ; / ? : & = , #

This function assumes you’re encoding a full URL.

The decodeURI() function performs the reverse operation.

encodeURIComponent(string), decodeURIComponent(string)

The encodeURIComponent() function is the most useful of these global
string functions. It converts all characters to hexadecimal character codes
except letters, digits, and the following characters:

- _ . ! ~ * ` ()

This function encodes characters that separate different components of a
URL, so you can safely encode a string for use as a single component. This
is most commonly used for encoding a string for use as a query string
value. You can even encode a URL as a query string parameter.

var value = "http://www.other.com/?param=1¶m2=2";

var encodedValue = encodeURIComponent(value);

"http://www.example.com/redirect?url=" + encodedValue;

"http://www.example.com/redirect?url=

➥ http%3A%2F%2Fwww.example.com%2F%3Fparam%3D1%26param%3D2"

The JavaScript Pocket Guide44

Without encoding value, the "¶m2=2" part of the string would be
interpreted as a second query string parameter instead of part of the
?url= value.

Arrays are a great tool for organizing and manipulating a lot of data.
JavaScript arrays can store any of the JavaScript data types in any order.
If you store your data in arrays, operating on it is simply a matter of loop-
ing over each value. It’s a simple operation, but you’ll fi nd that arrays and
loops have endless uses in JavaScript programming.

Arrays

4

The JavaScript Pocket Guide46

Creating Arrays
The best way to create a new array is with the array literal syntax ([]),
but the array constructor function is available too. If you pass a single
number value to the constructor function, you get an array fi lled with
that many undefi ned values.

var myArray = [];

var myFilledArray = new Array(4);

myFilledArray;

[undefi ned, undefi ned, undefi ned, undefi ned]

Properties
Like strings, arrays have one built-in property: length. This property is
equal to the number greater than the last index in the array. This is true
even if you skip some indices.

["a", 1, true, null].length;

4

var myArray = [];

myArray.length;

0

myArray[99] = 1;

1

myArray.length;

100

The new length of myArray is 100 even though it contains only one value
at index 99. All the other values are undefi ned.

The following is the quickest way to add an item to the end of an array,
since the length property is one greater than the index of the last item:

Chapter 4: Arrays 47

myArray = ["a","b","c"];

// Same as myArray[3] = "d"

myArray[myArray.length] = "d";

Looping Over Arrays
Looping over arrays is one of the most common tasks in JavaScript, and
there are dozens of ways to do it. In my code, I stick to just two versions
for readability and performance reasons.

Both versions use the for statement. The simpler of the two should look
familiar from Chapter 1, as shown here:

var myArray = [1, 2, 3, 4, 5];

for (var i = 0, l = myArray.length; i < l; i++) {

 console.log(myArray[i]);

}

The one important difference is in the setup expression, where I declare
both i and l at the same time. I do this because the test is executed
every time the loop runs, and I can save a few milliseconds by saving the
value of length to a variable from the start.

My second favorite loop pattern can be used only if every element in the
array is “truthy” (not zero, false, an empty string, null, or undefi ned), so I
use it only in special cases. The most common case is when I’m looping
over elements in a page.

// Get a collection of <a> tags from the page

// and loop over them

var allLinks = document.getElementsByTagName("a");

for (var i = -1, link; link = allLinks[++i];) {

 console.log(link);

}

The JavaScript Pocket Guide48

note Make sure you run this in a page that actually has links, or you won’t
see any output!

The previous is still a normal for loop, but I’m doing some tricky things in
each expression:

■ In the setup, I declare i as –1 and link as undefi ned (it doesn’t need a
value yet).

■ In the test, I access the next link in the allLinks collection by incre-
menting i and using the bracket operators ([]). The fi rst time this
happens, -1 becomes 0 and returns the fi rst item in allLinks. I then
assign that value to link.
Note that I use the increment (++) operator on the left side of i so that
I add 1 to i before evaluating it in the brackets.

■ In the increment expression, I don’t do anything because I already
incremented i in the test. Note that the semicolon is still required after
the test.

I like this usage of the for loop because I don’t need to worry about i
in the body of the loop. I have the link variable to work with as soon as
possible. It’s also a great demonstration of the fl exibility of JavaScript.

forEach(loopFunc)

Looping over arrays using functions is increasingly common, especially in
certain libraries. Modern browsers support the forEach() method, but
you can also build your own.

function arrayForEach(array, loopFunc) {

 // If the browser support forEach, use it because

 // it will be faster

 if ("forEach" in array) {

 return array.forEach(loopFunc);

Chapter 4: Arrays 49

 // Otherwise, loop over the array and pass in

 // the array values to the loop function

 } else {

 for (var i = 0, l = array.length; i < l; i++) {

 loopFunc(array[i], i, array);

 }

 return array;

 }

}

function doSomeMath(num) {

 console.log(num * 10 - 5);

}

arrayForEach([1,2,3], doSomeMath);

5

15

25

Methods
Unlike string methods, some array methods change the original array
while returning a separate value.

Adding Items to Arrays
Earlier, I showed you how to quickly add a value to the end of an array
using the length property. JavaScript also provides a few different meth-
ods for adding values to both ends of an array.

The JavaScript Pocket Guide50

concat(x[, y , z …])
The concat() method concatenates values to the end of the array and
returns the result. The original array doesn’t change. You can pass in any
number of arguments. If an argument is an array, each value is concat-
enated individually.

[1, 2, 3].concat(4, [5, 6]);

[1, 2, 3, 4, 5, 6]

push(x[, y, z …])
The push() method is the same as the concat() method except for a few
differences:

■ It does change the original array.

■ It returns the new length of the array.

■ If an argument is an array, it does not concatenate each value
individually.

var myArray = ["a", "b", "c"];

myArray.push("d", ["e", "f"]);

5

myArray;

["a", "b", "c", "d", ["e", "f"]]

unshift(x[, y, z …])
The unshift() method is exactly the same as push() except that it adds
values to the beginning of the array instead of the end.

var myArray = ["d", "e", "f"];

myArray.unshift("a", ["b", "c"]);

5

Chapter 4: Arrays 51

myArray;

["a", ["b", "c"], "d", "e", "f"]

Removing Items from Arrays
The push() and unshift() methods have analogs for removing values
from the ends of an array.

pop()

The pop() method is the opposite of push(). It returns one element
removed from the end of the array. It does change the original array,
including its length property.

var myArray = ["a", "b", "c"];

myArray.pop();

"c"

myArray;

["a", "b"]

shift()

Unsurprisingly, the shift() method is the opposite of unshift().

var myArray = ["a", "b", "c"];

myArray.shift();

"a"

myArray;

["b", "c"]

Extracting Items from Arrays
The slice() and splice() methods are very useful for manipulating
arrays. It’s easy to forget which method is which, even though they work
in very different ways.

The JavaScript Pocket Guide52

slice(x[, y])
The slice() method works the same for arrays as it does for strings. It
returns a new array starting with the value at the index x up to but not
including the value at the index y. It doesn’t change the original array.
The arguments can both be negative, which counts the position from
the end of the array. The second argument is optional, returning an array
from x until the end of the array.

["a", "b", "c", "d", "e"].slice(0, 2);

["a", "b"]

["a", "b", "c", "d", "e"].slice(1, -1);

["b", "c", "d"]

["a", "b", "c", "d", "e"].slice(-2);

["d", "e"]

splice(start[, length, newValue …])
The splice() method deletes a specifi ed number of values from an array
and optionally inserts new values in their place. It changes the original
array and returns a new array containing any deleted values.

If you provide only the start argument, splice() deletes all the values
from start until the end of the array. The start argument can be nega-
tive, counting the starting index from the end of the array.

var myArray = ["a", "b", "c", "d", "e"];

myArray.splice(2); // Start deleting at "c"

["c", "d", "e"]

myArray;

["a", "b"]

Chapter 4: Arrays 53

If you also provide the length argument, splice() deletes only that
number of values.

var myArray = ["a", "b", "c", "d", "e"];

myArray.splice(2, 2); // Delete 2 values starting at "c"

["c", "d"]

myArray;

["a", "b", "e"]

If you provide any more arguments, those values are inserted in the array
in the place of the deleted values.

var myArray = ["a", "b", "c", "d", "e"];

// Insert these values after

// deleting 2 values starting at "c"

myArray.splice(2, 2, "x", "y", "z");

["c", "d"]

myArray;

["a", "b", "x", "y", "z", "e"]

You can specify the length argument as zero to insert elements at an
arbitrary point in the array.

var myArray = ["a", "b", "c"];

myArray.splice(2, 0, "x", "y"); // Delete 0 values

[]

myArray;

["a", "b", "x", "y", "c"]

Ordering Arrays
Sometimes you may want to present the values of an array to the user in
a particular order. These methods come in handy for simple and complex
array sorting.

The JavaScript Pocket Guide54

reverse()

The reverse() method reverses the order of the values in the array. It
changes the original array and returns a reference to the same array.

var myArray = [1, 2, 3];

myArray.reverse();

[3, 2, 1]

sort([func])
By default, the sort() method reorders the values in the array alphabeti-
cally, with lowercase letters being higher than uppercase. With numbers,
this is not the expected behavior:

[222, 3, 11].sort();

[11, 222, 3]

Fortunately, you can pass a function as an argument that sorts the array
however you like.

function numericalSort(a, b) {

 return a - b;

}

[222, 3, 11].sort(numericalSort);

[3, 11, 222]

The sorting function must return the following:

■ A number greater than zero if a is greater than b

■ A number less than zero if a is less than b

■ Zero if a equals b

You can also sort arbitrary objects this way.

Chapter 4: Arrays 55

var gum = { price : 0.79 };

var mints = { price : 1.29 };

var candy = { price : 1.49 };

var products = [mints, candy, gum];

products.sort(function(a, b) {

 return a.price - b.price;

});

[Object price=0.79, Object price=1.29, Object price=1.49]

note In this example, I passed an anonymous function to the sort()
method instead of a reference to a declared function. If you need to

use a function only once, this is a great style to adopt.

The sort() function changes the original array and returns a reference to
the same array.

Converting Arrays to Strings
Strings have the split() function, so it makes sense that arrays would
have a method to perform the opposite operation.

join([delimiter])
The join() method is the opposite of the split() method for strings. It
turns each value of an array into strings and concatenates them together
with commas between each value. The optional delimiter argument can
change the comma to any other string.

["a", "b", "c"].join();

"a,b,c"

["a", "b", "c"].join("--");

"a--b--c"

["a", ["b", "c"]].join("+");

"a+b,c"

The JavaScript Pocket Guide56

In the third example of the previous code, the second value of the
array is another array. Before joining the values with "+", it converts
the ["b", "c"] array into a string with the toString() method, which
may not be the expected result.

Joining string values together is a great way to create long strings out of
many parts. Consider these two examples:

var longString = "";

for (var i = 0; i < 100; i++) {

 longString += "shorter string no. " + i + "\n";

}

var stringArray = [];

for (var i = 0; i < 100; i++) {

 stringArray.push("shorter string no. " + i);

}

var longString = stringArray.join("\n");

The second example is often slightly faster, especially in Internet Explorer.

toString()

The toString() method acts just like join() with no arguments.

Functions are remarkably fl exible in JavaScript. That fl exibility provides
a lot of power, but it can also create confusion, especially in how func-
tions interact with variables and objects. This chapter covers some pretty
advanced concepts; some nuances might not stick with you right away,
but once you spend some time with functions, you’ll really start to appre-
ciate the power of the JavaScript language.

Functions

5

The JavaScript Pocket Guide58

Creating Functions
The two ways to create functions both use the function keyword, so the
differences between them aren’t immediately apparent.

Declarations
Variable declarations and function declarations operate similarly.
They start with a keyword (var or function), followed by an identifi er.
Function declarations add lists of arguments in parentheses followed by
blocks in curly braces.

function functionName(arg1, arg2, argN) {

 // Block of statements

}

JavaScript interpreters look at function declarations before everything
else in the script, so you can call them even before you declare them.

myFunc();

function myFunc() {

 // Statements

}

Expressions
You don’t have to declare a name for a function, though the following
example is pretty useless (and requires extra parentheses so as not to
throw an error):

(function() {

 // Statements

});

Chapter 5: Functions 59

Functions expressed without a name are function expressions and are
sometimes referred to as anonymous functions. You can store a function
expression on a variable or use it as a return value in another function.

var functionName = function(arg1, arg2, argN) {

 // Statements

};

function outerFunction() {

 // This function returns an anonymous function

 return function() {

 console.log("inner function");

 };

}

note You don’t need to put a semicolon after the closing curly bracket in a
function declaration. Function expressions, on the other hand, should

always end with a semicolon.

Self-invoking Functions
Sometimes you may want to call a function immediately, for reasons
explained in the “Closures” section later in this chapter.

(function() {

 // Executed immediately

})();

You can’t immediately invoke a function declaration, so parentheses
are required around the function to indicate that this is a function
expression.

The JavaScript Pocket Guide60

Arguments
Function arguments are very fl exible in JavaScript. Named arguments in
the function signature are just for convenience more than anything else.
You don’t need to provide a value for each argument.

function myFunc(arg0, arg1, arg2) {

 console.log(arg0);

 console.log(arg1);

 console.log(arg2);

}

myFunc("a", "b"); // Left off the third argument

"a"

"b"

undefi ned

You can also provide more argument values than defi ned in the func-
tion signature. All of the arguments are stored in a local variable called
 arguments for easy access.

function myFunc(arg0) {

 console.log(arg0);

 console.log(arguments[1]); // The second argument

 console.log(arguments[2]); // The third argument

}

myFunc("a", "b", "c");

"a"

"b"

"c"

Chapter 5: Functions 61

The arguments variable is an arraylike object but isn’t a true array. If you
ever want to use an array method like pop(), you’ll need to convert it to
an array by looping over each item and adding it to a real array.

note Arraylike objects are often referred to as collections. You access their
properties by numeric indices (arguments[0] and so forth), and they

have a length property, but they don’t have any of the array methods discussed
in Chapter 3.

Default Values for Arguments
Since arguments are optional, you may want to provide default values. In
most cases, you can use the logical OR (||) operator to assign a value if it
doesn’t already exist.

function sayHello(name) {

 name = name || "Lenny";

 console.log("Hi " + name + "!");

}

sayHello();

"Hi Lenny!"

sayHello("Sally");

"Hi Sally!";

In the fi rst line of the function, if name is “falsey,” it assigns “Lenny” to the
variable. When you call sayHello() without specifying a value for name,
its value is undefi ned, which is “falsey.”

But what if it’s perfectly valid for an argument to be “falsey”? The follow-
ing function doesn’t work as expected:

The JavaScript Pocket Guide62

function trueUnlessSpecifed(answer) {

 // If answer isn't provided, it defaults to true

 answer = answer || true;

 console.log(answer);

}

trueUnlessSpecifed(false);

true

The variable = variable || defaultValue pattern doesn’t work here
because a “falsey” value is always changed to the default. The safest
way to assign a default value is to check whether the argument is truly
undefi ned. In the following function, an unspecifi ed answer argument will
default to true:

function trueUnlessSpecifed(answer) {

 answer = answer == undefi ned ? true : answer;

 console.log(answer);

}

trueUnlessSpecifed();

true

trueUnlessSpecifed(false);

false

note Remember that this pattern: expression ? ifTrue : ifFalse;

is similar to the following: if (expression) {

 ifTrue;

 } else {

 ifFalse;

 }

Chapter 5: Functions 63

Objects as Arguments
You may want to write functions that take many arguments, some of
which are optional.

function drawElement(color, border, width, height,

left, top, zIndex) {

 // Make and display an element with these variables

}

drawElement("red", 4, null, null, 100, 10);

Function signatures like this aren’t ideal for a couple of reasons:

■ It’s hard to remember the exact order of arguments.

■ You have to specify null values when you want to use the default
value for arguments in the middle of the signature.

■ Did you notice that I forgot to specify a value for zIndex? It’s hard to
count all those arguments correctly!

Passing multiple values in a single object is often a better solution:

function drawElement(options) {

 // Make and display an element with the values in options

}

drawElement({

 color: "red",

 border: 4,

 left: 100,

 top: 10

});

Specifying default values is a little bit trickier with this technique. You’ll
need to create an object holding all the defaults and merge it with the
options object.

The JavaScript Pocket Guide64

drawElement.DEFAULTS = {

 color: "blue",

 border: 0

 width: 50,

 height: 50,

 left: 0,

 top: 0,

 zIndex: 1

};

You can store the defaults as property of the function itself. Using all capi-
tal letters is a hint to other coders that these values shouldn’t be changed.

function mergeOptions(defaults, options) {

 // Use the for/in statement to loop over the property

 // names in defaults

 for (var name in defaults) {

 // See Chapter 6 for the reason behind

 // this "if" statement

 if (defaults.hasOwnProperty(name)) {

 // If the property doesn't exist on options,

 // add it using the value on defaults

 if (options[name] == null) {

 options[name] = defaults[name];

 }

 }

 }

 return options;

}

Chapter 5: Functions 65

function drawElement(options) {

 options = mergeOptions(drawElement.DEFAULTS, options);

 // Make and display an element with the values in options

}

Return Values
All functions return a value, but that value is undefi ned unless you specify
it with the return keyword.

function noReturn() {

 // Don't explicitly use return

}

// Tests the return value, not the function

typeof noReturn();

"undefi ned"

function withReturn() {

 return 42;

}

withReturn();

42

You can use the return keyword at any point in a function, even to exit
the function early. Consider these two functions:

function oddOrEven(num) {

 if (num % 2 === 1) {

 var result = "odd";

 } else { (continues on next page)

The JavaScript Pocket Guide66

 var result = "even";

 }

 return result;

}

function oddOrEven(num) {

 if (num % 2 === 1) {

 return "odd";

 }

 return "even";

}

Returning the result immediately makes your functions shorter and
easier to understand.

Functions as Methods
Functions always have a context when they’re called, which is acces-
sible via the this keyword. This is one of the more confusing concepts in
JavaScript, so I’ll start with some illustrative examples.

function globalFunc() {

 console.log(this);

}

globalFunc();

Window

When you call a function normally, its context is the global object. (See
Chapter 8 on the window object for a discussion of the global object.)

Chapter 5: Functions 67

var myObject = {

 someProperty: 42

};

myObject.method = function() {

 console.log(this.someProperty);

};

myObject.method();

42

When a function is a property of an object, it’s referred to as a method.
Calling that function with the dot (.) operator on the object changes the
function’s context. In this case, this refers to myObject.

This is how built-in methods change the object they’re called on. You
could create your own push() method for an array like this:

var myArray = [];

myArray.myPush = function(obj) {

 this[this.length] = obj;

 return this.length;

}

myArray.myPush(1);

myArray.myPush(2);

myArray.push(3);

myArray;

[1, 2, 3]

note Of course, this implementation of push() is incomplete, since you
should be able to pass in any number of arguments. Try adding this

functionality. (Hint: Loop over the arguments variable.)

The JavaScript Pocket Guide68

Functions can lose their context very easily.

var myObject = {

 someProperty: 42

};

myObject.method = function() {

 console.log(this.someProperty);

};

var objectMethod = myObject.method;

objectMethod();

undefi ned

Here, the example stored a reference to the object’s method on a variable
and then called it without using the dot operator. This causes the func-
tion’s context to change back to the global object. Since window doesn’t
have a property called someProperty, it returns undefi ned.

These concepts are extremely important because JavaScript code is
event-based and asynchronous, which means that you’re passing func-
tions around and waiting for them to be executed in an eventual context.
See Chapter 13 to learn more about this.

Context Binding
JavaScript is one of a small number of languages that gives you the abil-
ity to manage function context. Functions have two methods of their
own, call() and apply(), which allow you to execute them in a certain
context.

function calledFunc() {

 console.log(this.someProperty);

}

Chapter 5: Functions 69

var myObject = {

 someProperty : 42

};

calledFunc.call(myObject);

42

calledFunc.apply(myObject);

42

The fi rst argument for both call() and apply() is the context object for
the function.

You can also pass in arguments to the function with these methods, as
shown here:

function adder(num1, num2) {

 return this.value + num1 + num2;

}

adder.call(myObject, 10, 20);

72

The values 10 and 20 are passed in as the arguments num1 and num2. The
apply() method handles this a little differently:

adder.apply(myObject, [10, 20]);

72

The apply() method lets us pass in all the arguments as a single array.
Here’s an example that uses Math.max() to fi nd the largest number in an
array in one function call:

var numbers = [4, 8, 15, 16, 23, 42];

Math.max.apply(Math, numbers);

42

The JavaScript Pocket Guide70

Closures
Functions in JavaScript have lexical scope, which means that they main-
tain access to the scope they are declared in. This is also a confusing
topic, so here’s an example:

function scopeFunc() {

 var scopedVar = 42;

 function innerFunc() {

 console.log(scopedVar);

 };

 return innerFunc;

};

var closure = scopeFunc();

closure();

42

It breaks down like this:

1. You declare the variable scopedVar inside scopeFunc(). This means
you cannot access scopedVar outside scopeFunc().

2. You also declare the function innerFunc() inside scopeFunc(). Since
it is in the same scope as scopedVar, it still has access to that variable.

3. You return a reference to innerFunc() when scopeFunc() executes.

4. You save the returned reference to innerFunc() on the variable
closure. When you execute the function, it still has access to
scopedVar and prints its value to the console.

Chapter 5: Functions 71

These inner functions are called closures because they “close over” the
variables in their scope. This is a very powerful organizational tool, espe-
cially when you want to keep different pieces of code separate. It allows
you to create “private” variables and functions and control access to
them by selectively returning certain references.

One simple practical example is creating a function that returns a unique
string every time it runs, like this:

var uniqueId = (function() {

 var counter = 0;

 return function() {

 return "unique-id-" + counter++;

 };

})(); // Self-invoking function executes automatically

uniqueId();

"unique-id-0"

uniqueId();

"unique-id-1"

uniqueId();

"unique-id-2"

The uniqueId variable holds a reference to the anonymous function,
which is the only object that has access to the counter variable. You can
be sure that nothing else can change counter and every string returned
is unique.

Another practical example is a little more complicated and therefore
usually trips up novice JavaScript coders. This code uses objects and func-
tions you’ll fi nd in Chapters 10 and 11 later in the book.

The JavaScript Pocket Guide72

for (var i = 0; i < 10; i++) {

 var link = document.createElement("a");

 link.innerHTML = "Link " + i;

 link.href = "#";

 link.onclick = function() {

 alert("This is link " + i);

 return false;

 };

 document.body.appendChild(link);

}

This for loop creates 10 <a> elements and appends them to the body of
the page. (If you’re typing this into the Firebug console, you may have to
scroll to the bottom of the page to see the links.) The expected behavior
is that clicking each link should alert “This is link 0” or “This is link 5”
depending on the link. But if you try it, every link alerts “This is link 10.”
Why is that?

This function is lexically scoped to the i variable:

link.onclick = function() {

 alert("This is link " + i);

 return false;

};

When it runs, it accesses the current value of i. Since the for loop
fi nished executing long before you clicked the link, the value of i is 10,
the fi nal value of the loop. To fi x this, you need to create a new scope to
hold the value of i for each onclick function.

for (var i = 0; i < 10; i++) {

 var link = document.createElement("a");

 link.innerHTML = "Link " + i;

 link.href = "#";

Chapter 5: Functions 73

 link.onclick = (function(num) {

 // The value of onclick will be

 // this anonymous function

 return function() {

 alert("This is link " + num);

 return false;

 };

 }(i); // Pass i to the self-invoking function

 document.body.appendChild(link);

}

This code works as expected, because the num variable in each onclick
function is set to the value of i at that point in the loop.

One fi nal practical example shows how you can permanently bind the
context of a function using closures and apply(). Start with the follow-
ing example (from the earlier “Functions as Methods” section):

var myObject = {

 someProperty: 42

};

myObject.method = function() {

 console.log(this.someProperty);

};

var objectMethod = myObject.method;

objectMethod();

undefi ned

Here is the function that binds a function’s context:

function bindContext(func, context) {

 return function() { (continues on next page)

The JavaScript Pocket Guide74

 return func.apply(context, arguments);

 };

}

var boundMethod = bindContext(myObject.method, myObject);

boundMethod();

42

The boundMethod variable holds the return value of bindContext(),
which is another function. This inner function retains access to the func
and context arguments passed to bindContext(). When the function
on boundMethod executes, it calls func in the proper context using the
apply() method.

Recursion
Recursion is when a function calls itself. This is often useful in mathe-
matics, such as fi nding the nth number in the Fibonacci series (1, 2, 3, 5,
8, 13, 21…).

function fi bonacci(n) {

 if (n < 2) {

 return 1;

 } else {

 return fi bonacci(n-2) + fi bonacci(n-1);

 }

}

fi bonacci(5);

8

fi bonacci(10);

89

Chapter 5: Functions 75

The fi bonacci() function calls itself with a different value for n until
n reaches 1 or less. Recursive functions always need a stopping point,
or they will continue to recurse until the browser stops the script and
displays a warning to the user.

Caching
If you write a function that you call repeatedly, it might be smart to
store the results so that successive calls are faster. This is called caching.
Here’s an example that speeds up repeated calls to the previously shown
 fi bonnaci() function:

var fi bonacci = (function() {

 // The inner function will retain access

 // to this cache object

 var cache = {};

 return function(n) {

 // If we've already solved for this value of n

 // it will be stored in the cache, so we

 // can return it

 if (cache[n]) {

 return cache[n];

 }

 // This demonstrates that the caching works

 console.log("solving for " + n);

 // Store the value in a variable so

 // we can cache it before returning it

 if (n < 2) { (continues on next page)

The JavaScript Pocket Guide76

 var result = 1;

 } else {

 var result = fi bonacci(n-2) + fi bonacci(n-1);

 }

 // Caching the result based on the argument

 cache[n] = result;

 return result;

 }

})(); // Self-invoking function executes automatically

fi bonacci(5);

solving for 5

solving for 3

solving for 1

solving for 2

solving for 0

solving for 4

8

fi bonacci(6); // 0-5 are already solved for

solving for 6

13

When you call fi bonacci(5) the fi rst time, it recursively calls itself multi-
ple times to determine the result. But since the result is cached, each
successive call does far less work.

Chapter 5: Functions 77

Memoization
Memoization is a technique similar to caching that takes advantage of
the fact that functions are just data. Once an expensive function runs, it
can rewrite itself with an optimized version.

var getElement = function() {

 console.log("creating element");

 var element = document.createElement("div");

 // ... Do a bunch of expensive operations

 // Overwrite the function with a simpler version

 getElement = function() {

 return element;

 };

 return element;

};

The fi rst time getElement runs, it creates the element and runs a bunch
of code with it. Then it rewrites the getElement function to solely return
the created element. This makes subsequent calls to getElement much
quicker.

This page intentionally left blank

Understanding objects is crucial to writing well-organized, expressive
JavaScript. If you’ve used other languages such as Java or ActionScript,
JavaScript may seem like it’s missing a lot of language features such as
classes and modules. But objects in JavaScript are fl exible and powerful
enough that you don’t often miss those features. Sometimes you can
even emulate missing language features with clever uses of objects and
functions.

Objects

6

The JavaScript Pocket Guide80

Basics
The best way to create an object is to use an object literal.

var myObject = {};

You can create an object with properties by listing them in the object
literal, separating property names and values with colons.

var myObject = {

 propertyName : "most names are valid identifi ers",

 "arbitrary strings" : "can be property names too",

 42 : "property names can be numbers"

};

tip Notice that each property: value pair is separated by a comma, but
make sure not to put a comma after the last pair. Most browsers

ignore it, but Internet Explorer throws a hard-to-fi nd error.

Properties can be any value, including objects and functions.

You can access a property value by its name in two ways: with the dot
operator (.) or with the bracket operator ([]). These two expressions are
identical:

myObject.property1 = 42;

myObject["property1"] = 42;

To use the dot operator, the property name must be a valid identifi er. The
bracket operator takes an expression and uses its value as the property
name. The following would not work because in this case property1 is
an undefi ned variable:

myObject[property1] = 42;

ReferenceError: property1 is not defi ned

Chapter 6: Objects 81

But if you had already declared the variable property1 to have a value,
that value would work as a property name.

// Variable holding the property name

var property1 = "propertyName";

myObject[property1] = 42;

// The actual name of the property

myObject.propertyName;

42

The bracket operator is very fl exible. With it, you can use any value as a
property name, even other objects.

mySecondObject = {};

mySecondObject[myObject] = 108;

You can even call methods using the bracket syntax and the string
version of the method name.

var myArray = [1,2,3];

myArray["push"](4, 5);

[1, 2, 3, 4, 5]

Most JavaScript coders prefer the dot operator because it uses fewer
keystrokes unless they need the fl exibility of the bracket operator.

Looping Over Properties
You can loop over all of the enumerable properties of an object with the
for/in statement.

var myObject = {

 property1: 42,

 property2: "string value",

 property3: true

}; (continues on next page)

The JavaScript Pocket Guide82

for (var propertyName in myObject) {

 // Print out the name of the property

 console.log("name: " + propertyName);

 // Print out the property value

 var value = myObject[propertyName];

 console.log("value: " + value);

}

"name: property1"

"value: 42"

"name: property2"

"value: string value"

"name: property3"

"value: true"

In each loop of the for/in statement, you get a variable holding the
name of a property. You can then access the property value using the
bracket operator.

You can loop over any object with the for/in statement, including arrays.

var myArray = ["a", "b", "c"];

for (var propertyName in myArray) {

 // The property name is its index

 console.log(propertyName);

 var value = myArray[propertyName];

 console.log(value);

}

0

"a"

1

Chapter 6: Objects 83

"b"

2

"c"

Enumerable Properties

Remember that all those array methods such as push() and slice()
are properties of arrays too. But they don’t show up when you loop over
the properties of myArray. This is because they are not enumerable. All
objects have a convenience function called propertyIsEnumerable() to
check this:

var myArray = [1,2,3];

myArray.propertyIsEnumerable(0);

true

myArray.propertyIsEnumerable("push");

false

I’ve never had a reason to use propertyIsEnumerable() in my code, but
it helps explain the reasons for using hasOwnProperty().

Using prototypes, which I’ll explain in the “Prototypes” section later in
this chapter, you can add properties to every single object at the same
time.

Object.prototype.someRandomProperty = 42;

{}.someRandomProperty;

42

[].someRandomProperty;

42

"".someRandomProperty;

42

The JavaScript Pocket Guide84

When you add a property to an object or an object’s prototype, it is
always enumerable. This is unlike built-in properties such as push() or
toString(). Your added properties will show up in every for/in loop.

Object.prototype.someRandomProperty = 42;

var myArray = [1,2,3];

for (var propertyName in myArray) {

 console.log(myArray[propertyName]);

}

1

2

3

42

To protect yourself from unexpectedly looping over these properties,
always use the hasOwnProperty() method to test whether the property
belongs only to that object.

for (var propertyName in myArray) {

 // This fi lters out someRandomProperty

 if (myArray.hasOwnProperty(propertyName)) {

 console.log(myArray[propertyName]);

 }

}

1

2

3

tip When using arrays, it’s always best practice to use for and while loops
because you can be sure that the i variable is an integer.

Chapter 6: Objects 85

It’s tempting to skip using hasOwnProperty(), especially if you are care-
ful not to add properties to any built-in prototypes. But keep in mind that
any script in the page can alter built-in objects. It’s not just your code
that you have to be careful of.

Deleting Properties
You can remove properties from an object by using the delete operator.
The property will no longer show up in a for/in loop. The delete opera-
tor returns true only if it could successfully delete the property.

var myObject = {

 property1 : 42,

 property2 : 108

};

for (var propertyName in myObject) {

 console.log(propertyName, myObject[propertyName]);

}

property1 42

property2 108

// This deletes the property completely

delete myObject.property1;

true

myObject.property1;

undefi ned

// This just changes the value of the property

// instead of removing it

myObject.property2 = null;

for (var propertyName in myObject) { (continues on next page)

The JavaScript Pocket Guide86

 console.log(propertyName, myObject[propertyName]);

}

property2 null

Constructor Functions
All data types, even primitives such as Number and String, have construc-
tor functions. They are rarely used because literals are faster and easier.

new Number(5);

5

new String("hello");

"hello"

new Boolean();

true

You also don’t want to use them because checking the data type gets
confusing.

typeof new Number(5);

"object"

typeof new Number(5).valueOf();

"number"

I only point this out because you can create your own data types with
constructor functions, which are normal functions called right after the
new keyword.

var MyDataType = function() {

};

var myData = new MyDataType();

Chapter 6: Objects 87

Constructor functions are one of the rare places where it’s customary to
start the name with a capital letter. It tells you that it’s meant to be used
with the new keyword.

Inside the constructor function, you can use the this keyword to add
properties to new instances of the data type. This is a great way to create
reusable pieces of code.

var Jedi = function(name) {

 this.name = name;

 this.theForce = "strong";

};

var obiwan = new Jedi("Obi Wan");

var yoda = new Jedi("Yoda");

yoda.name;

"Yoda"

Yoda.theForce;

"strong"

obiwan.theForce;

"strong"

Prototypes
All arrays have the same methods, like push(), slice(), and join().
All strings have split(), substr(), and replace(). And every object has
the toString() method. Where do these methods come from?

It turns out that every data type has a prototype object that defi nes a
set of properties. Each instance of a data type has access to the proper-
ties of its type’s prototype.

The JavaScript Pocket Guide88

You can fi nd the prototype object for a type by accessing the prototype
property on its constructor function, like this:

Number.prototype;

String.prototype;

Array.prototype;

Object.prototype;

When you access a property of an object, JavaScript follows these steps
to fi nd the value of that property:

1. First, it looks for the property on the object. When you add the prop-
erty directly to the object, JavaScript fi nds the value here.

var myArray = [1,2,3];

myArray[0];

1

2. If the property doesn’t exist on the object, JavaScript looks at the
prototype of the object’s constructor.

myArray.push;

push()

Array.prototype.push;

push()

myArray.push === Array.prototype.push;

true

3. You can tell that push() exists on Array.prototype and not on
myArray with the hasOwnProperty() method.

myArray.hasOwnProperty("push");

false

4. Finally, if the property can’t be found on the object or the prototype of
the object’s constructor, JavaScript determines that it doesn’t exist. If
you try to call it as a method, you’ll get an error.

Chapter 6: Objects 89

typeof myArray.missingProperty;

"undefi ned"

myArray.missingProperty();

TypeError: myArray.missingProperty is not a function

Changing Built-in Prototypes
You can add, change, and remove properties from the prototypes of built-
in types. I’ll get to why this can be a bad idea in a moment, but fi rst I’ll
show some examples.

In Chapter 4, you learned how to trim spaces off the beginnings and
endings of a string. That function works like this:

stringTrim(" hello ");

"hello"

You can turn that function into a method for every string by adding it to
String.prototype.

String.prototype.trim = function() {

 // Since this is a method, the context is the string

 // that you can access with the "this" keyword

 return this.replace(/^(\s|\u00A0)+|(\s|\u00A0)+$/g, "");

};

" hello ".trim();

"hello"

" this string also has the trim method ".trim();

"this string also has the trim method"

In my opinion, this is often a much more pleasant way to organize code.
It is sometimes referred to as an object-oriented style of programming,
because you act upon objects with methods. (The stringTrim() style is
functional programming because you’re passing values to functions.)

The JavaScript Pocket Guide90

Adding Modern JavaScript to Older Browsers

Functions such as string.trim() are part of the ECMAScript specifi ca-
tion, but they aren’t supported in most browsers yet. Adding them to
the built-in prototypes yourself is a good way to take advantage of new
additions to the language. However, you should check to see whether the
browser supports a function before adding it because the built-in version
is always faster.

if (! String.prototype.trim) {

 // The browser doesn't support string.trim(),

 // so you can add it here

 String.prototype.trim = function() {

 // ...

 }

}

Potential Problems with prototype
You have to be careful when changing built-in prototypes, because
you’re basically creating your own version of JavaScript. If you’re
using code written by someone else, such as a JavaScript library or
an advertisement service, you might change some JavaScript objects
that they rely on.

Also, every property you create is enumerable, so each one will show
up in for/in loops. This is most problematic if you change Object.
prototype since it will affect every object created. Always avoid
changing Object.prototype, and use caution when changing any
other built-in prototype.

Chapter 6: Objects 91

Prototypes for Custom Data Types
Your custom data types can have prototypes too. This is the best way
to add common properties and methods to all the instances of your
data type.

var Jedi = function(name) {

 this.name = name;

};

Jedi.prototype = {

 theForce: "strong",

 lightSaber: function() {

 console.log("Shrruumm! Shr-zzmm!");

 }

};

var obiwan = new Jedi("Obi Wan");

var yoda = new Jedi("Yoda");

You can access the properties from the Jedi prototype like any other
property.

yoda.theForce;

"strong"

yoda.lightSaber();

"Shrruumm! Shr-zzmm!"

All Jedis share the properties of their prototype object.

obiwan.lightSaber();

"Shrruumm! Shr-zzmm!"

The JavaScript Pocket Guide92

You can still add properties to individual objects that don’t affect any of
the others.

obiwan.saberColor = "blue";

"blue"

Changing the prototype affects all instances of the data type regardless
of when they were created.

Jedi.prototype.mindTrick = function() {

 console.log("Waves hand");

};

yoda.mindTrick();

"Waves hand"

obiwan.mindTrick();

"Waves hand"

How to Understand Constructor Functions and
Prototypes
The new keyword and object prototypes may look like somewhat magi-
cal behavior, but they’re actually pretty simple. The following code is a
simplistic example, but it should give you a sense of what’s going on
under the hood.

var ConstructorFunc = function() {

 // Act on "this", which is the

 // new instance of this data type

 // These override the properties

 // on the prototype

 this.description = "I'm an instance of ConstructorFunc";

};

Chapter 6: Objects 93

ConstructorFunc.prototype = {

 property : 42,

 method : function() {

 alert(this.description);

 }

};

// Instead of using the new keyword, create the

// new object yourself

var instance = {};

// Then assign the properties of the prototype to

// the instance

for (var name in ConstructorFunc.prototype) {

 instance[name] = ConstructorFunc.prototype[name];

}

// Finally, call the constructor function in the context

// of the object

ConstructorFunc.call(instance);

instance.method();

The browser will show an alert dialog saying “I’m an instance of
ConstructorFunc.”

Now you’ve manually created an instance of the ConstructorFunc data
type. Of course, it’s a lot quicker to just use new ConstructorFunc().
Also, properties on a data type’s prototype object won’t show up when
using hasOwnProperty(). In my simplistic example, I’m adding the prop-
erties directly to the object, so they will appear in any for/in loops.

The JavaScript Pocket Guide94

Object-Oriented Patterns
You may already be familiar with an object-oriented language such
as Java, PHP, or ActionScript 3 that includes concepts like modules and
classes. JavaScript doesn’t have these concepts built into the language,
but it is fl exible enough that you can simulate them with custom data
types and prototypes. You can even simulate inheritance.

Inheritance is a way of modeling your data with general data types that
have common functionality and specifi c data types that have specifi c
functionality. Start with a general data type, as shown here:

var Person = function(name) {

 this.name = name;

};

Person.prototype = {

 says : function(message) {

 console.log(this.name + " says " + message);

 }

};

var lenny = new Person("Lenny");

lenny.says("Hello!");

"Lenny says Hello!"

Now you can make a more specifi c type of person, but it should still have
the same name attribute, as well as the says() method.

var Jedi = function(name, saberColor) {

 Person.call(this, name);

 this.saberColor = saberColor;

};

Chapter 6: Objects 95

Person.call(this, name) lets you reuse the Person() constructor func-
tion to change instances of this new data type. Then you can make it
more specifi c by using the new saberColor argument.

Jedi.prototype = new Person();

You assign a person object as the Jedi prototype so that the Jedi objects
share properties and methods of People objects.

Jedi.prototype.lightSaber = function() {

 console.log("Shrruumm! Shr-zzmm!");

};

Now you can add new properties and methods to the Jedi data type that
don’t exist on the Person data type.

var yoda = new Jedi("Yoda", "blue");

var macewindu = new Jedi("Mace Windu", "purple");

yoda.says("Do or do not, there is no try.");

"Yoda says Do or do not, there is no try."

Instances of the Jedi data type share the methods and properties of the
Person data type, so you can still use the says() method on the yoda
object.

macewindu.lightSaber();

"Shrruumm! Shr-zzmm!"

These instances have new methods to use that are specifi c to the Jedi
data type.

You can use the instanceof operator to determine the type of an object.

lenny instanceof Person;

true (continues on next page)

The JavaScript Pocket Guide96

lenny instanceof Jedi;

false

yoda instanceof Person;

true

yoda instanceof Jedi;

true

Since Jedi inherits from Person, yoda is an instance of both data types.

Inheritance is the reason why all objects have methods like toString()
and hasOwnProperty(). All data types inherit from Object.

lenny instanceof Object;

true

myArray instanceof Object;

true

Namespacing
Namespacing is a common technique for keeping code separate and
reducing naming confl icts. In JavaScript, all you need to do is create
objects that store your code and data away from other objects. Often,
you name these objects after your Web sites because URLs are guaran-
teed to be unique. Also, URLs use periods, which look a whole lot like
JavaScript dot operators.

note Many other languages provide special language features to support
namespacing. JavaScript lacks these features, but objects are fl exible

enough to get some of the benefi ts of namespacing to better organize your code.

var PEACHPIT = {};

PEACHPIT.com = {};

PEACHPIT.com.sayHello = function() {

Chapter 6: Objects 97

 console.log("Hello!");

};

Naming your top object in all capitals indicates to yourself and others to
be careful never to reassign that variable.

The reason for namespacing is that you may want to use a script on your
pages that defi nes its own sayHello() function. Because these functions
are namespaced, there’s little chance for them to overwrite each other.

var HURLEYS_SCRIPTS = {};

HURLEYS_SCRIPTS.com = {};

HURLEYS_SCRIPTS.com.sayHello = function() {

 console.log("Hey dude!");

};

You may have a second script with a different sayHello() function, but
you still want to put it in the same PEACHPIT namespace. You can add
another object to the namespace, but make sure not to overwrite any of
your namespace objects.

// Conditional variable assignment with OR (||)

var PEACHPIT = PEACHPIT || {};

PEACHPIT.com = PEACHPIT.com || {};

PEACHPIT.com.helperFunctions =

➥ PEACHPIT.com.helperFunctions || {};

PEACHPIT.com.helperFunctions.sayHello = function() {

 console.log("Hello again!");

};

You can use conditional assignment to ensure that your namespace
objects exist or create new objects if they don’t. This uses the same
pattern as assigning default values to arguments that you saw in
Chapter 5.

The JavaScript Pocket Guide98

Local References
Of course, you defi nitely don’t want to type
PEACHPIT.com.helperFunctions.sayHello() every time you want to
use this function. Fortunately, you don’t have to if you put all your code
inside of a function like this:

(function() {

 // Save a local reference to your namespace objects

 // for quick access

 var P = window.PEACHPIT;

 var helpers = P.com.helperFunctions;

 helpers.sayHello();

 // ... Declare any other functions and variables

 // here. They will be scoped inside this function

 // so there's no chance of another script causing

 // any confl icts

})(); // Self-invoking function executes automatically

In Chapter 5, you learned that all functions execute in a context that you
can refer to with the this keyword. A simple function executed normally
runs in the global context. In a browser, the global object is window.

function myFunc() {

 console.log(this);

}

myFunc();

Window

When you learned about variable scope in Chapter 5, you learned that
variables outside of functions are in the global scope. In fact, declaring
a variable in the global scope is the same as making a property on the
global object.

The Global Object

7

The JavaScript Pocket Guide100

var globalVar = 42;

window.globalVar;

42

In Chapter 2, you learned about a few global functions such as isNaN()
and parseInt(). These functions are also properties of the global object.

window.isNaN("1a");

true

window.parseInt("1a");

1

The global object is obviously a very important object, but I left it until
this chapter for two reasons: You can write plenty of JavaScript without
ever realizing that it’s there, and it’s the fi rst object you’ll learn about
when you learn to write JavaScript for the browser in Chapter 9. The
following are a few details about the global object before you dive into
programming Web pages.

Global Variables
Global variables are variables declared outside any function scope.

var myGlobalVariable = 42;

The fact that global variables are properties of the window object gives
you more fl exibility and specifi city when using global variables inside
functions.

var myVar = "global variable";

function myFunc() {

 var myVar = "scoped variable";

Chapter 7: The Global Object 101

 console.log(myVar);

 console.log(window.myVar);

}

myFunc();

"scoped variable"

"global variable"

In the previous code, because you declared a second myVar variable inside
myFunc, you can’t access the global myVar variable just by name. But you
still have access to the window object, so you can access the global vari-
able as a property on myVar.

Functions declarations work the same way.

function myGlobalFunction() {

}

typeof window.myGlobalFunction;

"function"

Accidentally Creating Global Variables

If you forget to use the var keyword when declaring a variable inside a
function, it becomes a global variable reference.

(function() {

 // Forgot the var keyword

 myLocalVar = "whoops it's global!";

})(); // Self-invoking function executes automatically

console.log(myLocalVar);

"whoops it's global!"

The JavaScript Pocket Guide102

Global Variable Best Practices
You should limit your global variables and functions as much as
possible. Another script could easily overwrite your global variables
and cause hard-to-fi nd bugs in your code. Fortunately, you can take
advantage of function scope to control access to your variables and
functions.

For simple scripts, I like to put all my code inside a self-invoking
function. For more complicated scripts, especially ones that interact
with other scripts, I prefer storing all the code on a single namespace
object. See Chapters 5 and 6 for examples of both these techniques.

Global Functions
Core JavaScript doesn’t provide too many global functions. Most func-
tions are methods on built-in object types. You already learned about
a few useful ones for numbers and strings such as parseInt() and
encodeURIComponent().

Timers
Browsers execute JavaScript code line by line as quickly as possible, but
sometimes you need to introduce a delay before executing some code.

setTimeout(func, delay)

The setTimeout() function delays the execution of a function until at
least delay milliseconds.

JavaScript is single-threaded, meaning it can execute only a single
instruction at a time. If the browser is already doing something by the

Chapter 7: The Global Object 103

time delay rolls around, it waits until the thread is free. (By “instruction,”
I mean any statements, expressions, events, or other pieces of code that
the browser executes. All instructions take a fi nite amount of time to
execute, even if it’s only a few milliseconds.)

If you pass in zero milliseconds for delay, it executes func with the short-
est delay possible.

The return value of setTimeout() is an identifi er for use with
clearTimeout().

function callback() {

 console.log("At least three seconds passed");

}

setTimeout(callback, 3000);

The console will output the following after a short delay:

"At least three seconds passed"

setInterval(func, delay)

The setInterval() function repeats the execution of a function at
least every delay milliseconds. It also returns an identifi er to use with
clearInterval().

Unlike setTimeout(), you must pass a delay of more than zero
milliseconds.

setInterval(callback, 3000);

Roughly every three seconds, the console displays "At least three
seconds passed" until you unload the page.

The JavaScript Pocket Guide104

If the browser is busy with another instruction when interval comes up,
setInterval() waits until the browser is free to execute the callback
function. Just like setTimeout(), you can’t rely on setInterval() to
execute the callback after an exact period of time.

clearInterval(id), clearTimeout(id)

If you need to stop a callback function from executing, you must store
the identifi er returned by setTimeout() or setInterval() and pass it to
either of these two functions.

By clearing a timeout, you can stop the callback function from ever
executing. Here’s a good way to make nothing happen:

var timeoutId = setTimeout(callback, 3000);

clearTimeout(timeoutId);

In this example, the callback function keeps track of how many times it
gets called and clears the interval after fi ve calls.

function fi veTimes() {

 console.log("Interval " + fi veTimes.count);

 // Add 1 to count and compare it to 5. If

 // over 5, stop the interval

 if (++fi veTimes.count > 5) {

 clearInterval(intervalId);

 }

}

fi veTimes.count = 1;

var intervalId = setInterval(fi veTimes, 3000);

The console will count up to 5 before clearing the interval and stopping.

Chapter 7: The Global Object 105

Asynchronous Programming
The setTimeout() and setInterval() functions are the fi rst exam-
ples in this book of asynchronous programming. You’ll also encounter
this crucial JavaScript concept when you learn about events, Ajax,
and animation in Chapters 11, 15, and 16, respectively.

A script is asynchronous when code can be executed at arbitrary
points in time. JavaScript embraces this concept by treating func-
tions as just another type of data. You can pass around functions as
callbacks and event handlers, not knowing exactly when (if ever) the
browser will call them. You may want a function to run when the
user clicks the mouse, but you can’t know when they will actually
do so.

Asynchronous programming makes function context binding much
more complicated. Consider this example:

var myObject = {

 value : "myObject's value",

 method : function() {

 console.log(this.value);

 }

};

setTimeout(myObject.method, 3000);

The method function executes about three seconds later, but it’s no
longer bound to myObject. Without that context, this.value returns
undefi ned. (continues on next page)

The JavaScript Pocket Guide106

Asynchronous Programming (continued)

The most common solution is to create an anonymous function that
calls the function in the context of myObject.

setTimeout(function() {

 myObject.method();

}, 3000);

You could also use the bindContext() function from Chapter 6.

setTimeout(bindContext(myObject.method, myObject), 3000);

You may also want to pass arguments to the callback function.
Anonymous functions are also useful in this case:

setTimeout(function() {

 callbackFunction("an argument");

}, 3000);

Keep these techniques in mind when working with events and other
code that involves indeterminate delays in execution.

Up until now, I really haven’t covered any practical uses of JavaScript.
You can go only so far manipulating simple data such as strings and
arrays. JavaScript is a “scripting language,” which by defi nition operates
inside some kind of environment. Usually, this environment is an HTML
document in a Web browser. From here on, this book focuses on interact-
ing with browsers, Web pages, servers, and user input.

Client-Side Scripting

8

The JavaScript Pocket Guide108

Script Tags
HTML provides a means of including executable code in the form of the
<script> element. You can include code in a Web page in two ways.

Inline Scripts
Inline scripts include JavaScript code directly in the markup, like this:

<script type="text/javascript">

 var element = document.getElementById("domId");

</script>

Inline scripts allow you to include your code as text right in the Web
page. This is great for quickly testing a solution or adding code that is
specifi c to this particular page.

Remote Scripts
Remote scripts instruct the browser to download a separate script fi le
and execute it in the page. The src attribute points to the script fi le like
any other URL.

<script src="my-script.js" type="text/javascript"></script>

In most cases, this is the preferred solution for a few reasons:

■ Storing JavaScript directly in HTML with an inline script makes your
HTML fi les larger and harder to maintain.

■ You can easily include the same script in multiple pages just by includ-
ing the same remote <script> tag.

■ Browsers cache JavaScript fi les so they don’t have to download a script
fi le twice when visiting another page that uses it.

Chapter 8: Client-Side Scripting 109

Where to Include the <script> Tag
You can use the <script> tag nearly anywhere in an HTML document.
I recommend including inline and remote scripts at the very end, right
before the closing </body> tag. This has two advantages:

■ When some browsers encounter a <script> tag, they halt any other
processes until they download and parse the script. By including scripts
at the end, you allow the browser to download and render all page
elements, style sheets, and images without any unnecessary delays.

■ Since the browser encounters and renders the Web page before
executing any script, you know that all page elements are already
available for you to retrieve and manipulate.

Putting <script> tags at the end has one distinct disadvantage, however.
Because the Web page downloads and renders fi rst, there may be a
noticeable delay before any scripts execute. This should not be the case
with the short examples in this book, so I will use this general template
for HTML documents:

<!DOCTYPE html>

<html>

 <head>

 <title></title>

 <link rel="stylesheet" href="styles.css"

➥ type="text/css" />

 </head>

 <body>

 <!-- page elements go here -->

 <script src="my-script.js" type="text/javascript">

➥ </script>

 </body>

</html>

The JavaScript Pocket Guide110

Nonblocking and Lazy Loading
What I’ll show next is an advanced technique, but you’ll encounter
it in later chapters that use certain JavaScript libraries, so I’ll briefl y
explain it here.

You can use JavaScript to include other script fi les in a Web page. You
simply create a <script> element and append it to the document.

var script = document.createElement("script");

script.type = "text/javascript";

script.src = "my-script.js";

document.getElementsByTagName("head")[0].appendChild(script);

When you dynamically append a script to a page, the browser does
not halt other processes, so it continues rendering page elements
and downloading resources. This is called nonblocking script loading.

You can also use this technique at arbitrary times in your script. You
may decide to include only a small amount of code at page load and
then download other script fi les only when needed. This is called
lazy loading.

Many popular JavaScript libraries now include utility functions to
encourage these practices. Some libraries exist specifi cally for this
purpose, such as LABjs (http://labjs.com/). Other libraries use it as
the primary method of including scripts in a page, such as YUI 3
(http://developer.yahoo.com/yui/3/).

Unless they use a library that leverages nonblocking script load-
ing, the examples in this book will use simple <script> elements to
include JavaScript in HTML.

http://labjs.com/
http://developer.yahoo.com/yui/3/

Chapter 8: Client-Side Scripting 111

The Browser Problem
Programming in pure JavaScript is relatively straightforward, but once
you add the myriad of browsers available to the equation, everything
gets signifi cantly more complicated.

Brandon Eich developed JavaScript for Netscape 2.0 in the midst of the
“browser wars” of the late 1990s. To keep up, Microsoft made its own
version of JavaScript that it called JScript. It wasn’t an exact copy of the
original implementation, and many of the original differences persist
today.

In addition, the Web and its technologies continue to evolve at a rapid
pace. Browser makers have the daunting task of innovating their prod-
ucts and keeping up with each other, all while maintaining backward
compatibility with the billions of Web sites that exist on the Internet.

Fortunately, groups such as the W3C, WHATWG, and ECMA have made
great strides in codifying and standardizing JavaScript and browser APIs.
Their efforts allow developers to more easily “write once, run anywhere”
and trust that their code will continue to work as the Web evolves. Most
modern browsers, such as Firefox, Safari, Opera, and Chrome, follow Web
standards very closely. Internet Explorer still lags behind in standards
support and is often a thorn in every developer’s side.

JavaScript developers tackle browser differences with libraries of code
that help provide consistent APIs across all browsers. You’ll learn about
libraries soon, but the next few chapters focus on pure JavaScript objects,
properties, and functions.

The JavaScript Pocket Guide112

What Does API Mean?
API stands for application programming interface, which is a some-
what generic term for whatever tools you use to programmatically
interact with a piece of software. Browser APIs are mostly functions
and properties that give you access to browser windows, elements in
HTML documents, and even certain parts of the user’s computer.

Progressive Enhancement
Web development is an interesting and challenging fi eld because you
can’t reliably know how the user will end up viewing your code.

Usually, the ideal end user is someone using a modern browser on a
fast computer with a high-speed Internet connection. This may describe
the majority of Web surfers, but dozens of factors affect how any given
person might see your code:

■ Some people can’t or won’t upgrade from an older browser.

■ Some people have slower computers with smaller screens.

■ Some people surf the Web on mobile devices with tiny screens and
no mice.

■ Some people don’t have fi ne motor control, so computer mice aren’t
a viable option.

■ Some people are visually impaired and use screen reader software to
operate computers using aural cues.

■ Some people lock down their browsers out of a concern for privacy,
so JavaScript and cookies aren’t available.

Chapter 8: Client-Side Scripting 113

Creating interesting, engaging, and useful Web pages that anyone can
use is a daunting challenge, but it is possible. The most prevalent strat-
egy is commonly known as progressive enhancement.

I like to think of Web development as layers upon layers (Figure 10.1).
HTML is your most basic, fundamental layer. A well-organized HTML page
should be accessible to any user because it is just plain text decorated
with a bit of meaning (or semantics) using HTML tags.

Figure 8.1
The layers of Web
development.

CSS is your second layer, which determines presentation and layout.
Some users, especially the visually impaired, won’t get this layer.

JavaScript is your third layer, which adds behavior and interactivity. The
number of users without JavaScript is dwindling, but they still exist.

Images, plug-ins such as Flash and Silverlight, video, and audio are exam-
ples of additional layers of Web content.

Because it’s inherently the most accessible, the fundamental HTML
layer should be the only layer required to use your Web pages. Each

The JavaScript Pocket Guide114

layer above that should just progressively enhance the content below it,
making the experience more attractive, more effi cient, and more engag-
ing. If a layer isn’t available to a user, the core content of the page should
still be just as accessible.

One of your most important “users” isn’t a person at all. Search engine
robots are like blind, deaf, keyboard-reliant users who browse the Web
with images and JavaScript turned off. Search engine optimization (SEO)
and progressive enhancement often go hand in hand.

Progressive enhancement and accessibility are incredibly important
topics that unfortunately are a bit beyond the scope of this book. Still,
I’ll show how I include progressive enhancement techniques in my
 examples starting in Chapter 14 of the book.

Handling Non-JavaScript Situations
If a user comes to your page without JavaScript, you can use two differ-
ent techniques to make sure your content is still accessible. Keep in mind
that your HTML and CSS foundation must be well organized for these
techniques to be of any use.

The <noscript> Tag

Browsers only show the content inside the <noscript> tags when
JavaScript is unavailable. I don’t fi nd this to be terribly useful; it’s often
used to display a message notifying the user of the missing JavaScript
behaviors.

<noscript>

 <p>This page requires JavaScript.</p>

</noscript>

Chapter 8: Client-Side Scripting 115

Requiring JavaScript goes against the principles of progressive enhance-
ment, so I avoid code like this whenever I can.

JavaScript-Specifi c CSS Classes

I use the following technique a lot so that I can write CSS for situations
with and without JavaScript by replacing the no-js class with the js
class. Start by including a no-js class in your markup, as shown here:

<html class="no-js">

Then include a <script> tag that immediately replaces that class with
a js class.

<script type="text/javascript">

 document.documentElement.className = document.

➥ documentElement.className.replace(/\bno-js\b/, "js");

</script>

I like this technique enough, in fact, that I prefer a shorter version, as
shown here:

(function(d, c) {

 d[c] = d[c].replace(/\bno-js\b/, "js");

})(document.documentElement, "className");

By passing in the repetitive parts of that line of code as the arguments
of a self-invoking function, I can reference them as single-character vari-
able names (document.documentElement becomes d, and "className"
becomes c).

This is one of the rare times when I want to include a <script> tag
earlier in the page, such as in the <head> element. Replacing the
no-js class as quickly as possible reduces any fl ashes of content as
the page loads.

The JavaScript Pocket Guide116

Using this technique gives me the freedom to write CSS rules like this:

html.no-js .accessibilityMessage {

 display: block

}

html.js #alternateNav {

 display: none;

}

note Credit for this technique goes to Paul Irish
(http://paulirish.com/).

http://paulirish.com/

You learned in previous chapters that window is the global object in
client-side JavaScript. Many of its properties and methods are part of the
core JavaScript language, but it also has many other that are specifi c to
programming in the browser. This chapter gives a quick overview and
reference of the properties and methods that directly relate to browsers
and browser windows.

Browsers and
Windows

9

The JavaScript Pocket Guide118

Properties
Browser windows have a couple of properties that mostly deal with the
size and position of the window on the screen. These properties are read-
only, and you’ll need to use the window methods described in the next
sections to change their values.

■ innerHeight, innerWidth Represent the pixel values of the size of
the browser viewport. The viewport is the scrollable area inside the
window. The following are the equivalent properties for most versions
of Internet Explorer:

document.documentElement.clientHeight;

document.documentElement.clientWidth;

■ outerHeight, outerWidth Represent the pixel values of the size of
the browser window. Internet Explorer does not have equivalent
properties.

■ pageXOffset, pageYOffset Represent the pixel values for how far the
user has scrolled the page. The following are the equivalent properties
for most versions of Internet Explorer:

document.documentElement.scrollLeft;

document.documentElement.scrollTop;

■ screenLeft, screenTop, screenX, screenY Represent the position of
the browser window on the user’s screen. There is little agreement
between browsers about which property to use, so you must check
both.

var screenX = window.screenX || window.screenLeft;

var screenY = window.screenY || window.screentTop;

Chapter 9: Browsers and Windows 119

Coordinates on the Screen
Most people are used to coordinate systems that start in the bottom
right. The X value moves the left as it gets bigger, and the Y value
moves up as it gets bigger. On computer screens, the Y value gets
fl ipped (Figure 9.1).

Figure 9.1
The screen
coordinate
system.

Global Functions
Advertisers and spammers have abused some of these methods, espe-
cially window.open(), which they use to create pop-up and pop-under
windows. Use discretion when manipulating browser windows to avoid
obnoxious and intrusive behavior.

Dialog Boxes
Dialog boxes allow for rudimentary user interaction. I don’t like using
them unless I really need to demand the user’s attention. They are modal,
which means the user must dismiss the dialog box before being allowed
to interact with the rest of the browser again.

The JavaScript Pocket Guide120

■ alert(message) Show a dialog with the message and an OK button.
alert() is useful for debugging in browsers such as Internet Explorer 6
that don’t have console.log(). Objects passed to alert() are coerced
into a string via the toString() method, which often only returns
"[object Object]", so it’s not nearly as useful as a real console.

■ confi rm(message) Shows a dialog box that includes Cancel and OK
buttons. The method returns true or false based on whether the
user clicked OK or Cancel, respectively. Be very careful when using this
method because it’s often diffi cult to write questions that can really
be answered by Cancel or OK.

■ prompt(message[, defaultResponse]) Shows a dialog box that includes
a text fi eld for the user to enter a response string. The fi eld is prepopu-
lated with defaultResponse if provided.

Manipulating Browser Windows
You have some control over browser windows, but again, try not to annoy
or frustrate your users with these methods.

■ open(url, name[, features]) Opens the page located at url in a new
window, or if a window with the name name already exists, the url
opens in that window. It returns a reference to the opened window
that you can control programmatically.
The features argument is an optional string specifying what browser
features the new window should have. It is a comma-separated list of
"feature=value" pairs. Most values are “yes” or “no” except for height
and width, which expect pixel values.
Some browsers like Firefox ignore “no” values on the location bar to
make it harder to pretend to be a secure site like a banking website.

Chapter 9: Browsers and Windows 121

var newWindow = open("http://www.google.com",

➥ "searchWindow", "location=yes,menubar=yes,

➥ resizable=yes,scrollbars=yes,status=yes,

➥ toolbar=yes,width=600,height=400,left=10,top=10");

■ close() Closes a window that you opened programmatically. You cannot
close a window that you didn’t open, including the current window.

■ moveBy(deltaX, deltaY) Moves the window a certain number of pixels
from the current position. The arguments can be negative or positive
integers. A positive deltaX moves the window to the right, and a nega-
tive deltaY moves the window up.

■ moveTo(x, y) Moves the window to the x, y position on the user’s
screen.

■ resizeBy(deltaWidth, deltaHeight) Resizes a window a certain number
of pixels from the current size. The arguments can be positive or
negative integers. Calling resizeBy(50, -25) on a window that is
600x800 pixels results in a 650x775 pixel window.

■ resizeTo(width, height) Resizes a window to be width pixels wide and
height pixels tall. Browsers no longer allow you to resize a window to
be very small so that you can’t hide a window from a user. This applies
to resizeBy() as well.

■ scrollBy(deltaX, deltaY) Scrolls the document to the left by deltaX
pixels and down by deltaY pixels.

■ scrollTo(x, y) Scrolls the document so that the part of the document
located at x, y is in the top-left corner of the browser viewport.

■ focus() Brings a browser window to the front and sets it to respond to
keyboard events.

■ blur() The opposite of focus(), sending the window behind other
windows so that it won’t respond to keyboard events.

■ print() Brings up the browser’s Print dialog box.

The JavaScript Pocket Guide122

The history Object
The history object gives you programmatic access to the browser’s Back
and Forward buttons. It has three methods: back(), forward(), and go().

// Same as pressing the Back button

window.history.back();

// Same as pressing the Forward button

window.history.forward();

// Same pressing the Back button twice

window.history.go(-2);

// Same as pressing the Forward button twice

window.history.go(2);

The location Object
The location object allows you to inspect and change the window’s
current URL. You can change the current page by setting it to a different
string value.

window.location = "http://www.google.com";

You can also change just part of a URL by assigning new values to any of
the following properties. Refer to this example URL:

http://www.example.com:8080/dir/fi le.html?param=value¶m2=

➥ value2#comments

■ hash The string after and including the hash: #comments

■ host The domain and port: www.example.com:8080

■ hostname Just the domain name: www.example.com

■ href The entire URL: http://www.example.com:8080/dir/fi le.html?
➥ param=value¶m2=value2#comments

Chapter 9: Browsers and Windows 123

■ pathname The string after the host and before the search, including
the leading slash (/): /dir/fi le.html

■ port The port: 8080

■ protocol The string before the host, not including the slashes (//):
http:

■ search The query string variables, including the leading question mark
(?): ?param=value¶m2=value2

Cookies
Cookies are small strings that let you store data across page views and
sessions. These are some common uses of cookies:

■ Keeping track of whether the user has logged in to your site

■ Remembering that a user has visited a page before

■ Differentiating between fi rst-time visitors and repeat visitors

Cookies are also sent to the server with every page request. That’s how
the server knows whether the user is logged in. Because cookies add data
to the request and therefore increase the size of the request, cookie data
is limited to 4KB.

The window.document object has a funny little property called cookie.
You can use that object to read and set cookie data.

Setting Cookies
To set a cookie, just assign the name and value to document.cookie
in the following format:

document.cookie = "name=value";

The JavaScript Pocket Guide124

You can set only one cookie at a time, but assigning another value to
 document.cookie doesn’t overwrite the previous cookies, unless one of
them shares the same name. You can continue to assign name/value pairs
to document.cookie until you hit the 4KB limit enforced by the browser.

// Adding another cookie

document.cookie = "anotherName=anotherValue";

You should always pass the value part of the string through
encodeURIComponent() to make sure it doesn’t contain any illegal
 characters such as spaces, commas, and semicolons.

var cookieValue = "encoded value";

document.cookie = "thirdCookie=" +

➥ encodeURIComponent(cookieValue);

You can also set the following optional parameters that affect the
 visibility, life span, and security of this particular cookie:

■ domain The domain or subdomain that can read this cookie.

■ expires The date on which this cookie expires. This must be in
GMT format.

■ max-age The lifetime in seconds before the cookie should expire.

■ path The URL path to which this cookie is restricted.

■ secure If set, the browser will send this cookie over HTTPS only for
security.

You can set any of these parameters by appending them to the cookie
string, separated by semicolons.

// This secure cookie will last a year

document.cookie = "name=value;max-age=" + (60*60*24*365) +

➥ ";secure;";

Chapter 9: Browsers and Windows 125

note Restricting the visibility of a cookie by setting the domain and path
parameters does not make your cookie secure. Never store sensitive

information such as usernames and passwords in cookies.

Reading Cookies
Even though document.cookie only lets you set one cookie at a time, you
read all the cookie values at once.

document.cookie;

"name=value; anotherName=anotherValue; thirdCookie=

➥ encoded%20value"

You’ll have to use your string manipulation skills to extract a single
 cookie’s value from this string. Regular expressions come in handy here.

function getCookie(name) {

 // Get each individual cookie by splitting

 // on semicolons and possible spaces

 var cookies = document.cookie.split(/;\s*/);

 // Make a regular expression to match the name

 // and value in a subpattern

 var pattern = new RegExp("\\b" + name + "=(.*)");

 // Check each cookie until you fi nd a match

 for (var i = 0, l = cookies.length; i < l; i++) {

 var match = cookies[i].match(pattern);

 if (match) {

 return decodeURIComponent(match[1]);

 }

 }

}

getCookie("thirdCookie");

"encoded value"

The JavaScript Pocket Guide126

Deleting Cookies
Deleting cookies is simple: Just set the cookie’s value to nothing with a
max-age of zero.

document.cookie = "anotherName=;max-age=0";

The navigator Object
The navigator object gives some insight into what browser is running
your code. This is sometimes referred to as browser sniffi ng. This is useful
for two reasons:

■ You can use it to collect data about what browsers visit your sites. This
is called analytics, and there are many prebuilt solutions for this like
Google Analytics.

■ You can use it to target code for a particular browser. For instance, if
you know that Internet Explorer doesn’t support some code, you can
test for “Microsoft Internet Explorer” in window.navigator.appName.

Unfortunately, this object isn’t as useful as it could be for a couple of
reasons:

■ There aren’t any standards for what type of values navigator proper-
ties should have. For instance, window.navigator.appVersion is not
just a version number but can include a variety of other information.

■ Early JavaScript programmers relied too heavily on this informa-
tion, so their scripts worked only in certain browsers. When a new
browser came out, it would use the navigator properties to pretend
to be a different browser. For instance, many sites in the 1990s were
built to work best in Netscape. Internet Explorer then copied parts of
Netscape’s window.navigator.appCodeName in order to trick those
sites to run code as if it were Netscape.

Chapter 9: Browsers and Windows 127

Feature Detection vs. Browser Sniffi ng
In the next few chapters, I’ll discuss many properties and methods
that some browsers (mainly Internet Explorer) don’t support. In
your code, you could take one of two approaches to handling these
 differences:

■ You could use the navigator properties to determine whether the
browser is Internet Explorer and execute different code.

■ You could check to see whether the property or method you want
to use exists and execute different code if it doesn’t.

The latter method is always the better way to go. If Internet Explorer
10 includes support for the property or method, then your test is no
longer applicable. Feature detection—testing for the feature before
using it—is the most reliable way to make sure your code continues
to work effi ciently with future browsers.

This page intentionally left blank

This chapter could easily be titled something like “Scripting HTML,” but
the DOM is such an important concept that it deserves marquee status.
DOM stands for “Document Object Model,” which is a concise way
of explaining exactly what it is: the model (or representation) for the
objects in an HTML document. More specifi cally, it is a hierarchy of data
types for HTML documents, links, forms, comments, and everything else
that can be represented in HTML code.

Like everything else in client-side scripting, the DOM has a muddy
history, and resulting implementations across browsers are more compli-
cated for it. Web standards have smoothed out many rough edges, but
you still have to account for missing methods and differences in imple-
mentations, especially in Internet Explorer. (Chapter 12 will show how to
take advantage of code that lets you ignore all these differences.)

The DOM

10

The JavaScript Pocket Guide130

Nodes
Nodes are the general data type for objects in the DOM. They have
 attributes, and some nodes can contain other nodes.

There are several node types, which represent more specifi c data types
for HTML elements. Node types are represented by numeric constants, so
if you need to determine the type of a node, compare its nodeType prop-
erty with the values in Table 10.1.

Table 10.1 Common Node Types
Type Constants

Document, the element at Node.DOCUMENT_NODE === 9
the top of the DOM tree

Element, the general type for Node.ELEMENT_NODE === 1
nodes represented by HTML tags

Text, representing simple text Node.TEXT_NODE === 3
in HTML including whitespace

Comment, for Node.COMMENT_NODE === 8
<!-- html comments -->

DocumentFragment, the top Node.DOCUMENT_FRAGMENT_NODE === 11
element for abstract DOM trees

Notice that text and comments are also nodes in the DOM, even though
it’s rare that you’ll need to retrieve and manipulate them.

Node Collections
Collections are arraylike objects that hold lists of nodes. Unlike arrays,
these lists are “live,” meaning that if the DOM changes (nodes are added,
removed, or reordered), the collection automatically updates to refl ect
those changes.

Chapter 10: The DOM 131

As an example, say you have three paragraphs in your page, like this:

<p>one</p>

<p>two</p>

<p>three</p>

You can retrieve a collection of those nodes with the
 getElementsByTagName() method. Its length property has the value of 3.

var paragraphs = document.getElementsByTagName("p");

console.log(paragraphs.length);

3

Now, create a new paragraph, and append it to the document body.

var newPara = document.createElement("p");

newPara.appendChild(document.createTextNode("four"));

document.body.appendChild(newPara);

The collection of paragraphs automatically updates to include the new
paragraph as soon as it is added to the page.

console.log(paragraphs.length);

4

If you need array methods such as splice() or reverse(), you have to
convert the collection to an array by looping over each item and adding
the items to a real array. However, this new array is not live, so it will not
automatically update to refl ect changes to the page.

Node Trees
Nodes are organized in hierarchies, or trees. Nodes that contain other nodes
are parent nodes. Nodes contained in a parent node are child nodes. Text
and comment nodes can be child nodes, but they can’t be parent nodes.

The JavaScript Pocket Guide132

An HTML document that looks like the following is represented as a node
tree in the DOM:

<!DOCTYPE html>

<html>

 <head>

 <title>DOM Example</title

 </head>

 <body>

 <div>

 <h1>Heading</h1>

 </div>

 <p>Click this Link to see more.</p>

 </body>

</html>

You could diagram the DOM tree as shown in Figure 10.1.

Figure 10.1
A DOM tree
diagram.

Notice how the <p> element contains three nodes: a text node, an <a>
element, and another text node.

Chapter 10: The DOM 133

This tree diagram is actually missing many more text nodes, because
newlines and indentations count as text nodes. The node tree starting
at the <div> element should actually look like Figure 10.2 to include the
formatting whitespace.

Figure 10.2
A branch of the
DOM tree with
whitespace text
nodes.

Node Properties
All nodes have three common properties, though some of them are less
useful on certain node types.

nodeName

For element nodes, which are represented by <tags> in HTML, the node-
Name property is the tag name. In HTML it is always uppercase.

document.createElement("a").nodeName;

"A"

document.createElement("fi eldset").nodeName;

"FIELDSET"

Other node types return a string representation of its type.

document.nodeName;

"#document"

document.createTextNode("a text node").nodeName;

"#text"

The JavaScript Pocket Guide134

Likewise, the nodeName properties of comment nodes and document
fragment nodes return “#comment” and “#document-fragment,”
respectively.

nodeType

The nodeType property returns a numeric constant, useful for determin-
ing the unknown type of a node. Refer to Table 10.1 for various nodeType
values.

var nodeType = element.fi rstChild.nodeType;

if (nodeType === 1) {

 console.log("The node is an element");

} else if (nodeType === 3) {

 console.log("The node is a text node");

} else if (nodeType === 8) {

 console.log("The node is a comment");

}

nodeValue

The nodeValue property is useful only for text and comment nodes. The
property returns null for all other node types.

<p>Text node inside of a paragraph <!-- a comment node --></p>

// Retrieve the fi rst item in the collection with [0]

var para = document.getElementsByTagName("p")[0];

para.fi rstChild.nodeValue; // Text node

"Text node inside of a paragraph "

para.lastChild.nodeValue; // Comment node

" a comment node "

Chapter 10: The DOM 135

Walking the DOM
The simplest way to fi nd DOM nodes is to “walk” the DOM tree. Nodes
have several properties that return adjacent nodes in the tree. You can
combine these properties to walk from node to node.

Refer to this HTML document for the examples in this section:

<!DOCTYPE html>

<html>

 <head>

 <title>Walking the DOM</title>

 </head>

 <body>

 <h1>Heading</h1>

 <p>Paragraph with Link</p>

 </body>

</html>

Starting with document
The document element is a property of the global window object, so it’s
the most easily accessed and most used DOM node. It has two important
properties that act as starting points in the DOM tree.

document.documentElement;

<html>

document.body;

<body>

Use the fi rstChild property to access the <head> element inside the
documentElement.

document.documentElement.fi rstChild;

<head>

The JavaScript Pocket Guide136

The childNodes property returns a collection, so you can loop over it
like an array. In a well-formatted HTML document, you will fi nd many
text nodes.

var bodyChildNodes = document.body.childNodes;

for (var i = 0, l = bodyChildNodes.length; i < l; i++) {

 console.log(bodyChildNodes[i]);

}

<TextNode textContent="\n ">

<h1>

<TextNode textContent="\n ">

<p>

<TextNode textContent="\n ">

The <h1> tag is the second child node of <body>. You can access it by
walking from the text node to its next sibling node.

document.body.fi rstChild.nextSibling;

<h1>

You can also access it by its index in the childNodes collection.

document.body.childNodes[1];

<h1>

To retrieve the <p> element, you can continue to walk the tree, skipping
over the whitespace between elements.

var heading = document.body.childNodes[1];

heading.nextSibling.nextSibling;

<p>

The paragraph has two child nodes, including the fi rst useful text node.

Chapter 10: The DOM 137

var paragraph = heading.nextSibling.nextSibling;

paragraph.childNodes;

[<TextNode textContent="Paragraph with ">, a walking.html#]

The lastChild property gives you quick access to the <a> node inside the
paragraph.

paragraph.lastChild;

You can walk back to the <h1> node with previousSibling, again skip-
ping over the whitespace between elements.

paragraph.previousSibling.previousSibling;

<h1>

You can also walk up the DOM tree to the <body> node with the
parentNode property.

paragraph.parentNode;

<body>

Managing Whitespace
The fact that whitespace appears in the DOM tree makes walking the
DOM less useful than it should be. Creating utility methods that skip
whitespace text nodes is a common solution.

function usefulNextSibling(startingNode) {

 var notWhitespace = /[^\t\n\r\s]/;

 var sibling = startingNode;

 while (sibling = sibling.nextSibling) {

 if (! (sibling.nodeType === 3 &&

➥ notWhitespace.test(sibling.nodeValue))) {

 return sibling; (continues on next page)

The JavaScript Pocket Guide138

 }

 }

}

// Example usage

usefulNextSibling(heading);

<p>

The statement while (sibling = sibling.nextSibling) reassigns the
value of sibling to its nextSibling until it runs out of elements and
the loop stops. The if statement checks whether the sibling is a text
node (nodeType === 3) and that it contains characters other than tabs,
newlines, and spaces using a regular expression.

Many libraries include useful tree-walking functions to make program-
mers’ lives easier.

children

Not available in Internet Explorer 6 and 7

Modern browsers provide a new property, children, that returns a collec-
tion of child element nodes only, ignoring text and comment nodes.
Sadly, it doesn’t work in Internet Explorer 6 and 7.

document.body.children;

[h1, p]

paragraph.children; // Ignores the nonempty text node

[a walking.html#]

Chapter 10: The DOM 139

Finding Nodes
Walking the DOM is useful for fi nding elements that are close to one
another, but if you need an element deep in the DOM tree, it’s much
easier to fi nd it with one of these retrieval methods.

getElementById(domId)

The getElementById() method is one of the most common DOM meth-
ods. It returns a single element node that has the id attribute of domId.

<div id="content">

 <div id="sidebar"></div>

</div>

document.getElementById("content");

<div id="content">

getElementsByTagName(name)

The getElementsByTagName() method returns a collection of element
nodes with the tag name of name.

All element nodes have these retrieval methods, so you can look for a
node inside another node.

var content = document.getElementById("content");

content.getElementsByTagName("div");

[<div class="sidebar">]

getElementsByClassName(name)

Not available in Internet Explorer

Modern browsers provide a method similar to getElementsByTagName()
that retrieves elements by their class attribute. It even fi nds elements
using combinations of classes when separated by a space.

The JavaScript Pocket Guide140

<p>Normal paragraph</p>

<p class="special">Special paragraph</p>

<p class="extra special">Special paragraph</p>

document.getElementsByClassName("special");

[p.special, p.extra]

document.getElementsByClassName("extra special");

[p.extra]

You can write a helper function that works similarly to
 getElementsByClassName() by looping over all the elements in the
page and testing for the class name using a regular expression:

function getByClass(className, tagName, parentElement) {

 parentElement = parentElement || document;

 tagName = tagName || "*";

 // Use the real method if available

 if (parentElement.getElementsByClassName) {

 return parentElement.getElementsByClassName(className);

 } else {

 var classNameTest = new RegExp("\\b" + className + "\\b");

 var elementsByTag =

➥ parentElement.getElementsByTagName(tagName);

 var results = [];

 for (var i = -1, el; el = elementsByTag[++i];) {

 if (classNameTest.test(el.className)) {

 results.push(results);

 }

 }

 return results;

Chapter 10: The DOM 141

 }

}

It would be too expensive to loop over every element in the page when
you use this helper function, so you can specifi c a tag name or a parent
element to search through a smaller collection of elements. This exam-
ple limits its search to <p> elements inside an element with the ID of
“parentId”:

var parent = document.getElementById("parentId");

getByClass("special", "p", parent);

querySelector(selector)

Not available in Internet Explorer 6 or 7

The querySelector() method is a new method that uses the browser’s
CSS selector engine to fi nd elements in a page. It returns the fi rst
element that matches selector. You can use any CSS selector that the
browser supports.

For simple selectors, you’re better off using one of the getElement*
methods because they are always faster.

document.querySelector("#domId"); // Akin to getElementById()

document.querySelector(".name");

➥ // getElementsByClassName()

document.querySelector("div"); // getElementsByTagName()

The real power of querySelector() is the ability to search the document
with complex, chained selectors.

document.querySelector("#parent + .adjacent >

➥ .directDescendent a:last-child");

The JavaScript Pocket Guide142

querySelectorAll(selector)

Not available in Internet Explorer 6 or 7

The querySelectorAll() method works the same as querySelector()
except that it returns all elements that match selector. Unlike
getElementsByTagName(), querySelectorAll() returns a static list that
doesn’t automatically update when the DOM changes.

Creating Nodes
The DOM provides a few methods to create new nodes. In addition,
Microsoft created a nonstandard way of creating nodes that had enough
benefi ts to be adopted by modern browsers.

Using DOM Methods
The DOM methods are great for when you want to create one node at
a time.

createElement(tagName)

Creating element nodes is as simple as passing the desired tag
name to document.createElement(). Unlike many DOM methods,
createElement() is available only on the document object.

document.createElement("div");

<div>

document.createElement("a");

<a>

document.createElement("body");

<body>

Chapter 10: The DOM 143

Creating HTML5 Elements
HTML5 introduces several new elements for richer semantics and
better document structure, such as <article>, <aside>, and <nav>.
By default, Internet Explorer handles these new elements so poorly
that they become unusable. Fortunately, you can pass any tag name
to createElement(). Creating a single copy of a new element causes
Internet Explorer to treat it as if it were a <div>.

document.createElement("nav");

There are a few “HTML5 shim” scripts available online that add sup-
port for all of the new HTML5 elements.

createTextNode(nodeValue)

You can use the createTextNode() method to add text inside an
element node.

<p id="myPara"></p>

var textNode = document.createTextNode("Inserted Text");

document.getElementById("myPara").appendChild(textNode);

<TextNode textContent="Inserted Text">

The paragraph element now looks like this:

<p id="myPara">Inserted Text</p>

cloneNode(deep)

You can create a copy of a node with cloneNode(). The deep argument is
required. If deep is true, cloneNode() copies the entire tree of the node,

The JavaScript Pocket Guide144

including all element and text nodes. If it is false, it copies only the node
in question.

<p id="myPara">Click here.</p>

var myPara = document.getElementById("myPara");

var deepClone = myPara.cloneNode(true);

var shallowClone = myPara.cloneNode(false);

deepClone.childNodes.length;

3

shallowClone.childNodes.length;

0

Using innerHTML
Microsoft created the innerHTML property on element nodes as a quick-
and-dirty way of setting the HTML contents of an element. Simply assign
the property to a string with HTML tags.

var myPara = document.getElementById("myPara");

myPara.innerHTML = 'Click here.';

Regardless of the former contents of myPara, it now looks like the follow-
ing because innerHTML completely overwrites the element’s content:

<p id="myPara">Click here.</p>

You can now retrieve the newly created <a> tag like so:

var newLink = myPara.getElementsByTagName("a")[0];

The benefi t of this technique is that you can make massive changes to
the DOM with only a single line of code. Achieving the same result with
createElement() and createTextNode() requires many more method
calls and lines of code.

Chapter 10: The DOM 145

A potential downside is that it treats HTML as strings in JavaScript source
code. This can quickly become unwieldy, because you have to balance
single quotes and double quotes in long strings. HTML code in JavaScript
makes your code harder to read and maintain.

Using Document Fragments
Every time you change the DOM, the browser updates the page to refl ect
those changes. This is called a repaint. Repainting large or complex pages
can cause the browser to halt or stutter as it recalculates the display of
each DOM node.

If you need to make many changes to the DOM all at once, you can make
those changes to a document fragment node and avoid repaints after
each change. Once you fi nish the changes, you can pull the results from
the fragment to update the document.

var fragment = document.createDocumentFragment();

// Create 100 new paragraphs with createElement()

for (var i = 0; i < 100; i++) {

 var para = document.createElement("p");

 para.appendChild(document.createTextNode("Paragraph " + i));

 fragment.appendChild(para);

}

// Add all of them to the document at once

document.body.appendChild(fragment);

Adding, Removing, and Reordering Nodes
These methods actually work the same across browsers, so they’re very
useful to know.

The JavaScript Pocket Guide146

appendChild(node)

The appendChild() method adds node as the last child node.

document.body.appendChild(document.createTextNode(

➥ "Appended Text"));

insertBefore(node, reference)

The insertBefore() methods inserts node directly before reference.

<p id="p1">First Paragraph</p>

<p id="p3">Third Paragraph</p>

var thirdPara = document.getElementById("p3");

var secondPara = document.createElement("p");

secondPara.appendChild(document.createTextNode(

➥ "Second Paragraph"));

thirdPara.parentNode.insertBefore(secondPara, thirdPara);

removeChild(childNode)

The removeChild() method removes and returns childNode from
the DOM. Note that you don’t have to call removeChild() before
 appendChild() or insertBefore() if you’re manipulating a node that’s
already part of the document. Nodes are automatically removed before
they are inserted into a new location in the DOM tree.

Utility Functions

The DOM doesn’t provide prependChild() or insertAfter(), but these
functions are relatively simple to write yourself.

Chapter 10: The DOM 147

function prependChild(parent, node) {

 // If the parent has children, insert the node

 // before the parent's fi rstChild

 if (parent.fi rstChild) {

 parent.insertBefore(node, parent.fi rstChild);

 // If the parent is empty, just append the node

 } else {

 parent.appendChild(node);

 }

 return node;

}

// Example usage

prependChild(parent, newChildNode);

function insertAfter(node, reference) {

 // If the reference node has a nextSibling, insert

 // the node before that

 if (reference.nextSibling) {

 reference.parentNode.insertBefore(node,

➥ reference.nextSibling);

 // If the reference node is the last child, just

 // append the node to the parent

 } else {

 reference.parentNode.appendChild(node);

 }

 return node;

}

// Example usage

insertAfter(newNode, referenceNode);

The JavaScript Pocket Guide148

Prototypes of DOM Nodes
DOM nodes aren’t true JavaScript objects but instead are interfaces
to the elements in the HTML document. The actual implementation
of these interfaces is complicated and varies across browsers, but
the end result is that you can’t reliably manipulate the prototypes
of their data types. For example, you can’t add an insertAfter()
method to all DOM elements like I added trim() to all strings in
Chapter 6.

Most JavaScript libraries instead create wrapper objects for DOM
nodes in order to add methods and code in an object-oriented style.
Here is a simple example so that the concept is more familiar once
you start using libraries:

var Wrapper = function(node) {

 this.node = node;

};

Wrapper.prototype = {

 // Implement built-in methods

 appendChild : function(child) {

 return this.node.appendChild(child);

 },

 // Implement custom methods

 prependChild : function(child) {

 if (this.node.fi rstChild) {

 return this.node.insertBefore(child,

➥ this.node.fi rstChild);

 } else {

 return this.node.appendChild(child);

 } (continues on next page)

Chapter 10: The DOM 149

Prototypes of DOM Nodes (continued)
 }

};

var wrappedNode = new Wrapper(document.

getElementById("domId"));

wrappedNode.appendChild(newNode);

wrappedNode.prependChild(anotherNode);

Inspecting and Changing Elements
Finding and creating DOM elements are important steps, but JavaScript
programmers spend far more time using and changing the various prop-
erties and attributes of DOM elements.

Attributes
HTML elements, such as <a> and <input>, have a bunch of attributes,
such as href and type, that determine their appearance and functional-
ity in a Web page. In JavaScript, they are available as simple properties
that you can read and assign new values with the dot (.) or bracket ([])
operators.

Search Engine

<input type="text" name="name" id="name" value="" />

var link = document.getElementsByTagName("a")[0];

link.href;

"http://www.google.com" (continues on next page)

The JavaScript Pocket Guide150

link.href = "http://www.bing.com";

"http://www.bing.com"

var nameInput = document.getElementById("name");

nameInput.type;

"text"

nameInput["value"] = "Lenny";

"Lenny"

note Internet Explorer throws an error if you try to change the type attri-
bute of an input. Nearly all HTML attributes are mutable, but this is an

exception because of a browser bug.

Two common attribute names, class and for, confl ict with reserved
words in JavaScript, so you must refer to them as className and htmlFor.

link.className = "special";

Calculated Attribute Values

When you access an element’s attribute with a property, the value may
not exactly match the HTML source code. Attribute properties are calcu-
lated values, which are usually more useful, fortunately.

Relative link href values often leave out the “http://” and the domain,
but the href property always returns a fully qualifi ed URL.

Link

link.href;

"http://www.example.com/a/relative/page.html"

Also, attributes such as checked and selected for <input> elements
don’t really have a value. Their presence in the HTML code indicates a
true value.

Chapter 10: The DOM 151

<input type="radio" id="radio1" checked="checked" />

<input type="radio" id="radio2" />

var radio1 = document.getElementById("radio1");

var radio2 = document.getElementById("radio2");

radio1.checked;

true

radio2.checked;

false

radio2.checked = true; // radio2 is now checked

The DOM provides a few methods for handling attributes, but I much
prefer the object property syntax described earlier because it’s more
succinct. The getAttribute() method is sometimes useful, however,
because it doesn’t return a calculated value. (Link href attributes require
special treatment in Internet Explorer to get the uncalculated value.)

Special Link

var link = document.getElementById("special");

link.getAttribute("id");

"special"

link.hasAttribute("class");

false

link.setAttribute("class", "normal");

link.removeAttribute("id");

// For most browsers

link.getAttribute("href");

"relative.html"

// For Internet Explorer (notice the 2)

link.getAttribute("href", 2);

"relative.html"

The JavaScript Pocket Guide152

You should always use attributes with explicit values such as <input
checked="checked" /> (instead of <input checked />), especially if you’re
using the getAttribute() method.

Special Properties
DOM elements have a few special read-only properties to determine
element dimensions and positions. They are fairly reliable across all
browsers, but there are some quirks in special situations. Generally
speaking, I prefer to use library functions such as jQuery’s width(),
height(), and offset() methods to make life easier.

Size is relatively straightforward: The offsetWidth and offsetHeight
properties return pixel values representing the width and height of an
element, respectively.

The offsetLeft and offsetTop properties aren’t quite as simple,
because elements are positioned relative to their offset parent, which is
available on the offsetParent property.

When you want to change the position of an element with CSS, you
change its position property to “absolute” or “relative” and set the posi-
tion with top or left.

#positioned {

 position: absolute;

 left: 100px;

 top: 50px;

}

If the element exists inside another positioned element, the values for
top and left start counting from the top-left corner of that parent
element.

Chapter 10: The DOM 153

#offsetParent {

 position: relative;

}

<div id="offsetParent">

 <div id="positioned"></div>

</div>

If the #offsetParent element exists at left: 200px, top: 200px,
then the #positioned element really sits at left: 300px, top: 250px
(Figure 10.3). But its offsetLeft and offsetTop properties just return
100 and 50, respectively.

Figure 10.3
How offsetLeft
and offsetTop
work.

These helper functions are useful for fi nding the position of an element
in the document by looping through every offsetParent.

function getLeft(element) {

 var left = element.offsetLeft;

 while (element = element.offsetParent) {

 left += element.offsetLeft; (continues on next page)

The JavaScript Pocket Guide154

 }

 return left;

}

function getTop(element) {

 var top = element.offsetTop;

 while (element = element.offsetParent) {

 top += element.offsetTop;

 }

 return top;

}

Element Styles
Changing the appearance of an element is probably the most common
task in JavaScript programming. In fact, I would say that, at a basic level,
most of the user interface components I build do little more than change
the styles of elements in various ways.

JavaScript and CSS are very powerful, but they’re such different tech-
nologies that it takes a while to understand how to use them together.
Browser APIs and incompatibilities don’t make it any easier, either. After
events, the second most important reason why I use JavaScript libraries is
reading and writing element styles.

You can do plenty of things with plain JavaScript, classes, and the style
property, though.

The class Attribute

The easiest and often most effective way to change an element’s appear-
ance is to change the CSS that affects it by changing its class. If you
want to hide an element, you can use this:

Chapter 10: The DOM 155

/* In your CSS code */

.hide {

 display: none

}

// In JavaScript

element.className = "hide";

To revert the element to its original state, just remove the “hide” class.
The tasks of adding, removing, and toggling classes are so common that
nearly every JavaScript library includes functions to facilitate them.

It’s an effective best practice to put all your appearance-related code in
the CSS and just use class names in JavaScript. Imagine your site high-
lights special text by changing the color to red. You could litter your
JavaScript with code like this:

text.style.color = "red";

But if your design changes and you want to highlight text in blue, you
have to change every reference to “red” in your JavaScript fi les. A better
solution would be to use a “highlight” class to keep all your color refer-
ences in CSS.

/* In your CSS */

.highlight {

 color: blue;

}

// Using a JavaScript function provided by a library

addClass(text, "highlight");

The JavaScript Pocket Guide156

The style Attribute

The style attribute is special in JavaScript. In HTML, it allows you to write
inline CSS for a specifi c element.

<p style="font-family: monospace; background-color: #fcc;

➥ margin-bottom: 10px">Text</p>

In JavaScript, an element’s style property is a special object with proper-
ties for every CSS property.

p.style.fontFamily = "monospace";

p.style.backgroundColor = "#fcc";

p.style.marginBottom = "10px";

Take note of two really important details about that example:

■ CSS properties with multiple words are referenced in camelCase in
JavaScript.

■ Values for style properties are always strings. Numbers still need
units like “px” or “em.”

You can assign values freely to style properties. If the browser’s CSS
engine doesn’t understand a value, it will be ignored.

There are nearly limitless uses for style properties, but they require a
solid understanding of CSS to be used effectively.

Reading values from the style property can be confusing at fi rst. Values
come from the actual style attribute in the HTML, not from CSS.

#styled {

 width: 100px;

}

<div id="styled" style="height: 100px"></div>

Chapter 10: The DOM 157

var div = document.getElementById("styled");

div.style.height;

"100px"

div.style.width;

""

Style properties aren’t very useful for inspecting the appearance of an
element, unless you’ve set the styles in HTML or with JavaScript. That’s
where computed styles come in.

Computed Styles

The DOM provides an API for retrieving the computed value of an
element’s style. Unfortunately, not only is it very awkward to use, but
Internet Explorer has its own incompatible version. I usually leave this
work to a JavaScript library, but here is how it basically works if you’re
interested:

// The standard API

document.defaultView.getComputedStyle(element,

➥ null).getPropertyValue("width");

// The Microsoft API

element.currentStyle("width");

The standard API is long and ugly, but it at least works how you want it.
The Microsoft API is actually pretty nice, except that it doesn’t always
return useful values. Width, height, position, and font size values are
returned literally from the CSS, so sometimes they are percentages, in
ems, or even just “auto.” JavaScript libraries use a number of tricks to turn
these relative values into absolute pixels, which are far more useful in
JavaScript.

This page intentionally left blank

Events are hugely important to client-side programming. Without them,
you couldn’t add interactivity to web pages beyond clicking links and
submitting forms.

Using events is a matter of executing a function in response to an action
or input. These functions are known as event listeners or event handlers.
I prefer handler even though some method names use listener. (Would a
function handle an event or listen for an event? The former makes more
sense to me.)

Events

11

The JavaScript Pocket Guide160

You can add event handlers to page elements in two ways, and Internet
Explorer throws a wrench into the works by providing a completely differ-
ent event API from every other modern browser. Handling events prop-
erly across all browsers can be pretty tricky, but fortunately JavaScript
libraries make it much easier by abstracting away all the messy details.
Cross-browser event handling is the biggest reason why I almost always
use a library when programming JavaScript.

This chapter introduces event handling in pure JavaScript, followed by
examples for the different event types. That way, you can have a sense of
what’s going on under the hood when you use JavaScript library event
functions in the examples later in the book.

Event Attributes
The simplest way to add an event handler is to assign a function to an
event attribute of a DOM element. Event attributes have names like
onclick, onkeypress, and onload.

var link = document.getElementsByTagName("a")[0];

function clickHandler() {

 alert(this.href);

 return false;

}

link.onclick = clickHandler;

Assuming there is a link in your HTML document, clicking it shows an
alert dialog box with the href value of the link. The browser won’t follow
the link because its default behavior is prevented.

This style of event handling works the same across all browsers. For
simple tasks, it’s a great way to start working with events.

Chapter 11: Events 161

Event Attributes in HTML
I’m referring to this style of event handling as event attributes and
not properties because you can use them as HTML attributes.

<a href="http://www.google.com" onclick="alert(this.href);

➥ return false; ">Click Here

I won’t show any more examples of this style of code because it’s
always best to avoid mixing your HTML and JavaScript.

Return Values
Handlers on event attributes can prevent the default behavior of an
event by returning false. For click events on links, this prevents the
browser from following the link and loading a new page. For submit
events on forms, this prevents the form from submitting and loading a
new page.

var form = document.getElementsByTagName("form")[0];

function preventSubmit() {

 return false;

}

form.onsubmit = preventSubmit;

Event Attribute Method Context
The browser executes event attribute handlers in the context of the
elements to which they were bound. This means you can access the
element with the this keyword.

The JavaScript Pocket Guide162

function whatDidIClickOn() {

 console.log("You clicked on ", this);

 return false;

}

var links = document.getElementsByTagName("a");

for (var i = -1, link; link = links[++i];) {

 link.onclick = whatDidIClickOn;

}

You clicked on

Multiple Event Handlers
One problem with event attributes is that you can assign only one func-
tion to them at a time. You may need an event to execute two different
functions. This is common for the onload event. Many scripts add event
handlers to the window object’s onload event so that they wait until the
page fi nishes loading before running any code. Fortunately, this isn’t too
hard to overcome.

<!DOCTYPE html>

<html>

 <head>

 <title>Multiple Load Handlers</title>

 </head>

 <body>

 <script type="text/javascript">

 function addOnloadHandler(newHandler) {

 var previousHandler = window.onload;

 window.onload = function() {

 if (typeof previousHandler === "function") {

 previousHandler.call(this);

 }

Chapter 11: Events 163

 newHandler.call(this);

 };

 }

 addOnloadHandler(function() {

 alert("first handler");

 });

 addOnloadHandler(function() {

 alert("second handler");

 });

 </script>

 </body>

</html>

The addOnloadHandler() function saves a reference to the current value
of window.onload before assigning it a new value. This lets you call both
the original event handler and the new event handler when the load
event occurs.

The actual event handler ends up being an anonymous function that
retains access to both the previousHandler and newHandler variables. It
checks to see whether the previousHandler is a function before calling
it. Using call() allows you to execute the event handlers in the proper
context so that this refers to window.

Event Methods
The DOM provides a more modern and fl exible API for handling events.
The core methods are commonly referred to as the DOM Level 2 Event
API. (Using event attributes, as described earlier, is sometimes referred
to as the DOM Level 0 API.) None of these methods work in Internet
Explorer.

The JavaScript Pocket Guide164

addEventListener(eventType, handler, capture)

The addEventListener() method explains its purpose right in the name.
The eventType argument is a string for the type, like “submit,” “mouseover,”
or “keypress.” The handler is a function. And capture is a required Boolean
value that I’ll describe in a moment. It will be false in most cases.

<p id="para">Click here</p>

var para = document.getElementById("para");

para.addEventListener("click", eventHandler, false);

para.addEventListener("click", otherEventHandler, false);

function eventHandler(event) {

 alert("You clicked a " + this.nodeName);

}

function otherEventHandler(event) {

 alert("This was a " + event.type + " event");

}

Clicking the paragraph element should result in two alert dialogs that
say, “You clicked a P” and “This was a click event.”

You cannot be sure which event handler will execute fi rst. It’s entirely up
to the browser to decide the order.

As you can see, it’s much easier to attach multiple events to elements with
this style of adding event handlers. Generally speaking, it’s considered the
better and more modern approach to events compared to event attributes.

removeEventListener(eventType, handler, capture)

The removeEventListener() method is also self-explanatory. All argu-
ments work exactly as they do in addEventListener(). To remove
a particular event handler, pass in the same arguments you used in
addEventListener().

Chapter 11: Events 165

<h1 id="header">Click this multiple times</h1>

var header = document.getElementById("header");

header.addEventListener("click", selfRemovingEvent, false);

function selfRemovingEvent(event) {

 alert("Listening for the event and removing myself");

 this.removeEventListener(event.type, selfRemovingEvent,

➥ false);

}

This event handler removes itself after being called, so you will see
the alert dialog only once. You have to pass the original function to
removeEventListener(), so you can’t use anonymous functions in
this case.

The Internet Explorer API
Internet Explorer’s event API is different and inconvenient enough
that I never use it. Not only does it work differently than the stan-
dard API, but it also has problems with memory leaks. If an event
handler references another DOM element, sometimes that element
becomes trapped in memory and eventually bogs down the browser.

You can write a function that uses the standard API or the Internet
Explorer API depending on what’s available, but JavaScript libraries
already handle that and do it better. You can look forward to han-
dling cross-browser events with APIs like this:

link.bind("click", function(event) {

 alert("Don't go to " + this.href);

 event.preventDefault();

});

The JavaScript Pocket Guide166

The Event Object
Using the standard API, event handlers receive an Event object as an
argument. This object provides information about the event as well as
methods for controlling the outcome and life cycle of the event.

Properties
Different types of events have different properties, which you’ll learn
about later in the chapter. Here are a few properties common to all stan-
dard Event objects:

■ type The type of the event, like “click,” “load,” or “keypress.”

■ target The element that originally dispatched the event. This may not
be the same as the element to which the event handler is attached.

■ currentTarget The element to which you attached the event handler.
In most cases, it is synonymous with the this keyword. If you change
the context of the event handler with call() or apply(), you can still
access the element with currentTarget.

■ eventPhase A number that indicates whether the event is currently
capturing (1), bubbling (3), or at the target element (2). Find out more
information in the “Event Bubbling and Capturing” section later in this
chapter.

■ timeStamp A number in seconds that represents the time at which the
event occurred.

Methods
These methods give you control over the how long the event lives and
what its fi nal outcome is.

■ preventDefault() Prevents the default behavior from occurring. Default
behaviors include following links and submitting forms.

Chapter 11: Events 167

Don't go to

➥ Google

var link = document.getElementById("link");

link.addEventListener("click", dontFollowLink, false);

function dontFollowLink(event) {

 alert("Not going to " + this.href);

 event.preventDefault();

}

■ stopPropagation() Stops the event from continuing to propagate
through the DOM tree. Find out more information in the “Event
Bubbling and Capturing” section.

Event Objects in Internet Explorer
In Internet Explorer, the Event object isn’t available as an argument
of the handler. Instead, it’s a property of window. To write cross-
browser DOM Level 0 code, look for the Event object in both places.

function handler(event) {

 event = event || window.event;

}

Event Bubbling and Capturing
The life cycle of an Event object is more complicated than you may
initially expect. Events go through three phases and travel up and down
the DOM tree when they fi re. Most of the time this doesn’t come into
play, but it’s still an important concept to understand.

The JavaScript Pocket Guide168

Bubbling
When an event occurs on an element, it triggers on all the parent nodes
of that element. You can test this for yourself. Make an HTML document
with this body:

<body>

 <div>

 <p>

 Click

 </p>

 </div>

</body>

Add some padding to the elements too so you can click a parent element
without clicking the child:

body, div, p {

 padding: 10px;

}

Then add a script block that adds an event listener to each element and
the document. (Remember, this code won’t work in IE.)

var div = document.getElementsByTagName("div")[0];

var p = document.getElementsByTagName("p")[0];

var a = document.getElementsByTagName("a")[0];

document.addEventListener("click", whatNode, false);

document.body.addEventListener("click", whatNode, false);

div.addEventListener("click", whatNode, false);

p.addEventListener("click", whatNode, false);

a.addEventListener("click", whatNode, false);

Chapter 11: Events 169

function whatNode(event) {

 console.log(this.nodeName);

 event.preventDefault();

}

When you click the link, the console shows this:

A

P

DIV

BODY

#document

If you just click the <div> element, the event handlers for the <a> and
<p> elements won’t execute:

DIV

BODY

#document

The Event object bubbles from the target element through each
element in the DOM tree all the way up to the document. If you add
an event handler to an element, any child element can cause that
handler to execute.

This is important enough to repeat: Events fi ring on the children of an
element cause the element’s event handlers to execute. Because the
document object is an ancestor of all elements in the page, its event
handlers always execute regardless of where the event originated.

Capturing
The bubbling phase is actually the last phase of an Event object’s life
cycle. All events originate on the document and travel down the DOM tree
to the target element. This is called the capture phase.

The JavaScript Pocket Guide170

To add an event handler to the capture phase of an event, change the
third argument in addEventListener() to true. Add these lines to the
HTML document you created to test bubbling:

document.addEventListener("click", whatNode, true);

document.body.addEventListener("click", whatNode, true);

div.addEventListener("click", whatNode, true);

p.addEventListener("click", whatNode, true);

a.addEventListener("click", whatNode, true);

Also, change the whatNode() function to this:

function whatNode(event) {

 console.log(this.nodeName, "phase: " + event.eventPhase);

 event.preventDefault();

}

Now when you click the link, the console shows this:

#document phase: 1

BODY phase: 1

DIV phase: 1

P phase: 1

A phase: 2

A phase: 2

P phase: 3

DIV phase: 3

BODY phase: 3

#document phase: 3

As the event travels from the document to the target element, it’s in the
capture phase, represented by the 1. At the target element, the event
is in the second “at target” phase. The last phase is the bubbling phase,
which you’ve seen before.

Chapter 11: Events 171

Stop Propagation

You can stop an element from continuing to capture or bubble by calling
stopPropagation() on the Event object. Change the whatNode() func-
tion to demonstrate this.

function whatNode(event) {

 if (this.nodeName === "DIV") {

 event.stopPropagation();

 }

 console.log(this.nodeName, "phase: " + event.eventPhase);

 event.preventDefault();

}

Clicking the link now results in this:

#document phase: 1

BODY phase: 1

DIV phase: 1

With this event handler, the event stops propagating down the DOM tree
once it reaches the <div> element during the capture phase.

Event Delegation
Understanding bubbling and capturing is mostly important for knowing
how child elements affect the event handlers of their parents. But it also
has a practical use with a technique called event delegation.

Say you have a page with 100 links and want to do something special
when the user clicks any of them. You could loop through all the links
and attach event handlers to each of them.

var allLinks = document.getElementsByTagName("a");

var i = allLinks.length; (continues on next page)

The JavaScript Pocket Guide172

while (i--) {

 allLinks[i].addEventListener("click", somethingSpecial,

➥ false);

}

function somethingSpecial(event) {

 alert(this.href);

 event.preventDefault();

}

But what if you later add links to the page, maybe with an Ajax call?
You’ll have to add the event handler to that link too, probably by repeat-
ing the line of code for addEventListener().

A more elegant solution involves adding a single event handler to the
document and having it act based on the target element of the event.

// Add one event handler to the capture phase

document.addEventListener("click", delegatedSomethingSpecial,

➥ true);

function delegatedSomethingSpecial(event) {

 if (event.target.nodeName === "A") {

 alert(event.target.href);

 event.preventDefault();

 }

}

This new event handler doesn’t do anything unless the element that
originated the event is a link. You can add dozens more links to the page,
and this handler will work for all of them. It’s also slightly faster because
you’re using the capture phase of the event. That way, the event doesn’t
travel through all phases of the event life cycle before executing.

Chapter 11: Events 173

Event Examples
Adding/removing event handlers is the same regardless of the type of
event. Handling events, however, differs depending on the event type.
Here are examples of common event types.

Browser Events
These events are triggered by the browser, not by the user. They’re very
important but not entirely all that interesting.

load

Most scripts need to wait until the page fi nishes loading before execut-
ing. The simplest way to do this is by adding an event handler on the
window object. You usually want to add the event handler as soon as
possible, maybe even before any third-party code loads. In that case,
use the onload event attribute, but make sure not to override any event
handlers already added to the page. See the addOnloadHandler() func-
tion discussed earlier in the chapter for an example.

You can also add load event handlers to elements. Unfortunately,
you can’t rely on them because Internet Explorer may not fi re the event if
the image is cached on the user’s computer.

unload

The unload event fi res right before the browser unloads the page, usually
to travel to another page. If your page is a complex Web application like
Google Docs, you may want to save recent changes to the server with
Ajax before the user loads a new page.

The JavaScript Pocket Guide174

beforeunload

The beforeunload event is a special event that is also useful for complex
Web applications. It allows you to warn the user that they’re about to
leave the page. The event handler can return a message for a confi rma-
tion dialog to inform the user of the consequences of leaving the page.

window.onbeforeunload = function() {

 return "Leaving the page will lose all your work!";

};

The entire dialog will say, “Are you sure you want to navigate away from
this page? Leaving the page will lose all your work! Press OK to continue,
or Cancel to stay on the current page.”

resize

The resize event is useful for redrawing a complex layout based on the
size of the window.

window.onresize = function() {

 var div = document.getElementById("centeredBox");

 var windowHeight = window.innerHeight ||

➥ document.documentElement.clientHeight;

 div.style.top = windowHeight / 2 - div.offsetHeight / 2

➥ + "px";

};

window.onload = function() {

 window.onresize();

};

This example centers a <div> element vertically in the browser, which
isn’t possible with just CSS. It calls the onresize() method as soon as
possible to force the browser to position the <div> when the page loads.

Chapter 11: Events 175

DOMContentLoaded

The DOMContentLoaded event is relatively new and poorly supported
across browsers, especially Internet Explorer and nearly all browsers
released before 2009. But it’s important enough that nearly all JavaScript
libraries emulate it as best as possible.

The load event waits until all the resources in the page fi nish loading
before fi ring. Images, style sheets, and scripts can delay the load event.
The DOMContentLoaded event fi res as soon as all the DOM elements in
the page are available. This lets you manipulate elements in the page as
soon as possible.

document.addEventListener("DOMContentLoaded", function() {

 // All DOM elements are now available, but the browser

 // might still be loading images and other files

}, false);

If you don’t include your <script> tags at the bottom of the HTML
markup, you’ll need to use the DOMContentLoaded event to make sure
your DOM elements exist before using them in JavaScript.

Mouse Events
JavaScript lets you take advantage of the versatility of the mouse in
many ways. Mouse events provide some useful information about the
event, including where it took place and whether the user was holding
down any keys during the event.

■ clientX, clientY The mouse position compared to the top-left corner of
the viewport (the window).

■ pageX, pageY The mouse position compared to the top-left corner of
the page, which may be scrolled out of view.

■ screenX, screenY The mouse position compared to the top-left corner
of the computer screen.

The JavaScript Pocket Guide176

■ offsetX, offsetY The mouse position compared to the top-left corner of
the element on which the event occurred.

■ altKey, ctrlKey, metaKey, shiftKey Evaluates to true if, respectively, the
Alt, Ctrl, meta, or Shift key is down during the event. The meta key is
the Cmd key on Mac OS, so Internet Explorer doesn’t support it (being
Windows-only).

■ button Indicates the button used, so it works only on events that
involve mouse buttons. The left button is 0, the middle button is 1, and
the right button is 2.

■ detail For mouse button events, the number of times the user clicked
the mouse button, if the clicks occur quickly enough together. For
mouse wheel events, the distance the wheel has spun.

■ relatedTarget For mouseover events, the elements that the mouse just
left. For mouseout events, the element that the mouse just entered.

click

The click event is the most important because it’s not strictly a mouse
event (which is why it doesn’t have mouse in the name like most other
events shown next). The keyboard can also trigger click events by
hitting Enter/Return on a focused element. This event fi res after mouse-
down and mouseup.

Click or hit enter on this element

var link = document.getElementById("myLink");

link.onclick = function(event) {

 alert("clicked!");

};

Chapter 11: Events 177

Try tabbing to the link and hitting Enter/Return to see if you can fi re the
click event with the keyboard. It’s a lot easier to use click than attach-
ing events on both mouseup and keyup.

mousedown, mouseup

The mousedown event is the fi rst event to fi re when the user clicks a
mouse button.

The mouseup event fi res when the user releases the mouse button, right
before the click event fi res.

dblclick

The dblclick method fi res after any other mouse button events. It’s
very diffi cult to distinguish between single clicks and double clicks.
The detail property, which isn’t available in older versions of Internet
Explorer, gives you a count of the number of clicks.

Click this twice

var link = document.getElementById("myLink");

link.onclick = function(event) {

 // Prevent the default behavior or you won't have

 // time to click again and fire the dblclick event

 return false;

};

link.ondblclick = function(event) {

 alert("double clicked!");

};

The JavaScript Pocket Guide178

mouseover, mouseout

When the mouse enters an element, the mouseover event fi res. When the
mouse leaves, the mouseout event fi res. These events are actually tricky to
use because of event bubbling. Create an HTML document with this CSS
and markup:

div {

 width: 50px;

 height: 50px;

}

#parent {

 padding: 20px;

 background: #999;

}

#child {

 background: #fff;

}

<div id="parent">

 <div id="child">

 </div>

</div>

Now add a <script> block that adds mouseover and mouseout event
handlers to the parent element:

var parent = document.getElementById("parent");

parent.onmouseover = function(event) {

 console.log("mouseover event occurred");

};

Chapter 11: Events 179

parent.onmouseout = function(event) {

 console.log("mouseout event occurred");

};

When the mouse enters the gray parent <div>, the mouseover event
fi res. But if the mouse continues into the white child <div>, the mouseout
and mouseover events fi re again. If you only wanted to know when the
mouse enters and leaves the parent <div>, these extra events can be
problematic.

mouseenter, mouseleave

Only available in Internet Explorer

Internet Explorer provides two events that fi x the mouseover/mouseout
problem described earlier. The mouseenter and mouseleave events are
the same as mouseover and mouseout, respectively, except that they don’t
bubble. For browsers that don’t support these events, you can emulate
them with event.relatedTarget.

parent.onmouseover = function(event) {

 var related = event.relatedTarget;

 while (related && related !== this) {

 related = related.parentNode;

 }

 if (related !== this) {

 console.log("mouseenter (not mouseover) event occurred");

 }

};

parent.onmouseout = function(event) {

 var related = event.relatedTarget; (continues on next page)

The JavaScript Pocket Guide180

 while (related && related !== this) {

 related = related.parentNode;

 }

 if (related !== this) {

 console.log("mouseleave (not mouseout) event occurred");

 }

};

The trick behind these event handlers is testing to see whether the
relatedEvent is a child of the parent <div>. Iterating up the DOM
tree with while and parentNode is the quickest way to test this. Some
JavaScript libraries have built-in support for mouseenter and mouseleave.

Keyboard Events
Keyboard events have two properties related to which key the user
pressed: keyCode and charCode. Unfortunately, these properties work
differently depending on the browser and operating system. The user’s
language also makes a difference, since different languages use different
keyboard layouts. Generally speaking, keyCode is a number representing a
particular key on the keyboard, and charCode is the character code of the
key pressed. It’s best to let a JavaScript library smooth out the differences.

keydown

The keydown event occurs when the user presses a key. Nearly any key
on the keyboard can fi re this event, and it always fi res before keypress.

keypress

The keypress event occurs only when the user presses a key that
normally prints a character. Keys like Enter/Return and Shift do not fi re
this event. The event also repeats while the user holds the key down.

Chapter 11: Events 181

keyup

The keyup event occurs when the user releases the key as the last
keyboard event after keydown and keypress.

To demonstrate how confusing the key events can be, here’s an example
script you can run on any browser:

<input type="text" name="textInput" value="" id="textInput" />

var input = document.getElementById("textInput");

function keyReport(event) {

 event = event || window.event;

 var keyCode = event.keyCode;

 var keyCharacter = String.fromCharCode(keyCode);

 var charCode = event.charCode;

 var charCharacter = String.fromCharCode(charCode);

 var report = [

 "Event: " + event.type,

 "Key: " + keyCode + ", " + keyCharacter,

 "Char: " + charCode + ", " + charCharacter

].join("\n");

 alert(report);

}

input.onkeydown = keyReport;

input.onkeypress = keyReport;

The JavaScript Pocket Guide182

The browser will show you two alert dialogs when you press any key
while typing in the text input. Here’s what Firefox shows when you press
the A key:

Event: keydown
Key: 65, A
Char: 0,

Event: keypress
Key: 0,
Char: 97, a

In this case, the keyCode attribute works only for the keydown and keyup
events. The value represents the key pressed, not the letter pressed, so it
gives you an uppercase A.

Furthermore, the charCode attribute works only for the keypress event.
The value represents the letter pressed, so it gives you a lowercase a.

By contrast, the same action in Internet Explorer 8 results in these alert
messages:

Event: keydown
Key: 65, A
Char: undefi ned,

Event: keydown
Key: 97, a
Char: undefi ned,

Form Element Events
All of the previous events work on form elements such as <input> and
<select>, but forms also have a few special events.

Chapter 11: Events 183

change

The change event occurs after the user changes the value of an editable
element. It usually occurs after any mouse or keyboard events.

<select name="select" id="mySelect">

 <option value="4">Option 1</option>

 <option value="8">Option 2</option>

 <option value="15">Option 3</option>

</select>

var select = document.getElementById("mySelect");

select.onchange = function(event) {

 var newValue = this.options[this.selectedIndex].value;

 alert("New value is " + newValue);

};

submit

The submit event applies only to <form> elements. It occurs when the
user submits a form. You can prevent its default behavior, which is useful
for stopping the submission if there are errors in the fi elds.

Other Events
These events pertain to mouse and keyboard use and are especially
relevant to form inputs.

focus

An element has focus when it can receive keyboard events. By default,
the only elements that can receive focus are the document, links, and
form inputs. Users typically change focus from one element to another

The JavaScript Pocket Guide184

by pressing the Tab key. The focus event does not bubble up the
DOM tree.

You can make any element focusable by setting its tabindex attribute
to 0. Then the user can tab to the element and control it with the
keyboard.

blur

The blur event occurs when an element loses focus. Like the focus event,
it does not bubble.

Throughout this book you’ve seen helper functions for strings, arrays,
elements, and events. You may want to use these or similar functions
in your code. And when you start your second project, you may decide
to copy much of this code over so you don’t have to start from scratch.
Ta-da! You’ve created a library!

The most important reason for using a library is to avoid reinventing the
wheel for each project. JavaScript has a relatively small set of built-in
functions, so collections of reusable code can be great time-savers.

JavaScript programmers also spend much of their time dealing with
the differences between browsers, especially between Internet Explorer
and all the other modern browsers like Firefox and Chrome. Some-
times it’s a matter of different implementations, such as the standard

Libraries

12

The JavaScript Pocket Guide186

addEventListener() and the nonstandard attachEvent(). Other times,
a browser might completely lack a feature, such as querySelector(), and
a library can fi ll that gap. The solution won’t ever perform quite as well
as the native function, but it’s usually better than not having it at all.

A less important but very infl uential aspect of libraries has to do with
coding style. JavaScript is an especially fl exible language, and no two
programmers write code exactly the same way. JavaScript libraries,
however, tend to enforce a particular style. This can be through which
language features they use, their naming conventions, or their design
and organization. A unifi ed style makes it easier to read similar code and
work with other programmers.

Lastly, nearly every library is open source and free to use in your projects.
This encourages innovation, and many developers release components
and tools for use with the library. Using a library allows you to take
advantage of the hard work of hundreds of other JavaScript program-
mers all over the world.

Choosing a Library
Dozens of JavaScript libraries are available. On the whole, anything
you do in one library you can do just as well in another. So, how do you
choose?

First, does the library do what you need to do? If you need complicated
features, such as sophisticated data grids or drawing capabilities, you
may want to consider certain libraries over others. If your needs are
simple, most popular libraries will fi t the bill.

Another consideration is if you need your library to play well with
other code. In Chapter 6, you learned about adding methods to built-in

Chapter 12: Libraries 187

prototypes and how that can possibly confl ict with other code. Some
libraries are built on augmenting Array.prototype and other built-in
objects, while others keep all their functions and properties in a single
namespace to avoid confl icts.

File size is an important consideration because the user will have to
download the library along with your own code. A large library may have
a lot of code that you don’t even use but still makes your pages load
slower. Fortunately, large libraries are getting smarter with lazy loading
techniques, and companies such as Google and Yahoo! provide content
distribution networks for many popular libraries.

In addition to the features provided by the library itself, you should
consider what other code is available for your library. Maybe the library
developers don’t see a reason to include an image slideshow component
in the library, but many other independent developers have probably
created and released one that you can leverage. Take a look at the source
code of third-party components for clearly written and well-commented
code before deciding to use it on your sites.

Lastly and most importantly, choosing a JavaScript library is a matter of
personal style. Some libraries will just make more sense to you in how
they name functions and organize the code. In the end, you can achieve
the same goals no matter what library you use, so pick one that feels
right to you.

note Learning a library is like learning an entirely new language on top of
JavaScript. This book obviously can’t cover all the specifi cs of any one

library. Instead, when a tutorial uses a library, it will include a short glossary at
the end of the chapter that briefl y explains the functions and concepts used.
 In addition, you should use the online documentation available at each
library’s website, as well as the myriad of “cheat sheets” available online to
learn more.

The JavaScript Pocket Guide188

Using Libraries with This Book
Many of the tutorials in the following chapters use JavaScript librar-
ies. You can download the libraries from their respective Web sites, but
instead of making you do that, I’m including references to copies of the
fi les stored by Google and Yahoo!

Google’s Ajax Libraries API (http://code.google.com/apis/ajaxlibs/) is
a content distribution network (CDN) that provides copies of recent
versions of JavaScript library fi les. One downside to using Google’s API
or any other CDN is that you have to be connected to the Internet to
continually download the fi les and test your code. If you want to follow
the tutorials of this book offl ine, you’ll need to download the libraries
from their respective sites fi rst.

YUI 3 uses some interesting techniques for including parts of the library,
as I’ll discuss in a moment. The easiest way to use the library is to use the
Yahoo!’s own content distribution network.

I’m including the most recent versions of these libraries at the time of
this writing. A newer version may be available by the time you’re read-
ing this, but sometimes changes in new versions will break your existing
code. Use the version I’ve specifi ed if you’re running into problems.

You may notice that the source code I’m linking to is a big jumbled mess.
JavaScript code is often compressed to make the fi le size smaller by
removing unnecessary whitespace and making variable names shorter.
You can access the uncompressed source from the library’s Web site.
Google’s API can also provide uncompressed versions.

http://code.google.com/apis/ajaxlibs/

Chapter 12: Libraries 189

jQuery
http://www.jquery.com

jQuery is the most popular JavaScript library on the Web. Created by John
Resig in 2006, it is a general-purpose library that emphasizes interacting
with HTML elements. It is a single JavaScript fi le currently weighing 59KB.

For the last couple of years, I’ve used jQuery more than any other library.
I appreciate that it’s a relatively small library with a manageable number
of functions and utilities.

Coding with jQuery
Using jQuery in your pages is quite simple; just include the entire library
in your HTML document:

<script src="http://ajax.googleapis.com/ajax/libs/jquery/

➥ 1.4.1/jquery.min.js" type="text/javascript"></script>

<script type="text/javascript">

 (function($) {

 $("#myElement").addClass("jquery-fi ed");

 })(jQuery); // Self-invoking function

</script>

The entire library is stored on the jQuery variable, which is often
aliased as $. Because $ is a common variable name in other libraries,
it’s a common practice to pass the jQuery variable as an argument
in a self-invoking function and aliasing it yourself, as shown in the
previous example.

You can also start your scripts by attaching a DOMContentLoaded event
handler:

http://www.jquery.com

The JavaScript Pocket Guide190

jQuery(document).ready(function() {

 // The DOM is ready

});

jQuery Objects

Most of jQuery’s functionality involves fi nding, creating, and manipu-
lating DOM elements. To make this simple and intuitive, it wraps DOM
elements in jQuery objects, which are special arrays with added methods.
(I discussed wrapping DOM elements in order to add methods in Chapter
10.)

You can make a jQuery object in three ways:

■ Pass a DOM element to the jQuery function.

var jQueryObject = $(document.getElementById("#myElement"));

■ Pass a CSS selector to the jQuery function.

var specialLinks = $("a.special");

■ Pass an HTML string to the jQuery function to create a new node.

var newParagraph = $('<p class="message">Message</p>');

You can act on a jQuery object the same regardless of whether it
contains one element, many elements, or no elements at all.

// Add a class name for one element

jQueryObject.addClass("special");

// Change the class attribute for every element in the object

specialLinks.removeClass("special");

// This jQuery object contains no elements

var empty = $("#nonexistent");

Chapter 12: Libraries 191

empty.length;

0

empty.addClass("special"); // No effect

jQuery doesn’t warn you that the object is empty before you call meth-
ods on it, so your script may fail silently.

You can chain multiple methods together to perform several operations
in one line of code.

header.show("slow").fi nd("span").addClass("active").

➥ click(onClick);

You can also create your own jQuery object methods by adding methods
to $.fn.

$.fn.makeAwesome = function() {

 // Loop over each element in the object

 return this.each(function() {

 // Act upon each element. I wish

 // there really was an awesome attribute

 this.attr("awesome", true);

 });

};

$("#element").makeAwesome();

Most jQuery plug-ins and third-party components use this functionality
to extend jQuery’s capabilities.

jQuery Utilities

jQuery also includes a number of functions not directly related to DOM
elements, including Ajax and array utilities. They are available as proper-
ties of the jQuery variable.

The JavaScript Pocket Guide192

jQuery.ajax({

 url : "data.php",

 success : function(response) {

 console.log(response);

 }

});

jQuery UI
http://jqueryui.com/

jQuery also has a medium-sized component library called jQuery UI that
contains support for drag-and-drop, sortables, tabs, progress bars, other
effects such as “bounce” and “slide,” and more. You can download a build
of jQuery UI that contains only the components you need from the proj-
ect’s Web site.

YUI 3
http://developer.yahoo.com/yui/3/

Yahoo! is a mecca for JavaScript, and the company has put its knowledge
and experience into creating the Yahoo! User Interface Library. Version 3,
released in 2009, takes lessons learned from previous versions and other
libraries to provide a well-organized, robust feature set.

Coding with YUI 3
YUI 3 has a large number of native components and a growing number
of third-party components. It leverages lazy loading to speed up down-
load times. The “seed” fi le is only 15KB and manages dependent fi les in a
simple method call.

http://jqueryui.com/
http://developer.yahoo.com/yui/3/

Chapter 12: Libraries 193

<script type="text/javascript" src="http://yui.yahooapis.com/

➥ combo?3.0.0/build/yui/yui-min.js"></script>

<script type="text/javascript">

 YUI().use("overlay", function(Y) {

 var overlay = new Y.Overlay();

 });

</script>

This example includes the seed fi le in one <script> element and uses
the YUI().use() method to load all the JavaScript required to use the
Overlay widget, which ends up being another 98KB. Using this pattern,
you download only the code you need for each page, which helps avoid
wasting bandwidth.

Once the rest of the JavaScript downloads, the library executes the
callback function. The Y object contains all the methods and objects in
the library for you to use in your code. Using callback functions like this
encourages programmers to encapsulate their code in functions to avoid
confl icts with other JavaScript in the page. The Y object is specifi c to that
script and available only inside the callback function.

Once the callback function executes, YUI 3 operates similarly to jQuery;
just replace $ with Y. It has basically the same support for CSS selectors,
event handling, and chainability, just with different method names:

Y.one("#domId").all(".className").on("click", onClick);

YUI 3 stands apart from jQuery by having a large number of widgets and
components built into the library itself, including the following:

■ Plug-in and widget infrastructure that helps you organize your code

■ Components such as drag and drop, style sheet utilities, and history
and cookie management

■ Widgets for overlays and slider controls

The JavaScript Pocket Guide194

This makes the library much larger and more daunting to learn.
Fortunately, the documentation, which you can fi nd at http://developer.
yahoo.com/yui/3/api/, is excellent.

YUI 3 Gallery
http://yuilibrary.com/gallery/

The YUI 3 Gallery is a great resource for fi nding a large number of compo-
nents built by third-party developers for YUI 3. These range from user
interface widgets such as accordions and date pickers to sophisticated
utilities for Ajax and form validation.

MooTools
http://mootools.net/

MooTools arrived in 2006 alongside jQuery and many other libraries. It
has many of the same capabilities as jQuery and YUI 3, but its authors
took a different approach to organizing the code and providing features.

Coding with MooTools
You can include the entire MooTools Core library from Google’s Ajax
Libraries API:

<script src="http://ajax.googleapis.com/ajax/libs/

➥ mootools/1.2.4/mootools-yui-compressed.js"

➥ type="text/javascript"></script>

MooTools also gives you the ability to create a custom version of the
library that includes only the functionality you need for your scripts. The
MooTools Builder (http://mootools.net/core) has checkboxes for each
component of the library if you desire a slimmer, more effi cient library fi le.

http://developer.yahoo.com/yui/3/api/
http://developer.yahoo.com/yui/3/api/
http://yuilibrary.com/gallery/
http://mootools.net/
http://mootools.net/core

Chapter 12: Libraries 195

MooTools also wraps DOM elements using a custom Element data type
that provides additional methods and properties to facilitate fi nding,
creating, and manipulating elements. MooTools contains many of the
same element methods as jQuery, but it tends to use longer and argu-
ably clearer method names.

The http://mootorial.com/ Web site links to several great tutorials to get
a feel for MooTools.

Namespacing

The biggest difference between MooTools and the libraries discussed
earlier is in how it organizes its code. Unlike jQuery and YUI 3, MooTools
spreads its properties and functions across several global variables,
including $, $$, $A, Class, Element, Fx, and Request. It also adds methods
to the prototypes of built-in objects such as Function and Array. Many
programmers fi nd this to be a clearer or more useful approach to library
organization, but you do have to be more careful about confl icts between
global variables.

MooTools More
http://mootools.net/more

The MooTools More library contains a number of plug-ins to the Core
library for form and dragging functionality, additional effects, interface
widgets, and internationalization and translation utilities. Like with
the Core library, you can customize your library fi les to include only the
plug-ins you need.

http://mootorial.com/
http://mootools.net/more

This page intentionally left blank

It’s pretty amazing how many different ways you can hide and show
page elements to create menus, tabs, accordions, and other custom user
interface components. This chapter will show you how to create a simple
slideshow of images, the core of which is elegantly hiding and showing
one image at a time.

Image Slideshow

13

The JavaScript Pocket Guide198

Debugging Your Code
This is the fi rst chapter in the book that will walk you step-by-step
through a nontrivial example. If you get stuck, Firebug will become your
best friend. Here are some tips to help you debug your code:

■ Check the console to see whether there are any errors. Firebug does a
pretty good job of telling you on which line number the error occurred.
If the error actually occurs inside a JavaScript library, Firebug’s output
might be a bit cryptic. Expand the error message by clicking the trian-
gle to see what line number in your fi le is involved (Figure 13.1).

Figure 13.1
The error started
on line 95 in
slideshow.js.

■ If you don’t have any errors, check your variables to make sure they
hold the values you expect. Use console.log() to print the value of
the variables to the console. You may fi nd that an array is actually
empty or you have false instead of true.

■ Firebug’s Script tab is really powerful but takes some effort to under-
stand. It allows you to add breakpoints to specifi c lines of code so you
can stop the script and inspect the variables at that point.

■ When in doubt, back up a few steps and make sure you typed every-
thing correctly. Programming is not a forgiving endeavor.

Chapter 13: Image Slideshow 199

Slideshow Ingredients
For this simple example, you need the following:

■ A simple HTML page with the list of images (slideshow.html)

■ A simple style sheet to help position and display the images and
controls (slideshow.css)

■ A handful of LOLcat images to test with (http://www.lolcats.com)

Figure 13.2 shows a preview of the fi nal result.

Figure 13.2
The LOLcat
slideshow
example.

This list of functional requirements helps plan how you want the widget
to behave:

■ Without JavaScript, the page should contain the fi rst image and a list
of links to the subsequent images.

■ The visible image should fade out as the next image fades in.

http://www.lolcats.com

The JavaScript Pocket Guide200

■ The slideshow should loop back to the fi rst image after showing the
last image.

■ The slideshow should automatically cycle through images every fi ve
seconds until the user clicks the next or previous arrows.

■ Each image should be centered in the slideshow, regardless of size.

It would be much easier to create a slideshow for images that are all the
same size. In fact, that last requirement almost doubles the length of
the code. If I hadn’t planned for it, I might have organized my code very
differently, which is why it really helps to decide on your functionality in
advance.

Slideshow HTML
This example HTML document contains only the bare-minimum markup
to demonstrate how to build a slideshow:

<!DOCTYPE html>

<html class="no-js">

 <head>

 <title>LOLcat Slideshow</title>

 <link rel="stylesheet" href="slideshow.css"

➥ type="text/css" />

 <script type="text/javascript">

 (function(d, c) { d[c] = d[c].replace(/\bno-js\b/,

➥ "js"); })(document.documentElement, "className");

 </script>

 </head>

 <body>

 <div id="slideshow">

 <div class="slides">

Chapter 13: Image Slideshow 201

 <img src="lolcat-1.jpg" width="450" height="336"

➥ alt="Lolcat 1" />

 </div>

➥ Lolcat 2

➥ Lolcat 3

➥ Lolcat 4

 </div>

 <script src="http://ajax.googleapis.com/ajax/libs/

➥ jquery/1.4.1/jquery.min.js" type="text/javascript">

➥ </script>

 <script src="slideshow.js" type="text/javascript">

➥ </script>

 </body>

</html>

As short as the document is, you should notice several important details:

■ The page links to a style sheet called slideshow.css that you’ll create
in a moment.

■ The page also includes references to jQuery from the Google Libraries
API and a new fi le called slideshow.js that you’ll also create.

■ The opening <html> tag and the fi rst <script> element use the no-js/
js technique I described in Chapter 8.

■ The slideshow is contained in a <div> with the ID of “slideshow,”
which makes it easy to hook JavaScript behavior into the page.

The JavaScript Pocket Guide202

■ Each image will exist inside the slides <div>, but I’ve included only the
fi rst image in the markup.

■ The slideshow includes an unordered list of links that point to the
remaining images. I’ve also stored their sizes on the custom data-size
attributes.

note This is a somewhat rudimentary but valid example of progressive
enhancement. The unordered list of links serves dual purposes: Users

without JavaScript can still access the remaining images by clicking the links
and loading the images individually, and it’s easy to use the data stored in the
markup to build the slideshow dynamically. I consider it a small victory when-
ever I can reuse accessible markup in the page to create a more engaging expe-
rience for users who can support it.

Slideshow CSS
Create a fi le called slideshow.css, and include the following CSS rules.
It’s pretty bare now, but you’ll add more rules to support the JavaScript
behavior in the next section.

#slideshow .slides {

 position: relative;

 margin: 0 auto;

 width: 450px;

}

html.js #slideshow .slides img {

 position: absolute;

}

I prefi xed the second selector with html.js because I want the images
to be absolutely positioned only if JavaScript is available to create the
slideshow.

Chapter 13: Image Slideshow 203

Slideshow JavaScript
Since you already know all the functional requirements of slideshow, you
can quickly sketch an outline of the JavaScript code using comments.
Create a fi le called slideshow.js, and enter this code:

(function($) {

 // Include utility jQuery plug-ins

 // Declare initial variables

 // Create images from the link list

 // Collect all images in one node set and hide the list

 // Resize slides <div> to hold the largest images

 // Center each image

 // Save a reference to the fi rst image

 // The function to show the next or previous image

 // Start timer to cycle through images

 // Create next and previous controls

 // The event handler for the controls

})(jQuery); // Self-invoking function executes automatically

Including all the code in a self-invoking function lets you declare func-
tions and variables without worrying that another script might overwrite
them and cause confl icts.

Skipping the “Include utility jQuery plug-ins” comment for now, add this
code beneath the “Declare initial variables” line:

var slideshow = $("#slideshow");

var slides = slideshow.fi nd(".slides");

var currentImageIndex = 0;

The JavaScript Pocket Guide204

The fi rst thing you need to do is fi nd the slideshow <div> by passing a
CSS selector to the jQuery function ($()). Store it on a variable so that
you can fi nd other elements inside it later in the script. The fi rst element
to fi nd is the slides <div>. You’ll also need to keep track of the currently
visible image with the currentImageIndex variable.

Best Practices for Using CSS Selectors in
JavaScript

There’s only one <div class="slides"> element in the page, so why
did I use slideshow.fi nd(".slides") instead of just $(".slides")?

Internet Explorer as well as older browsers do not support
getElementsByClassName() and querySelectorAll(). JavaScript
libraries provide support for these utilities in older browsers by loop-
ing over every element to fi nd the ones that match your class name
or CSS selector. This can take a noticeable amount of time if the
library has to loop over many elements.

By using slideshow.fi nd(), you can limit the search to just the ele-
ments inside the slideshow <div> to improve the performance of
your code.

Creating the Slideshow Images

The next step is to use the list of links to create images and add them to
the slideshow.

// Create images from the link list

slideshow.fi nd("ul a").each(function() {

 var link = $(this);

 var size = link.attr("data-size").split("x");

Chapter 13: Image Slideshow 205

 $("").attr({

 src : link.attr("href"),

 width : size[0],

 height : size[1],

 alt : link.text()

 }).hide().appendTo(slides);

});

This code snippet might look a little daunting because jQuery allows you
to do so much in very little code.

The fi rst thing it does is fi nd all the links in the unordered list using
fi nd() and loop over them using the each() function. jQuery encourages
a functional coding style, meaning that you use looping functions such
as each() more often than language features such as for or while.

Inside the loop function, you can access each link with the this keyword
and turn it into a jQuery object by passing it to $(). Save it on the link
variable because you’ll access it three times in the loop function.

Each link has a string like “350x263” stored on the data-size attribute.
It’s easy to separate the width from the height by splitting on the “x.”

When you pass an HTML string to the jQuery function, such as $("<img
/>"), it creates new HTML elements. The attr() method lets you pass
attributes to the new element, which is how you can set the src, width,
height, and alt attributes for each new image.

jQuery emphasizes chainability, allowing you to immediately call hide()
and appendTo() on the newly created without having to save it
to a variable fi rst. The hide() method sets its display style property to
“none,” and the appendTo() method inserts it into the slides <div>.

The JavaScript Pocket Guide206

It’s very easy to write ten lines of code in jQuery that require six para-
graphs to explain. I happen to enjoy jQuery’s terse style, but it’s defi nitely
a matter of personal preference.

Now that you’ve created all the images, create an array that holds all of
them (including the one that existed in the markup).

// Collect all images in one node set and hide the list

var images = slides.fi nd("img");

slideshow.fi nd("ul").hide();

Centering the Images

To center each of these arbitrarily sized images, you need to fi nd the
tallest and widest dimensions. This is something I do often enough that
I’ve written some jQuery plug-ins to make this easy. You have to include
plug-ins before they are used in your scripts. Skip to the top of your
JavaScript fi le, and add this code:

// Include utility jQuery plug-ins

$.fn.tallest = function(outer, margins) {

 var fn = outer ? "height" : "outerHeight";

 return Math.max.apply(Math, $.map(this, function(el) {

 return $(el)[fn](margins);

 }));

};

$.fn.widest = function(outer, margins) {

 var fn = outer ? "width" : "outerWidth";

 return Math.max.apply(Math, $.map(this, function(el) {

 return $(el)[fn](margins);

 }));

};

Chapter 13: Image Slideshow 207

Back toward the bottom of your JavaScript fi le, you can now use the
tallest() and widest() methods to set the size of the slides <div> to
hold the largest images.

// Resize slides <div> to hold the largest images

var slidesWidth = images.widest();

var slidesHeight = images.tallest();

slides.css({

 width : slidesWidth,

 height : slidesHeight

});

The css() method is a shorthand way of setting style properties on
elements. It takes care of adding “px” to numbers for you and other small
conveniences.

// Center each image

images.each(function() {

 var image = $(this);

 image.css({

 left : slidesHeight / 2 - image.width() / 2,

 top : slidesHeight / 2 - image.height() / 2

 });

});

Centering elements with JavaScript is a pretty common task. I fi nd myself
typing variations of this formula quite often. The each() method makes
it easy to set the left and top style properties for every image.

// Save a reference to the fi rst image

var activeImage = images.eq(currentImageIndex);

Before you start the slideshow, you’ll need to save a reference to the fi rst
image. The eq() method returns a single element wrapped in a jQuery

The JavaScript Pocket Guide208

object. (If you wanted just the plain DOM element, you can access it as
an element in an array: images[0].)

The Slideshow Code

Everything up to this point has been setup code. The meat of the script is
in the showImage() function, which takes an index that indicates which
image to show.

// The function to show the next or previous image

function showImage(newIndex) {

 currentImageIndex = newIndex >= images.length ? 0 :

➥ newIndex;

 currentImageIndex = currentImageIndex < 0 ? images.length

➥ - 1 : currentImageIndex;

 activeImage.fadeOut();

 activeImage = images.eq(currentImageIndex).fadeIn();

}

The fi rst two lines are another pattern I end up writing a lot. There
are only four images (indices 0 through 3), so when you pass 4 to
 showImage(), the number should wrap around to 0. Likewise, if you pass
-1, it should wrap the other direction to 3. At this point, I can easily recog-
nize this pattern when I see it, but you may prefer a more obvious version.

// This example code doesn't go in slideshow.js

currentImageIndex = newIndex;

if (currentImageIndex >= images.length) {

 currentImageIndex = 0;

} else if (currentImageIndex < 0) {

 currentImageIndex = images.length - 1;

}

Chapter 13: Image Slideshow 209

To actually cross-fade the images, jQuery provides two very useful anima-
tion functions, fadeIn() and fadeOut(). To hide the current image,
simply call fadeOut() on the image stored on the activeImage variable.

To show the next image, retrieve it from the images collection with
the eq() method and call fadeIn(). Also be sure to save this image on
the activeImage variable for the next time you call the showImage()
function.

The last thing you need to do to get the slideshow running is to call
showImage() repeatedly using setInterval().

// Start timer to cycle through images

var interval = setInterval(function() {

 showImage(currentImageIndex + 1);

}, 5000);

Each time setInterval() calls this anonymous function, it calls
on showImage() to display the next image by adding one to
currentImageIndex. You’ll also need to save a reference to the interval
to be able to cancel the automatic image rotation.

Slideshow Controls

I try not to mix HTML into my JavaScript fi les, but I make an exception
for HTML elements that would have no use without JavaScript. You could
have put these links in the HTML document and retrieved them with CSS
selectors. However, I think creating these elements with JavaScript is the
appropriate solution in this case.

// Create next and previous controls

$('\u232A').appendTo(slides).

➥ bind("click", +1, onClick);

$('\u2329').appendTo(slides).

➥ bind("click", -1, onClick);

The JavaScript Pocket Guide210

The Unicode entities (such as “\u232A”) in the text of these links are nice-
looking arrow characters pointing left and right.

This is another example of passing an HTML string to the jQuery func-
tion to create a new element. Again, you can immediately append
the elements to the page and add event handlers by chaining jQuery
methods.

The bind() method is jQuery’s version of addEventListener()—another
advantage with JavaScript libraries are the shorter names—but with a
few differences. You can optionally pass some data to the event handler
in the second argument. You’re using the same event handler for both
links and passing in +1 or -1 to indicate which direction to cycle the
slideshow.

The event handler, onClick(), is very simple because it passes on the real
functionality to the showImages() function.

// Event handler for the controls

function onClick(event) {

 event.preventDefault();

 clearInterval(interval);

 showImage(currentImageIndex + event.data);

}

The fi rst thing the event handler does is prevent the default link behav-
ior with event.preventDefault(). jQuery normalizes the event object
across all browsers so you can use the standard API even in Internet
Explorer.

The handler then clears the interval so that the slideshow no longer
automatically cycles after the user interacts with it.

Chapter 13: Image Slideshow 211

Lastly, it calls showImage() very much like the function passed to
 setInterval() does. jQuery stores the extra data passed to bind()
on the event.data property, so the index passed to showImage()
corresponds to the clicked link.

Finally, even though you created the links with JavaScript, it’s usually best
to style them in CSS. Add these rules to position the next and previous
links to the left and right of the slideshow.

#slideshow .next,

#slideshow .prev {

 position: absolute;

 top: 50%;

 margin-top: -0.5em;

 width: 40px;

 font-size: 32px;

 text-decoration: none;

}

#slideshow .next {

 right: -50px;

 padding-left: 10px;

}

#slideshow .prev {

 left: -50px;

 padding-right: 10px;

 text-align: right;

}

The JavaScript Pocket Guide212

jQuery Glossary
Here is a short summary of the jQuery functions and concepts used in
this chapter. You can fi nd much more information in the online documen-
tation at http://api.jquery.com/.

The jQuery Function: $()
This remarkable little function has multiple uses.

■ It fi nds elements if you pass it a CSS selector.

var foundElements = $("#domId > .selector + div");

■ It adds methods to DOM elements by wrapping them in jQuery
objects. This is especially useful inside iterators and event handlers.

var wrappedElement = $(this);

wrappedElement.fadeIn();

■ It creates DOM elements if you pass it an HTML string.

var newElement = $('Click here');

jQuery Object Methods
jQuery objects provide dozens of methods for fi nding, creating, and
manipulating DOM elements. Like the jQuery function ($()), many of
these methods have multiple uses, so these descriptions are incomplete.
These methods act upon single elements and collections of elements in
the same manner.

fi nd(selector) Finds child elements that match the given selector.

attr(name[, value]) Reads an attribute from the fi rst element in the set
and sets attributes on all the elements.

http://api.jquery.com/

Chapter 13: Image Slideshow 213

hide() Sets the display style property to “none.”

appendTo(parent) Appends the element to the parent node.

css(name[, value]), css(object) Reads and sets the style properties of the
element(s). You can pass the name and value or an object containing
several name/value pairs.

width([value]) Reads and sets the width of the element(s).

height([value]) Reads and sets the height of the element(s).

each(func) Calls the given function for each element in the collection.

eq(index) Returns a jQuery object containing the single element at the
given index in the collection.

fadeOut() Animates the element’s opacity to zero and sets the display
style property to “none.”

fadeIn() Animates the element’s opacity to one.

bind(eventType[, data], handler) jQuery’s version of addEventListener().
It can optionally pass data to the handler function in the Event object.

This page intentionally left blank

Drop-down menus are ubiquitous on computers, both in desktop
 software and on the Web. They can be useful tools for organizing the
hierarchy of a complex Web site by hiding deeper pages in submenus
until the user needs them. This chapter demonstrates how to build a
simple menu system using the MooTools JavaScript library.

Drop-Down Menus

14

The JavaScript Pocket Guide216

Menu HTML
The basic HTML document should be fairly unsurprising if you’ve read the
previous example chapter.

<!DOCTYPE html>

<html class="no-js">

 <head>

 <title>Menu</title>

 <link rel="stylesheet" href="menu.css" type="text/css" />

 <script type="text/javascript">

 (function(d, c) { d[c] = d[c].replace(/\bno-js\b/,

➥ "js"); })(document.documentElement, "className");

 </script>

 </head>

 <body>

 <!-- Menu Markup Goes Here -->

 <script src="http://ajax.googleapis.com/ajax/libs/

➥ mootools/1.2.4/mootools-yui-compressed.js" type="text/

➥ javascript"></script>

 <script src="menu.js" type="text/javascript"></script>

 </body>

</html>

It includes two important details to notice:

■ The <html> tag has a class name called no-js, which you’ll use for
 fallback behavior in the CSS.

■ The fi rst <script> element loads the MooTools library from Google’s
JavaScript library API. The second loads a fi le called menu.js, which

Chapter 14: Drop-Down Menus 217

you’ll create in a moment. (The fi le doesn’t include the YUI library, by
the way, but instead uses the YUI Compressor to make the fi le smaller.)

Menu Markup
Menus and navigation elements are commonly marked up as unordered
lists of links. For a complex menu hierarchy, you can simply nest unor-
dered lists inside list items. Replace the <!-- Menu Markup Goes Here -->
comment shown earlier with this basic markup for the menu example:

<div id="menu">

 File

 New

 Save

 Close

 Edit

 Cut

 Copy

 Paste

 Window

 Minimize

 Zoom

 Fire Missiles

 (continues on next page)

The JavaScript Pocket Guide218

</div>

Menu CSS
This simple CSS is in no way the most attractive way to style a drop-down
menu, but it demonstrates the basics. Create a fi le called menu.css, and
add this code:

/* Remove the default list styles */

ul, ul li {

 margin: 0;

 padding: 0;

 list-style: none outside;

}

/* Horizontal menu items */

#menu li {

 position: relative;

 fl oat: left;

}

#menu li a {

 padding: 4px 10px;

 background: #ddd;

 display: block;

}

Chapter 14: Drop-Down Menus 219

#menu li.open a {

 background: #aaa;

}

/* Submenus are aligned to the left edge of their parents */

#menu li ul {

 position: absolute;

 display: none;

 left: 0;

}

#menu li li {

 fl oat: none;

 white-space: nowrap;

 zoom: 1; /* force hasLayout in IE */

}

/* IE needs a little help displaying submenu links */

#menu li li a {

 zoom: 1;

 _width: 100%; /* Hack to affect only IE6 */

}

Progressive Enhancement
You can actually create a simple drop-down menu with just HTML and
CSS. Add this CSS declaration to menu.css to see how:

#menu li:hover ul {

 display: block;

}

The JavaScript Pocket Guide220

Now when you hover over a menu item, the display style of the
submenu changes to block, and the menu appears (Figure 14.1). Your
job is done; take the rest of the day off.

Figure 14.1
The drop-down
menu works with
just CSS.

Not really, of course. Even though this CSS-only solution is great, you
might want to add some JavaScript for various reasons:

■ Internet Explorer 6 doesn’t understand the :hover pseudoselector on
elements other than <a>, so this solution doesn’t work for users with
that browser.

■ Using :hover doesn’t provide the most usable experience. The
submenu appears and disappears immediately, so it’s easy to acci-
dentally move the mouse too far or too fast and miss your target. You
can add a short delay with JavaScript to mitigate this. Also, you can’t
 trigger the submenu with the keyboard.

■ You might want to show and hide the submenus by clicking the menu
items or some other behavior. The example in this chapter takes this
approach.

It’s a good idea to leave in the CSS-only solution even if you provide
JavaScript behavior for menus, just in case the user doesn’t have
JavaScript enabled. But you’ll want to disable this CSS so that it doesn’t
confl ict with your JavaScript solution by using the .no-js:

Chapter 14: Drop-Down Menus 221

html.no-js #menu li:hover ul {

 display: block;

}

Menu JavaScript
The MooTools library places a lot of emphasis on creating “classes”
to organize code. It provides a data type called Class, which has some
special functionality to emulate classical object-oriented patterns such as
inheritance and composition. Classes are one of many ways to organize
your code. They have some downsides, which will become clear in this
example, but they also allow for code that is easy to read and under-
stand, especially if you’re used to other object-oriented languages.

note If you want to learn more about classical inheritance and composition,
I recommend searching the Web for tutorials on object-oriented

patterns in ActionScript 3. JavaScript and ActionScript 3 are similar languages,
but the latter includes language features for more structured object-oriented
programming.

Create a fi le called menu.js to start creating your Menu class. The basic
structure of the class looks like this:

var Menu = new Class({

 initialize : function(container) {},

 initMenuItems : function() {},

 addMouseBehavior : function() {},

 onClick : function(event) {},

 toggleLink : function(link) {},

 closeLink : function(link) {},

 openLink : function(link) {},

 showMenu : function(submenu) {}, (continues on next page)

The JavaScript Pocket Guide222

 hideMenu : function(submenu) {},

 closeOtherLinks : function(currentLink) {},

 onOutsideClick : function(event) {}

});

The Class constructor function takes an object that defi nes all the
properties and methods for instances of this class. At its core, the Class
constructor just creates a new data type and adds these properties to its
prototype, as you learned to do in Chapter 6.

MooTools Constructor Functions

MooTools classes use the initialize() method as a constructor func-
tion. It’s called automatically when you create a new instance with the
new keyword.

initialize : function(container) {

 this.container = container;

 this.initMenuItems();

 this.addMouseBehavior();

},

This constructor method simply saves a reference to the menu element
and executes other methods to add the menu’s functionality.

Add this code at the top of menu.js to create the menu once the docu-
ment loads. MooTools provides the custom domready event on the
window element that simulates the DOMContentLoaded event. The $()
function fi nds an element by its ID.

window.addEvent("domready", function() {

 var menu = new Menu($("menu"));

});

Chapter 14: Drop-Down Menus 223

Arrays in MooTools

The next method, initMenuItems(), fi nds all the elements in the menu’s
container that you’ll need to add menu behavior.

initMenuItems : function() {

 // The top

 this.list = this.container.getChildren();

 // The top s (File, Edit, Window)

 this.items = $$(this.list.getChildren());

 // The links in the top s

 this.links = $$(this.list.getElements("a"));

 // The submenu s

 this.submenus = this.container.getElements("ul ul");

},

MooTool’s element-fi nding methods, such as getChildren() and
getElements(), return special arrays with added methods. When you
call an element-fi nding method on an array of MooTools objects, it
returns an array of arrays:

// An array of links for each item in this.items

this.items.getChildren("a")

[[a #], [a #], [a #]]

The $$() function has many uses, one of which is fl attening these nested
arrays for use with all the MooTools methods.

$$(this.items.getChildren("a"))

[a #, a #, a #]

Event Handlers in MooTools Classes

The Menu class’s addMouseEvents() method adds click event handlers
to the links in the menu and on the document element.

The JavaScript Pocket Guide224

addMouseBehavior : function() {

 this.links.addEvent("click", this.onClick.bind(this));

 $(document).addEvent("click", this.onOutsideClick.bind(this));

},

The onClick() method is very simple. It passes the clicked element to
the toggleLink() method and prevents the event’s default behavior to
keep the browser from navigating to a new page.

onClick : function(event) {

 this.toggleLink(event.target);

 event.preventDefault();

},

Practical Function Context Binding
The onClick() function is a method belonging to a Menu object. But
you’re also using it as an event handler. You need access to two dif-
ferent objects inside the onClick() event handler:

■ The current Menu object so that you have access to other proper-
ties and methods defi ned by the Menu class

■ The clicked element so that you know which submenu to open

You learned in Chapter 11 that event handlers execute in the context
of the element handling the event. Under normal circumstances, you
could access the clicked element with the this keyword:

this.links.addEvent("click", this.onClick);

onClick : function(event) {

 // Open or close the submenu for this link

 var clickedLink = this;

 ???.toggleLink(clickedLink);

} (continues on next page)

Chapter 14: Drop-Down Menus 225

Practical Function Context Binding (continued)

This won’t work, however, because toggleLink() also a Menu object
method. Since the this keyword refers to the clicked element, you
don’t have access to the toggleLink() method for the current Menu
object. Fortunately, MooTools provides a helper method for all func-
tions to bind the context of a function to an object:

this.links.addEvent("click", this.onClick.bind(this));

onClick : function(event) {

 // Open or close the submenu for this link

 var clickedLink = ???;

 this.toggleLink(clickedLink);

}

Now you need another way to access the clicked element, since you
changed what the this keyword referred to. In this case, the clicked
element is also available as event.target.

onClick : function(event) {

 // Open or close the submenu for this link

 var clickedLink = event.target;

 this.toggleLink(clickedLink);

}

If the link contained children, you might have had to walk up the
DOM tree to get to the link element because of event bubbling.

If you’re used to programming in a language with built-in classes,
this context binding mess might seem like an awkward step. In
ActionScript 3, for instance, the this keyword always refers to the
current object and always has access to the object’s properties and
methods. It’s easier to change function context in JavaScript, so these
extra steps are necessary if you want to emulate classes and classical
object-oriented patterns.

The JavaScript Pocket Guide226

Showing and Hiding Submenus

The behavior of this menu isn’t too complicated. When the user clicks a
menu item, the following happens:

■ If the item’s submenu is closed, open it after closing any other open
submenus.

■ If the item’s submenu is open, close it.

Also, when the user clicks anywhere other than the menu, it should close
any open submenus. That’s why you’re binding a click event to the
<body> element.

toggleLink : function(link) {

 if (link.retrieve("open")) {

 this.closeLink(link);

 } else {

 this.openLink(link);

 }

},

An easy way to keep track of the status of a link and its submenu is using
MooTool’s store() and retrieve() methods, which allow you to store
arbitrary data on an object. If the “open” data for a link is true, call the
closeLink() method. Otherwise, call the openLink() method.

closeLink : function(link) {

 var submenu = link.getParent().getElements("ul");

 if (submenu.length) {

 link.store("open", false);

 link.getParent().removeClass("open");

 this.hideMenu(submenu);

 }

},

Chapter 14: Drop-Down Menus 227

openLink : function(link) {

 var submenu = link.getParent().getElements("ul");

 if (submenu.length) {

 link.store("open", true);

 link.getParent().addClass("open");

 this.showMenu(submenu);

 this.closeOtherLinks(link);

 }

},

These two methods are nearly identical. They perform the following tasks:

■ Find the appropriate submenu for the clicked link. Make sure the
submenu exists (the array returned by getElements() has a length
greater than 0).

■ Set the “open” data to true or false appropriately.

■ Add or remove the “open” CSS class to the containing .

■ Show or hide the submenu.

■ For openLink() only, close any other open submenus.

To fi nd the submenu for a link, traverse up the DOM tree to its parent
 element with getParent(), and look for any elements inside it.

To show or hide a submenu, simply set the display style of the to
“block” or “none,” just like the CSS-only implementation shown earlier.

showMenu : function(submenu) {

 submenu.setStyle("display", "block");

},

hideMenu : function(submenu) {

 submenu.setStyle("display", "none");

},

The JavaScript Pocket Guide228

note It may seem like overkill to create entirely separate methods to run a
single line of code, but it will become clear why I structured the code

this way when you extend the Menu class later in the chapter.

Closing any other open submenus is pretty simple: Just call the
closeLink() method for all the other links.

closeOtherLinks : function(currentLink) {

 var otherLinks = $A(this.links).erase(currentLink);

 otherLinks.each(this.closeLink, this);

},

The $A() function is a MooTools helper that adds useful methods to an
array. The method you want here is erase(), which removes the given
item from the array.

The each() method runs a function for each item in an array, but just
like with event handlers, you must make sure that this.closeLink()
executes in the context of the Menu object. Fortunately, you can pass a
context object as the second argument in each().

Clicking Outside the Menus

The fi nal method in the Menu class is the event handler for the click
event on the <body> element. Recall from Chapter 11 that click events
bubble up the DOM tree all the way to the document, so you need to
check to see whether the click event originated from an element inside
the menu’s container.

onOutsideClick : function(event) {

 if (! $(event.target).getParents().contains(this.

➥ container)) {

 this.closeOtherLinks();

 }

}

Chapter 14: Drop-Down Menus 229

MooTool’s getParents() method returns every ancestor in the DOM
tree for a particular element, so all you need to do is determine whether
the menu’s container exists in that array. If the click did not origi-
nate from inside the menu, you can close all the submenus by calling
 closeOtherLinks() without an argument.

Extending the Menu Class
Your drop-down menu should now work as expected, but it’s not terribly
exciting at this point. In this section you’ll learn how to take advantage
of the special functionality in MooTool’s classes to add a fancy slide
effect to the menu.

The slide effect is an extra component in MooTool’s More library. Google’s
JavaScript libraries API doesn’t provide this component, so you’ll need
to download it from the MooTool’s Web site (http://mootools.net/more).
Select the Fx.Slide box, and click Download at the bottom of the page.
Include the downloaded JavaScript fi le after the core MooTools library in
your HTML document.

<script src="http://ajax.googleapis.com/ajax/libs/mootools/

➥ 1.2.4/mootools-yui-compressed.js" type="text/javascript">

➥ </script>

<script src="mootools-1.2.4.2-more.js" type="text/javascript">

➥ </script>

<script src="menu.js" type="text/javascript"></script>

Instead of changing your Menu class to add the new functionality, you
can create a new class that “extends” the Menu class. This new class,
FancyMenu, inherits all the properties and methods of the Menu class. It
can also selectively override Menu properties to add behavior specifi c to
FancyMenu objects.

http://mootools.net/more

The JavaScript Pocket Guide230

The basic structure of the FancyMenu class is much simpler than Menu.
Because it inherits all the properties of the Menu class, you don’t have
to repeat methods such as initMenuItems() and addMouseBehavior().
Make sure this code comes after the Menu class in menu.js.

var FancyMenu = new Class({

 Extends : Menu,

 Implements : Options,

 options : {

 duration: "short"

 },

 initialize : function(container, options) {},

 addEffect : function(menu) {},

 showMenu : function(menu) {},

 hideMenu : function(menu) {}

});

The special Extends property tells MooTool’s Class constructor that this
new class will inherit properties from Menu.

The special Implements property pulls in some extra functional-
ity from the MooTools Options component, which you’ll use to make
the FancyMenu behavior customizable. The default options for each
FancyMenu object are stored on the options property by convention.

Change the domready event handler to use your new class:

window.addEvent("domready", function() {

 // var menu = new Menu($("menu"));

 var menu = new FancyMenu($("menu"));

});

Chapter 14: Drop-Down Menus 231

Overriding Inherited Methods

The FancyMenu initialize() method should perform the same actions
as the Menu initialize() method, with two additions:

■ It should handle any customization passed in with the options
argument.

■ It should set up the slide effects for each submenu.

MooTools allows you to add behavior to an inherited method by over-
riding it and executing the original behavior with the special parent()
method.

initialize : function(container, options) {

 this.setOptions(options || {});

 this.parent(container);

 this.submenus.each(this.addEffect, this);

},

The fi rst line uses the setOptions() method. You don’t have to defi ne
that method yourself; it’s available from the Options component
included by the Implements class property.

The second line calls the Menu initialize() method via the parent()
method, which ensures that initMenuItems() and addMouseBehavior()
are still executed.

The last line runs the new addEffect() method for each submenu.

Using MooTools Effects

MooTools provides the slide effect as a class called Fx.Slide. To use it, you
create a new instance of the class, passing in the element that receives
the effect and any optional parameters.

The JavaScript Pocket Guide232

// This example code doesn't go in menu.js

var slideEffect = new Fx.Slide(submenu, {

 duration: "short"

});

You can then control the effect by calling methods such as show(),
hide(), slideIn(), slideOut(), and cancel().

// This example code doesn't go in menu.js

slideEffect.hide(); // Start hidden

slideEffect.slideIn(); // Slide the submenu into view

The effect works by wrapping the submenu in a <div> element with
its overfl ow style set to “hidden.”

Because the slide effect adds a new element to the markup, you need to
add a little more CSS to menu.css to position it correctly.

#menu li div {

 position: absolute;

 left: 0;

}

#menu li div ul {

 position: relative;

}

The addEffect() method creates Fx.Slide objects for each submenu and
calls hide() to set their initial position. It uses the duration property
from the options object to determine the speed of the slide effect. Finally,
it stores the Fx objects for later use when the user clicks a menu item.

addEffect : function(submenu) {

 submenu.setStyle("display", "block");

Chapter 14: Drop-Down Menus 233

 var slideEffect = new Fx.Slide(submenu, {

 duration: this.options.duration

 });

 slideEffect.hide();

 submenu.store("slide", slideEffect);

},

The fi nal step is to override the showMenu() and hideMenu() methods to
use the slide effect objects instead of just setting the display style.

showMenu : function(submenu) {

 submenu[0].retrieve("slide").cancel().slideIn();

},

hideMenu : function(submenu) {

 submenu[0].retrieve("slide").cancel().slideOut();

}

These methods retrieve the slide object from the stored data, cancel
any currently active animations, and call slideIn() or slideOut()
appropriately.

Because you implemented the MooTools Options component, you can
customize the speed of the slide effect when creating the FancyMenu
object.

var menu = new FancyMenu($("menu"), {

 duration : 1000 // One second in milliseconds

});

Now you have two different classes that defi ne drop-down menu behav-
ior, but you didn’t have to write any code twice. If you don’t mind the
extra work managing method context and the this keyword for event
listeners, MooTools classes and similar object-oriented patterns can be a
great way to organize your code.

The JavaScript Pocket Guide234

Keyboard Support
The Menu and FancyMenu classes support keyboard navigation
pretty successfully because the click event responds to the Enter/
Return key as well as the mouse. You can test this by navigating the
links in the page with the Tab key.

The FancyMenu has a slight complication, though: Because of how
the slide effect hides the submenus, you can still tab to their links
even when they are hidden. Keyboard users prefer being able to tab
only to visible elements. (The Menu class hides submenus with the
display style property, so you can’t tab to them.)

You can set the “tabability” of an element with the tabindex prop-
erty. A tabindex of 0 means it can be tabbed to. A tabindex of -1
removes its “tabability.”

MooTool’s makes setting the tabindex property on all the links in a
submenu a simple one-liner:

$$(submenu.getElements("a")).set("tabindex", -1);

Add this line to addEffect(), hideMenu(), and showMenu() to set the
tabindex properties appropriately for hidden and visible submenus.
Don’t forget to change the -1 to a 0 in showMenu().

Now when you tab to a menu item, you have to hit Enter/Return to
be able to tab to the links in its submenu.

Chapter 14: Drop-Down Menus 235

MooTools Glossary
Here is a short summary of the MooTools functions used in this chapter.
You can fi nd much more information in the online documentation at
http://mootools.net/docs/core.

Element Utilities
$(id) MooTool’s version of getElementsById(). This returns a MooTools
element that provides element methods.

$$(selector) Retrieves elements that match the given selector.

$$(collection) Returns an array of MooTools elements that each provides
element methods.

Element Methods
element.addEvent(eventType, handler) MooTool’s version of
addEventListener().

element.getChildren() Returns the element’s child elements.

element.getParent() Returns the element’s parent element.

element.getParents() Returns an array of all of the element’s ancestors.

element.store(name, value) Stores an arbitrary value on an element.

element.retrieve(name) Retrieves arbitrary values saved on the element
with store().

element.setStyle(name, value) Sets the style property of the element(s).

element.set(name, value) Sets an attribute on the element(s).

element.addClass(className) Adds a class name to the element(s).

http://mootools.net/docs/core

The JavaScript Pocket Guide236

Array Utilities
$A(collection) Returns a true array from the given collection.

array.each(func) Calls the given function for each element in the array.

array.erase(value) Removes the given value from the array.

array.contains(value) Returns true if the array contains the given value.

Function Utilities
func.bind(context) Returns a new function that calls the function in the
given context. This is similar to bindContext() from Chapter 5.

Ajax used to be an acronym for “Asynchronous JavaScript and XML,” but
now it’s just a buzzword for highly dynamic Web pages. With Ajax, you
have the ability to send and receive data from your server without having
to load a whole new page. This allows you to do the following:

■ Quickly load additional content only when the user needs it, making
your initial page load smaller

■ Send data from links and forms back to the server without a page
refresh, which makes your pages feel faster

The XMLHttpRequest object makes Ajax possible. Originally a Microsoft
innovation, all modern browsers support it without too many cross-
browser inconsistencies. I recommend researching how to use the native
XMLHttpRequest object to understand what’s going on under the hood,

Ajax

15

The JavaScript Pocket Guide238

but for this tutorial, you’ll just use jQuery’s $.ajax() function to keep
things simple.

Ajax Considerations
On the surface, Ajax is a relatively simple technique, but in practice you
need to be aware of some security and usability concerns.

Servers
You’ll need a server to use Ajax because browsers won’t let JavaScript
read fi les off your hard drive. This is an important security restriction; you
never want to allow a script to access your important documents.

Same-Origin Policy
The same-origin policy is another security restriction that prevents a
script from sending and receiving data from another server. It’s especially
important for Web pages that use cookies to manage user accounts.
Without this restriction, a script could use your cookies and pretend to be
you on another site.

Data Formats
Ajax responses are always text, but you have a few options on how that
text is formatted.

Text or HTML. If the server responds with text or HTML, you can simply
inject it into your HTML to add or update content on your page. Text
responses can also provide arbitrary data such as error messages.

XML. The X in Ajax originally stood for XML, which was the common
response type when Microsoft invented the XMLHttpRequest object. You

Chapter 15: Ajax 239

can use DOM methods and properties such as getElementsByTagName()
or childNodes to walk the XML DOM tree and extract information.
I think that using XML responses is overly complicated, so I avoid it when
possible.

JSON. JavaScript Object Notation (JSON) is a way to store data in a string
that looks like a JavaScript object or array. It’s easy to turn this string into
a real JavaScript object, so it’s my preferred data format in most Ajax
situations.

Modern browsers such as Firefox and Safari provide a simple API for
handling JSON:

JSON.stringify({ propertyName : "value" });

"{"propertyName":"value"}"

JSON.parse("{\"propertyName\":\"value\"}");

Object { propertyName="value"}

JavaScript libraries provide functions such as jQuery’s $.parseJSON() so
that you can effortlessly handle JSON across all browsers.

User Experience
Users are used to loading new pages when they click links and submit
forms. If you replace that behavior with Ajax, you may need to do some
extra work so that users still know what’s happening.

Loading indicators. The browser doesn’t tell the user that you’re making
an Ajax request. You should show some kind of loading indicator so the
user knows that something is happening. I like using animated GIFs, such
as the free ones at http://www.ajaxload.info/.

Back buttons and bookmarks. Ajax actions don’t change the URL in the
browser’s location fi eld. This has two effects: The user can’t bookmark

http://www.ajaxload.info/

The JavaScript Pocket Guide240

or share a URL that corresponds to your page’s current state, and the
browser’s back and forward buttons are no longer useful. The solution is
to use the window.location.hash property to change the URL without
reloading the page.

■ Before clicking an Ajax-driven link: http://example.com/index.html

■ After clicking the link: http://example.com/index.html#page2

This is a complicated technique, so I’ll skip this concern in the example
later in the chapter. Check out the SWFAddress library (http://www.asual.
com/swfaddress/) to learn more about this technique.

Accessibility and search engine optimization. Search engines and users
without JavaScript enabled won’t see your Ajax behaviors. It’s always a
great idea to use progressive enhancement so that your pages work just
as well with and without Ajax. The following example demonstrates one
way to achieve this.

Ajax Example
This example shows you how to take a simple Web page and add Ajax
behavior to it. The page does three things:

■ Shows a table of data pulled from a storage fi le

■ Breaks the data into “pages” that you can navigate with Previous and
Next links

■ Provides a form for adding new data to the storage fi le

Ajax isn’t much use unless your server can send and receive useful data,
so you’ll use a little bit of PHP (http://php.net) to manage your data.
You’ll need PHP version 5.2.0 or higher to use the JSON functions.

http://www.asual.com/swfaddress/
http://www.asual.com/swfaddress/
http://php.net

Chapter 15: Ajax 241

Servers and PHP
If you don’t already have a server that supports PHP, I recommend
installing the basic version of XAMPP (http://www.apachefriends.
org/en/xampp.html). The installation instructions are excellent
and should get you up and running fairly quickly. After you install
XAMPP and start the Apache Web server, create your example fi les in
these directories (assuming you installed it in the default location):

Windows: C:\xampp\htdocs

Mac: /Applications/XAMPP/htdocs/

Then you can point your browser to http://localhost to see your fi les.

Setup
This example has several interlocking parts, so you should keep them in
separate fi les to make the code clearer. Start by creating these four fi les:

■ index.php (XAMPP might supply this fi le for you already, but you can
overwrite it.)

■ template.php

■ ajax.js

■ people.json

Data File
PHP handles JSON very well, so for this example you’ll store all your data
in a simple JSON object. It looks a lot like regular JavaScript. Create at
least six objects in the array so that you’ll have enough data to do some-
thing interesting.

http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html

The JavaScript Pocket Guide242

[{

 "name": "Lenny",

 "location": "Los Angeles",

 "browser": "Safari"

},

{

 "name": "Adam",

 "location": "Austin",

 "browser": "Internet Explorer"

},

// ... Add more people here

]

Controller File
The index.php fi le is a simple PHP script that manages the data and the
requests from the browser, regardless of whether they’re normal page
requests or Ajax requests. If you don’t know PHP, this script might not
make a lot of sense, but you should be able to use it regardless. For the
curious, the PHP Web site is a great resource: http://us.php.net/manual/en/.
Try searching for individual functions to fi nd reference material.

tip If you run into problems writing PHP, you can use the print_r()
function much like you use console.log() in JavaScript. print_r()

prints a verbose description of a value to the HTML document.
 print_r($people);

If you’re in the middle of a block of HTML, you may need to enter PHP mode
like this:
 <?php print_r($people); ?>

http://us.php.net/manual/en/

Chapter 15: Ajax 243

Start with this outline, and fi ll in the script with the code for each
comment:

<?php

// Reading data from the fi le

// Get the page number from the query string

// If there is form data, save it to the fi le

// Arrange the data just for this page

// If this is an ajax request, send json

// If this is a normal request, send the HTML template

?>

Reading Data from the File

This line loads the JSON data from the data fi le and stores it on a PHP
variable called $people. (PHP variables always start with a dollar sign.)

$people = json_decode(fi le_get_contents("people.json"));

if ($people == null) {

 echo "Invalid JSON fi le";

 exit;

}

Get the Page Number from the Query String

Each page should load only three people at a time, so you’ll need to keep
track of which page you’re viewing. The $_GET variable is an array that
holds query string data. The last two lines in this example keep the $page
variable from being lower than zero or higher than the number of pages
for the $people array.

The JavaScript Pocket Guide244

$pageCount = ceil(count($people) / 3);

$page = isset($_GET["page"]) ? $_GET["page"] : 0;

$page = $page < 0 ? 0 : $page;

$page = $page >= $pageCount ? $pageCount - 1 : $page;

If you were to load up http://localhost/index.php?page=2, the $page vari-
able would be 2.

Saving Form Data to the File

If you send form data to the page, you’ll want to create a new object, add
it to the $people array, and save the array to the people.json fi le. The
$_POST variable is an array that stores form data submitted to the page.
The htmlentities() function protects your HTML markup by converting
characters such as < and > to encoded strings.

if (count($_POST)) {

 $person = new StdClass();

 $person->name = htmlentities($_POST["name"]);

 $person->location = htmlentities($_POST["location"]);

 $person->browser = htmlentities($_POST["browser"]);

 $people[] = $person;

 $fp = fopen("people.json", "w+");

 fwrite($fp, json_encode($people));

 fclose($fp);

}

note I’m not including any form validation to keep this example shorter.
You should always validate your data before saving it to fi les or

databases.

Chapter 15: Ajax 245

Arrange the Data Just for the Page

You’re adding the new person object to the end of the $people array, so
reverse the array to put it at the beginning. Then use the array_slice()
function to extract the three person objects for the requested page.

$people = array_reverse($people);

$people = array_slice($people, $page * 3, 3);

Functional vs. Object-Oriented Style
The array_slice() function should look familiar: JavaScript has an
analogous function that you learned about in Chapter 4. But PHP
uses a functional style, where you operate on objects by passing
them to functions. JavaScript uses an object-oriented style, where
you act upon objects with their own methods.

Send JSON for Ajax Requests

You’ll add Ajax support to index.php later in the chapter, so for now put
in this somewhat useless code:

// Replace this with Ajax support

if (false) {

 // Ajax support goes here

Send an HTML Template for Normal Page Requests

When the browser requests the page normally, you want to send it a
regular HTML page. Instead of putting the entire HTML markup in
index.php and making it harder to read, you’ll include a template fi le.

The JavaScript Pocket Guide246

} else {

 include("template.php");

}

The HTML Template
The HTML document in template.php is pretty simple. It includes a table,
a few navigation links, and a form.

HTML Page Outline

Start by adding this document outline to your template.php fi le:

<!DOCTYPE html>

<html>

 <head>

 <title>Ajax Test</title>

 </head>

 <body>

 <h1>Ajax Test</h1>

 <!-- Table goes here -->

 <!-- Links go here -->

 <!-- Form goes here -->

 <script src="http://ajax.googleapis.com/ajax/libs/

➥ jquery/1.4.1/jquery.min.js" type="text/javascript">

➥ </script>

 <script src="ajax.js" type="text/javascript"></script>

 </body>

</html>

Chapter 15: Ajax 247

The markup includes references to the jQuery library and the ajax.js
fi le, which you’ll create later. Replace the HTML comments with the code
blocks in the following sections.

Data Table Markup

This table uses the $page and $people variables from index.php to
output the data to the browser.

<table>

 <caption>

 People

 (Page <?php echo $page + 1 ?>)

 </caption>

 <thead>

 <tr>

 <th>Name</th>

 <th>Location</th>

 <th>Favorite Browser</th>

 </tr>

 </thead>

 <tbody>

 <?php foreach ($people as $person) : ?>

 <tr>

 <td><?php echo $person->name ?></td>

 <td><?php echo $person->location ?></td>

 <td><?php echo $person->browser ?></td>

 </tr>

 <?php endforeach; ?>

 </tbody>

</table>

The JavaScript Pocket Guide248

Navigation Links

These links point back to index.php, changing the value of $page to load
a different slice of the $people array.

<p class="pages">

 <a href="index.php?page=<?php echo $page - 1 ?>">

➥ Previous |

 <a href="index.php?page=<?php echo $page + 1 ?>">Next

</p>

Form Markup

This form also points back to index.php. The method attribute is “post,”
which tells the PHP script that this form data is new data for another
person object.

<form action="index.php" method="post">

 <p><label for="name">Name</label>

 <input type="text" name="name" value="" id="name" /></p>

 <p><label for="location">Location</label>

 <input type="text" name="location" value=""

➥ id="location" /></p>

 <p><label for="browser">Favorite Browser</label>

 <input type="text" name="browser" value=""

➥ id="browser" /></p>

 <p><input type="submit" value="Submit"></p>

</form>

Chapter 15: Ajax 249

Checking Your Work
Point your browser to index.php; you should now be able to load differ-
ent sets of data into the table by clicking the links, as well as add rows to
the table by submitting the form. It’s great practice to start with a page
that functions perfectly well with just HTML before enhancing the expe-
rience with JavaScript and Ajax.

Ajaxifying the Page
The goal of this JavaScript fi le is to override the links and forms so that
the page doesn’t have to refresh to load new data.

Script Outline

Here’s the whole script with empty functions that you’ll fi ll out as you
follow the example. It starts by fi nding the DOM elements you’ll need to
add JavaScript behavior.

(function($) {

 var table = $("table");

 var pageLinks = $(".pages a");

 var pageCount = $("#page");

 var form = $("form");

 pageLinks.click(function(event) {});

 function loadingFunc() {}

 function errorFunc() {}

 function successFunc(response) {}

 function insertJson(people) {}

 function templatize(template, obj) {}

 function updatePageLinks(pageNum) {} (continues on next page)

The JavaScript Pocket Guide250

 form.submit(function(event) {});

})(jQuery); // Self-invoking function executes automatically

Overriding the Previous and Next Links

The navigation links should get event handlers that do two important
things:

■ Stop the browser from following the link by preventing the default
behavior

■ Load the link’s target (its href attribute value) with Ajax instead

pageLinks.click(function(event) {

 event.preventDefault();

 $.ajax({

 url : $(this).attr("href"),

 beforeSend : loadingFunc,

 error : errorFunc,

 success : successFunc

 });

});

jQuery’s $.ajax() function takes an object as an argument. That object
can have numerous properties (see http://api.jquery.com/jQuery.ajax/ for
details). For this script, you’re mostly concerned with setting functions to
handle various stages of the Ajax request.

Waiting for the Request to Load

The loadingFunc() function adds a message to the <caption> element
that tells the user that something is happening. The message displays

http://api.jquery.com/jQuery.ajax/

Chapter 15: Ajax 251

“Loading …” until the Ajax request fi nishes (\u2026 is the Unicode escape
sequence for an ellipsis).

function loadingFunc() {

 var message = $("<div/>", {

 className : "message"

 }).text("Loading \u2026");

 table.fi nd("caption").append(message);

}

Error Handling

If the user were to point the browser to a missing page, it would show
them an error message. If an Ajax request fails, the browser doesn’t
inform the user, so you’ll have to do it for them. The errorFunc() func-
tion changes the “Loading …” message to an error message.

function errorFunc() {

 $(".message").text("Error loading data.");

}

Handling the Response

The last Ajax callback function handles a successful response and
updates the page accordingly.

function successFunc(response) {

 table.fi nd(".message").remove();

 insertJson(response.people);

 updatePageLinks(+response.page); // Convert string to

➥ number with +

}

The JavaScript Pocket Guide252

You still need to update index.php to handle an Ajax response before
this will work. Replace the if (false) statement in index.php with the
following code:

if ($_SERVER["HTTP_X_REQUESTED_WITH"] == "XMLHttpRequest") {

 sleep(1);

 header("Content-type: application/json");

 $response = new StdClass();

 $response->page = $page;

 $response->people = $people;

 echo json_encode($response);

} else {

 include("template.php");

}

jQuery sets a request header called X_REQUESTED_WITH to
“XMLHttpRequest.” That’s how you can differentiate between normal
page requests and Ajax requests. (This does not happen automatically
with Ajax or with other JavaScript libraries.)

The sleep() function adds an artifi cial delay; without it, you probably
wouldn’t be able to see the “Loading …” message.

The header() function sets a response header that indicates the data
format of the response. jQuery handles application/json responses
as JSON. (This also doesn’t happen automatically with Ajax or other
JavaScript libraries.)

Lastly, the $response object contains two pieces of information: the
current page number and the $people array. The echo keyword outputs
the JSON response, which looks similar to the following:

{

 "page" : 1,

Chapter 15: Ajax 253

 "people" : [

 // People objects

]

}

The Firebug console displays Ajax requests, so at this point you can make
sure everything works by loading index.php in the browser and clicking
Next (Figure 15.1). Now that you can request data over Ajax, the next step
is to present the data to the user by updating the page.

Figure 15.1
Firebug lets you
inspect the Ajax
request and
response.

Updating the User Interface

The insertJson() function loops over all the people objects from the
JSON response and creates HTML strings using a template. Once it
creates <tr> elements for each person object, it empties the table and
inserts the new HTML into the page.

function insertJson(people) {

 var template = "<tr><td>{name}</td><td>{location}</td>

➥ <td>{browser}</td></tr>";

 var results = [];

 for (var i = 0, l = people.length; i < l; i++) {

 results.push(templatize(template, people[i]));

 } (continues on next page)

The JavaScript Pocket Guide254

 return table.fi nd("tbody").empty().append(results.

➥ join("\n"));

}

function templatize(template, obj) {

 return template.replace(/\{([^\}]+)\}/g,

➥ function(match, subpattern) {

 return obj[subpattern] == null ? "" : obj[subpattern];

 });

}

note The templatize() function is a sophisticated usage of regular expres-
sions and the replace() method that maps words inside curly braces

(such as “{name}”) with the property names of an object.

The updatePageLinks() function changes the <caption> and the naviga-
tion links to refl ect the new page loaded in with Ajax. The href attributes
of the “Previous” and “Next” links change to point to pageNum - 1 and
pageNum + 1, respectively.

function updatePageLinks(pageNum) {

 pageCount.text(pageNum + 1);

 var pattern = /\bpage=\-?\d+/;

 pageLinks.eq(0).attr("href", function(index, value) {

 return value.replace(pattern, "page=" + (pageNum - 1));

 });

 pageLinks.eq(1).attr("href", function(index, value) {

 return value.replace(pattern, "page=" + (pageNum + 1));

 });

}

At this point, the Previous and Next links should work without reloading
the page.

Chapter 15: Ajax 255

Overriding the Form

Adding a submit event handler to the <form> is the fi nal step. It’s almost
exactly the same as the navigation link handler.

form.submit(function(event) {

 event.preventDefault();

 $.ajax({

 url : form.attr("action"),

 type : form.attr("method"),

 data : form.serialize(),

 beforeSend : loadingFunc,

 error : errorFunc,

 success : successFunc

 });

});

The differences make this Ajax request send POST data to index.php
in an Ajax request. The type property comes from the method attribute
of the form (which is “post”). The value of the data attribute uses the
jQuery serialize() method to turn all the form inputs into an object.

This is defi nitely one of the most complicated examples in this book
because of the complex interactions between the server PHP code and
browser JavaScript code. If you made it through without too many
hiccups, pat yourself on the back—you’re well on your way toward being
a JavaScript master.

The JavaScript Pocket Guide256

Getting Around the Same-Origin
Policy
One of the most popular uses for JavaScript is the creation of mash-ups,
pulling data from different sites and combining it in useful and inter-
esting ways. The same-origin policy, while being an important security
restriction, makes this more diffi cult than it should be. Here are a few
ways to circumvent the policy.

Proxies
You can set up a script on your own server that redirects an Ajax request
to another server, taking advantage of the fl exibility of server-to-server
communication. Try searching the Web for some example scripts.

JSON-P
You can’t request data from another server with Ajax, but you can load
JavaScript from another server with <script> tags. JSON with Padding
(JSON-P) takes advantage of this fact. Here’s a quick example that loads
data from Twitter:

<script type="text/javascript">

 function twitterCallback(tweets) {

 alert("Latest Tweet: " + tweets[0].text);

 }

</script>

<script src="http://twitter.com/status/user_timeline/

➥ whitehouse.json?callback=twitterCallback" type="text/

➥ javascript"></script>

Chapter 15: Ajax 257

The fi rst <script> defi nes a function called twitterCallback() that
consumes the Twitter JavaScript data. The second <script> loads a
special JavaScript fi le using the Twitter API, passing the name of the
twitterCallback() as a parameter. The Twitter JavaScript fi le looks like
the following:

twitterCallback([{

 "user": {

 "screen_name": "whitehouse",

 },

 "text": "\"Feeling the Olympic Spirit\": Valerie Jarrett

➥ reports back from Vancouver, with photos http://bit.ly/

➥ aGibb1"

},

// ... More tweets

]);

The JavaScript fi le immediately executes the callback function and
 delivers the data as an argument. You can dynamically create <script>
tags at any point in your code to request data from other servers with
JSON-P APIs.

note JSON-P is inherently less secure than sending data with Ajax, so don’t
use it with passwords and other sensitive information.

This page intentionally left blank

Animation is actually a pretty simple concept. At its most basic,
 animation is just the process of changing a value over time. That value
could be the position, size, opacity, or even color of an HTML element.
Used appropriately, JavaScript animation can help create a dynamic and
engaging user experience for your Web site.

Animation has endless uses, so instead of a specifi c example, I’ll show
you how to program animation utilities from the ground up. It’s also
a great example of asynchronous programming and the global timer
functions from Chapter 7.

Animation

16

The JavaScript Pocket Guide260

Simple Animation
The following examples use this HTML document, which simply draws a
small black box, to demonstrate animation concepts:

<!DOCTYPE html>

<html>

 <head>

 <title>Animation</title>

 <style type="text/css" media="screen">

 #box {

 background: #000;

 width: 25px;

 height: 25px;

 position: absolute;

 left: 0;

 top: 0;

 }

 </style>

 </head>

 <body>

 <div id="box"></div>

 <script type="text/javascript">

 // Animation code goes here

 </script>

 </body>

</html>

Chapter 16: Animation 261

The simplest animation involves changing a property by a little bit every
interval of time. For example, this function moves an element to the left
from 0 to 100, by adding one every ten milliseconds:

function simpleAnimation(box) {

 var position = 0;

 function move() {

 position++; // Move by 1

 if (position < 100) {

 box.style.left = position + "px";

 // Call move() again after 10 ms

 setTimeout(move, 10);

 }

 }

 move(); // Start the animation

}

simpleAnimation(document.getElementById("box"));

The inner function, move(), calls itself repeatedly with a ten-millisecond
delay using setTimeout(). The position variable increments and
updates the box’s style.left property until it equals 100, when the
animation stops.

However, this animation pattern has limited use. More frequently, you’ll
want to specify a duration and let the animation function fi gure out how
to increment the value each interval.

The JavaScript Pocket Guide262

Time-Based Animation
The general idea behind time-based animation is tricky to explain, but
it’s actually pretty simple. There’s a direct relationship between the
distance traveled and the time passed since starting the animation.

function timeBased(box, begin, end, duration) {

 var distanceToTravel = end - begin,

 startTime = new Date().getTime();

 function move() {

 // A number in milliseconds

 var timePassed = new Date().getTime() - startTime;

 // A number between 0 to 1

 var percentPassed = timePassed / duration;

 if (timePassed < duration) {

 var newValue = (distanceToTravel *

➥ percentPassed) + begin;

 box.style.left = newValue + "px";

 setTimeout(move, 0);

 } else {

 box.style.left = end + "px";

 }

 }

 move(); // Start the animation

}

timeBased(document.getElementById("box"), 0, 200, 1000);

Chapter 16: Animation 263

The fi rst thing timeBased() does is calculate how far to travel, or the end
value minus the begin value. Second, it stores the current time so you
can easily tell how much time has passed on the next interval.

Like in the simpleAnimation() function, the inner move() function calls
itself repeatedly with setTimeout(). This time, the interval is zero milli-
seconds (which really means “as soon as possible”). The smaller the delay,
the smoother the animation.

The fi rst thing move() does is calculate how much time has passed since
startTime. That value is in milliseconds, but to turn time into distance,
you want a simple percentage of how much time has passed. By dividing
timePassed by the desired duration, you get a number between 0 and 1.
At 0, the animation has just begun. At 1, the animation is complete. And
at 0.5, the animation is halfway done.

If the amount of time passed is less than the duration, then move()
updates the style.left property according to this formula:

(Distance to travel * Percentage of duration passed) + Beginning value

You might remember this as y = mx+b, or a linear algebraic equation.

If the duration of time has passed, then move() just sets style.left to
the ending value and does not repeat itself.

Time-based animation has three main benefi ts:

■ It’s easier to keep animations in sync because you know exactly how
long they are going to take.

■ If the browser gets tied up with another process, the animation might
stutter a bit but will still complete in the desired duration.

■ You’re not limited to linear animations, as you’ll see in a moment.

The JavaScript Pocket Guide264

The Date Data Type
I haven’t discussed the Date data type yet, but it’s one of the built-in
data types like String and Function. Here are a few example uses of
the Date data type:

// Create a date object for the current time

var date = new Date();

date;

Sun Feb 15 2010 19:01:26 GMT-0800 (PST) {}

// Create a date object specifying a certain time

// year, month, day, hours, minutes, seconds, ms

// January is 0, February is 1

var mayanApocalypse = new Date(2012, 0, 1, 0, 0, 0, 0);

mayanApocalypse;

Sun Jan 01 2012 00:00:00 GMT-0800 (PST) {}

// Get the millisecond representation of a date.

// This is useful for comparing dates

mayanApocalypse.getTime();

1325404800000

// Getting and setting various parts of the date

date.setDate(date.getDate() + 1); // tomorrow

1266376009093

date.getMonth();

1

Chapter 16: Animation 265

Easing
Easing refers to using curved equations for more graceful or expressive
animation. There are three basic types:

■ Ease out is when the animation gradually slows as it ends.

■ Ease in is when the animation gradually speeds up as it starts.

■ Ease in/out is a combination of both.

First rewrite the timeBased() function to use easing equations. I usually
shorten some variable names to match the equations: t is timePassed, c
is distanceToTravel (or “change”), b is begin, e is end, and d is duration.

function timeBasedEasing(box, b, e, d, easing) {

 var c = e - b,

 startTime = new Date();

 function move() {

 var t = new Date() - startTime;

 if (t < d) {

 box.style.left = easing(t, b, c, d) + "px";

 setTimeout(move, 0);

 } else {

 box.style.left = e + "px";

 }

 }

 move(); // Start the animation

}

The function is basically identical to timeBased(), except that it offl oads
most of the calculation to the easing argument. Next, create the linear
easing equation:

The JavaScript Pocket Guide266

function linear(t, b, c, d) {

 return c*t/d + b;

}

note The easing functions in this chapter come from Robert Penner’s
Easing Equations for ActionScript, released under a BSD License:

http://www.robertpenner.com/easing_terms_of_use.html.

Then, you can call the timeBasedEasing() function with the linear()
function as an argument:

timeBasedEasing(document.getElementById("box"), 0, 200, 1000,

➥ linear);

There’s nothing surprising there, but you can swap linear() with a func-
tion like this:

function easeOutExpo(t, b, c, d) {

 return (t==d) ? b+c : c * (-Math.pow(2, -10 * t/d) + 1) + b;

}

timeBasedEasing(document.getElementById("box"), 0, 200, 1000,

➥ easeOutExpo);

The animation starts much faster and “eases” to a stop. The “ease in”
version looks like this:

function easeInExpo(t, b, c, d) {

 return (t==0) ? b : c * Math.pow(2, 10 * (t/d - 1)) + b;

}

timeBasedEasing(document.getElementById("box"), 0, 200, 1000,

➥ easeInExpo);

There are even more easing functions for elastic and bouncing
movement, but they’re too complicated to include in this book.

http://www.robertpenner.com/easing_terms_of_use.html

Chapter 16: Animation 267

Check out Robert Penner’s library of ActionScript equations at
http://www.robertpenner.com/easing/. ActionScript is another dialect
of ECMAScript, so the equations are easily translated to JavaScript.

Animation with Libraries
Animation is a pretty simple concept, but it’s still a lot easier to use a
JavaScript library to create animation utilities than writing them from
scratch. Library animation utilities allow you to do many things:

■ Set the ending values for multiple properties at once

■ Set the duration and easing equations

■ Add callback functions that trigger at the end of the animation

To see how both the YUI 3 and jQuery libraries handle this, replace the
<script> element in the previous example HTML with the following
markup:

<p>Animate with YUI</p>

<p>Animate with jQuery</p>

<p>Reset</p>

<script src="http://yui.yahooapis.com/3.0.0/build/yui/

➥ yui-min.js" type="text/javascript"></script>

<script src="http://ajax.googleapis.com/ajax/libs/jquery/

➥ 1.4.1/jquery.min.js" type="text/javascript"></script>

<script src="animation.js" type="text/javascript"></script>

note There’s really no reason to load two libraries into a page at once, but
at least YUI 3 and jQuery play nicely with each other by using

namespacing and closures to encapsulate their code.

http://www.robertpenner.com/easing/

The JavaScript Pocket Guide268

YUI 3 Animation Objects
In a new fi le, animation.js, add the following code to create a YUI 3
animation object:

YUI().use("anim", function(Y) {

 var animation = new Y.Anim({

 node: "#box",

 to: {

 width: 200,

 height: 100,

 left: 50,

 top: 150,

 backgroundColor: "#f00"

 },

 duration: 2, // In seconds

 easing: Y.Easing.easeOut

 });

 // Continue YUI 3 code here

});

The Y.Anim constructor function creates an object you can control later
in the script. The node parameter takes a selector like the one you would
pass to Y.one() to select a single DOM element. You can fi nd the rest of
the parameters in the online documentation: http://developer.yahoo.com/
yui/3/api/Anim.html#confi gattributes.

Continuing the YUI 3 version of the script, you can add an event handler
to the animation object that fi res when the animation ends:

animation.on("end", animationCallback);

http://developer.yahoo.com/yui/3/api/Anim.html#configattributes
http://developer.yahoo.com/yui/3/api/Anim.html#configattributes

Chapter 16: Animation 269

Add this callback function outside the YUI closure function so you can use
it in the jQuery example too:

function animationCallback() {

 console.log("animation fi nished!");

}

The code so far doesn’t actually start the execution. Add an event
handler to the fi rst <a> element in the page:

// Inside the YUI closure function

Y.one("#yuiLink").on("click", function(event) {

 event.preventDefault();

 animation.run();

});

The run() method starts the animation, and after two seconds, the
 callback function will print “animation fi nished!” to the console.

The jQuery animate() Method
jQuery takes a slightly different approach to animation and has a
slightly different set of capabilities. Create a second closure function
in animation.js for the following jQuery code:

(function($) {

 $("#jqueryLink").click(function(event) {

 event.preventDefault();

 $("#box").animate({

 width: 200,

 height: 100,

 left: 50, (continues on next page)

The JavaScript Pocket Guide270

 top: 150

 }, {

 duration: 2000, // In ms

 complete: animationCallback

 });

 });

})(jQuery);

The animate() method runs immediately instead of returning an object
to control later. It can take several combinations of arguments; the online
documentation at http://api.jquery.com/animate/ covers all the varia-
tions. In this example, the fi rst argument specifi es the ending values
for the properties you want to animate. The second argument specifi es
parameters such as the duration and any callback functions.

Other difference between YUI 3 and jQuery in terms of animation include
the following:

■ You can animate only a single object with a YUI 3 single Y.Anim object,
whereas jQuery’s animate() function can animate multiple elements
at once in one method call.

■ YUI 3 includes a number of easing functions automatically, which you
can fi nd here: http://developer.yahoo.com/yui/3/api/Easing.html. jQuery
includes only two easing functions by default, “linear” and “swing.”

■ jQuery can’t animate color values by default. The jQuery UI library adds
this capability, as well as additional easing equations.

Resetting Animation

Animations work by changing the style attribute, so you can reset the
animation by setting the attribute to an empty string. This is one case

http://api.jquery.com/animate/
http://developer.yahoo.com/yui/3/api/Easing.html

Chapter 16: Animation 271

where you have to use the setAttribute() method, because the style
property is read-only.

document.getElementById("box").style = "";

TypeError: setting a property that has only a getter

document.getElementById("box").setAttribute("style", "");

You can add an event handler for the Reset link using either YUI 3 or
jQuery. Here’s the YUI 3 version:

Y.one("#reset").on("click", function(event) {

 event.preventDefault();

 Y.one("#box").setAttribute("style", "");

});

Using Animation
You have a lot of freedom when animating DOM elements. I tend to
follow a couple simple rules when using animation on my sites:

■ Easing equations, especially exponential equations, make animations
feel more natural and expressive.

■ Animations should ideally enhance the usability of the user interface.
For example, a quick fl ip between two elements might be easy to miss,
but a slow transition can tell the user where the new content comes
from.

■ Subtlety is key. If you have too many elements moving around the
page, you’ll distract the user from your content.

This page intentionally left blank

SYMBOLS
-- (decrement) operator, 10, 23
' (single primes), as escape characters, 32
! (exclamation point), logical NOT operator,

15–16
&& (ampersands), logical AND operator, 15–16
" (double primes), 32
$ (dollar sign), PHP variables, 243
$$(collection), MooTools, 223, 235
$$(selector), MooTools, 235
$() function, jQuery

building image slideshow, 204–205
creating drop-down menu, 222
overview of, 212

$(id), MooTools, 235
$.ajax() function, jQuery, 238, 250, 255
$_GET variable, 243–244
$_POST variable, PHP, 244–245
$A() function, MooTools, 228, 235
$page variable

data table markup, 247–248
getting page number from query string,

243–244

navigation links, 248
$people variable

arranging data just for page, 245
data table markup, 247–248
navigation links, 248
reading data from fi le, 243
saving form data to fi le, 244–245

$response object, Ajax, 252
% (percent sign), modulus operator, 22
() parentheses, functions, 58–59
, (comma)

creating objects with properties, 80
stringing variable declarations, 3

/ (forward slash), regular expressions, 39
:hover pseudoselector, drop-down menus,

219–220
[] (square brackets)

array literal syntax, 46
bracket operator, 80–82

\ (backslash), escape character, 32, 39
{} (curly brackets), functions, 58–59
|| (pipe characters), logical OR operator,

15–16, 61

Index

The JavaScript Pocket Guide274

+ (plus sign) operator, 32–33
++ (increment) operator, 23
< (less-than operator), 33
== (equality) operator, 5–6
=== (identity) operator, 5, 7

A
accessibility, and Ajax, 240
ActionScript

library of equations, 267
object-oriented patterns in ActionScript

3, 221
addClass() method, MooTools, 235
addEffect() method, MooTools, 231–234
addEvent() method, MooTools, 235
addEventListener() method

adding event handler to capture phase of
event, 170

event delegation, 172
overview of, 164

addMouseEvents() method, MooTools, 223–224
addOnloadHandler() function, 163, 173
Ajax, 237–257

data formats, 238–239
overview of, 237
same-origin policy, 238
same-origin policy, circumventing,

256–257
servers, 238
user experience, 239–240

Ajax, adding to Web page, 240–255
checking your work, 249
controller fi le, 242–246
data fi le, 241–242
error handling, 251
handling response, 251–253
HTML template, 246–248
overriding form, 255
overriding previous and next links, 250
overview of, 240
script outline, 249–250
servers and PHP, 241
setup, 241
updating user interface, 253–254
waiting for request to load, 250–251

ajax.js fi le, Ajax, 241, 246–247
alert() function, dialog box, 119
altKey mouse event, 176
analytics, 126
animate() method, jQuery, 269–270
animation, 259–271

with easing equations, 265–267
with libraries, 267–271
overview of, 259

resetting, 270–271
rules for using, 271
simple, 260–261
time-based, 262–263

animation.js, 267–270
anonymous functions, 59
APIs (application programming interfaces)

browser problem with, 111
Google Ajax Libraries, 188
Internet Explorer event, 165
overview of, 112

appendChild() method
adding node as last child node, 146
closures, 72–73
document fragments, 145
nonblocking script loading, 110
prototypes of DOM nodes, 148–149

appendTo() method, 205, 209, 213
apply() method, 68–69, 73–74
arguments

asynchronous programming and, 106
defi ned, 8
function, 60–65

array literal syntax ([]), 46
array_slice() function, 245
arrays

converting node collections to, 131
converting strings to, 36–37
creating, 46
length property, 46–47
looping over, 47–49
in MooTools, 223, 236
overview of, 4
for slideshow images, 206
for and while loops with, 84

arrays, methods, 49–56
adding items to, 49–51
converting to strings, 55–56
extracting items from, 51–53
ordering, 53–55
removing items from, 51

assignment versions, 23, 32–33
asynchronous programming, 105–106
attr() method, jQuery, 205, 212
attributes

changing DOM element, 149–152
DOM nodes, 130
event, 160–163

B
Back button

and Ajax, 239–240
browsers, 122

back() method, history object, 122

 Index 275

backslash (\), escape character, 32, 39
base-8 numbers, 24
base-10 numbers, 24
base-16 numbers, 24
beforeload event, browser, 174
beforeunload event, browser, 174
behavior, adding to inherited methods,

231–232
bind() method, jQuery, 210, 213
bindContext() function, 73–74, 106
blur event, 184
blur() method, browser window, 121
bookmarks, Ajax, 239–240
Boolean operators

combining, 18–19
comparison expressions returning, 5–6
defi ned, 15
logical operators, 15–16

boundMethod variable, 74
break keyword, 13, 15
browser

<script> tag in, 109
adding modern JavaScript to older, 90
affecting how end user views code, 111
client-side scripting problems, 111–112
events, 173–175
global object as window in, 99
sniffi ng, 126–127

browser windows, 117–127
cookies, 123–126
feature detection vs. browser sniffi ng, 127
global functions, 119–121
history object, 122
location object, 122–123
navigator object, 126
overview of, 117
properties, 118–119

bubbling
event delegation and, 171–172
overview of, 168–169
stopping element from, 171

button mouse event, 176

C
caching

functions, 75–76
memorization vs., 77
remote scripts, 108

call() method, 68, 163
callbackFunction(), 106
<caption> element, 250–251, 254
capture phase, events, 169–172
case sensitivity

changing in strings, 34

constructor functions, 87
namespacing, 97

catch keyword, 13
CDN (content distribution network), Google

Ajax Libraries, 188
chainability, jQuery, 205
change event, form elements, 183
charAt() method, strings, 34–35
charCode property, keyboard events, 180
charCodeAt() method, strings, 35
child nodes, DOM tree

defi ned, 131–132
document element, 136
removing, 146

childNodes property, document element, 136
children property, DOM, 138
class attribute, DOM, 154–155
Class data type, 221–222
classes, MooTools emphasis on, 221
clearInterval() function, 104
clearTimeout() function, 103–104
click event, 176–177, 228–229
client-side scripting, 107–116

browser problem, 111–112
defi ned, 107
nonblocking and lazy loading, 110
in non-JavaScript situations, 114–116
progressive enhancement of, 112–114
script tags, 108–109

clientX mouse event, 175
clientY mouse event, 175
cloneNode() method, DOM, 143–144
close() method, browser window, 121
closeLink() method, MooTools, 226, 228
closures, function, 70–74
code

choosing library, 187
debugging, 198–199

collections, 60, 130–131
colors, with base-16, 24
commas (,)

creating objects with properties, 80
stringing variable declarations, 3

comments
as DOM node type, 130
sketching slideshow JavaScript, 203

comparison operators, 5–6
composite values, 6
compound expressions

Boolean operators and, 15–18
combining Boolean operators, 18
overview of, 15
ternary expressions, 19

computed styles, DOM elements, 157

The JavaScript Pocket Guide276

concat(x[y,z...]) method, arrays, 50
concatenation

array methods, 50–51
using plus sign (+) operator, 32–33

confi rm() function, dialog boxes, 119
console.log(), debugging code, 198
constants, built-in, 25–26
constructor functions

fi nding value of property for object, 88
MooTools, 222
object-oriented patterns, 94–96
overview of, 86–87
prototypes and, 92–93

content distribution network (CDN), Google
Ajax Libraries, 188

context binding
asynchronous programming and, 105–106
managing function context, 68–69
practical function, 224–225
using closures and apply(), 73–74

context, functions easily losing, 68
continue keyword, 15
control fl ow statements

break and continue, 15
if/if-else/else, 11–12
switch/case, 12–13
throw, 13–14
try/catch/fi nally, 13

controller fi le, Ajax, 242–246
controls, slideshow, 209–210
conversion, of numbers, 26–28
cookies

deleting, 126
overview of, 123
reading, 125
restricting visibility of, 125
setting, 123–125

coordinate system, screens, 119
createElement(), DOM, 142–143
createTextNode() method, DOM, 143
cross-fading slideshow images, 199, 209
CSS

DOM element styles, 154–157
drop-down menus, 218–220
fi nding elements with $() function, 212
JavaScript best practices, 204
as layer of Web development, 113
MooTools menu effects, 232
in non-JavaScript situations, 115–116
slideshow HTML, 201
style attribute, 156–157
styling slideshow links, 211

css() method, 207, 213
ctrlKey mouse event, 176

curly brackets ({ }), functions, 58–59
currentImageIndex variable, slideshows,

204, 209
currentTarget property, Event object, 166
custom data types, prototypes for, 91–92

D
data fi le, adding Ajax to Web page, 241–242
data formats, Ajax, 238–239
data types

conversion rules, 26–28
creating with constructor functions,

86–87
functions as, 8–9
overview of, 4
prototypes for custom, 91–92

data types, accessing prototype of, 88–89
Date data type, 264
dblclick mouse event, 177
declarations

function, 58
variable, 3

decodeURI() function, 43
decodeURIComponent() function, 43–44
decrement (--) operator, 10, 23
delegation, event, 171–172
delete operator, 85–86
deleting, cookies, 126
detail mouse event, 176
diagram, DOM tree, 132–133
dialog boxes, 119–121
<div> tag

bubbling, 168–169
building image slideshow, 201–205, 207
calling stopPropagation() on Event

object, 171
creating HTML5 elements, 143
mouseover, mouseout events, 178–179
node tree in DOM, 132–133
resize event, 174
slide effect in MooTools, 232

document fragment nodes, 145
Document Object Model. See DOM (Document

Object Model)
document object, DOM

createElement() method, 142
as DOM node type, 130
overview of, 135–136

document.cookie, 123–126
DocumentFragment, 130
DOM (Document Object Model)

fi nding nodes, 139–142
jQuery object methods for manipulating

elements, 212–213

 Index 277

jQuery objects and, 190–191
node properties, 133–134
nodes, 130–133
overview of, 129
using $() function, 212
walking, 135–138

DOM (Document Object Model), creating
nodes

adding, removing and reordering nodes,
145–147

with document fragments, 145
with DOM methods, 142–144
with innerHTML, 144–145
prototypes of DOM nodes, 148–149

DOM (Document Object Model), inspecting
and changing elements, 149–157

attributes, 149–152
element styles, 154–157
special properties, 152–154

domain parameter, reading cookies, 124–125
DOMContentLoaded event, browser, 175
domready event handler, 222, 230–232
dot (.) operator

accessing property of object, 9
accessing property value, 80–81
calling functions, 67

double primes ("), 32
drop-down menus, 215–236

extending Menu class, 229–233
keyboard support, 234
menu CSS, 218–219
menu HTML, 216–218
MooTools glossary, 235–236
progressive enhancement, 219–221

drop-down menus, JavaScript, 221–229
arrays in MooTools, 223
clicking outside the menus, 228–229
event handlers in MooTools classes,

223–224
MooTools constructor functions, 222
overview of, 221–222
practical function context binding,

224–225
showing and hiding submenus, 226–228

E
each() method

centering elements with JavaScript, 207
creating slideshow images, 204–205
jQuery, 213
showing and hiding submenus, 228

Easing Equations for ActionScript (Penner),
266

easing equations, animation
advantages of, 271
jQuery vs. YUI3, 270
overview of, 265–267

ECMAScript specifi cation, 90, 111
effects, MooTools, 231–233
Eich, Brandon, 111
else keyword, 11–12
encodeURI() function, 43
encodeURIComponent() function, 43–44, 124
enumerable properties

looping over object's, 81–82
overview of, 83–84
problem with changing built-in

prototypes, 90
eq() method, jQuery

defi ned, 213
retrieving next slideshow image, 209
saving reference to fi rst slideshow image,

207–208
equality (==) operator, 5–6
error handling, Ajax, 251
errorFunc() function, 251
errors, debugging code, 198–199
escape characters, 32, 39
escape() function, 42–43
event delegation, 171–172
event handlers

adding, 160–161
adding to capture phase of event, 170
event attributes and, 161–163
in MooTools classes, 223–224
multiple, 162–163
return values, 162
YUI3 animation, 268–269

Event object, 166–167
event.preventDefault(), 210
eventPhase property, Event object, 166
events, 159–184

attributes, 160–163
blur, 184
browser, 173–175
bubbling, 168–169
capturing, 169–171
delegation, 171–172
Event object, 166–167
focus, 183–184
form element, 182–183
keyboard, 180–182
methods, 163–165
mouse, 175–180
overview of, 159–160

expires parameter, cookies, 124

The JavaScript Pocket Guide278

expressions
comparison, 5–6
compound, 15–19
function, 58–59
overview of, 2–3
variable assignment, 3
variables and, 3–7

Extends property, MooTools, 230

F
fadeIn() method, jQuery, 209, 213
fadeOut() method, jQuery, 209, 213
falsiness

assigning default value to argument,
61–62

Boolean operators managing, 15–18
of values, 6–7

FancyMenu class, 229–234
feature detection, vs. browser sniffi ng, 127
Fibonacci series, 74–75
fi bonacci() function, 74–76
fi le size, choosing library, 187
fi nally keyword, 13
fi nd() method, jQuery, 204–205, 212
Firebug

debugging code, 198–199
inspecting Ajax request/response, 253

fi rstChild property, document element,
135–136

fl oating-point numbers, 24, 29
focus event, 183–184
focus() method, browser window, 121
for loops, arrays, 84
for statement, 10
for/in loop

deleting properties from objects, 85
object properties, 81–82

forEach() method, arrays, 48–49
form data, saving to fi le, 244–245
form element events, 182–183
formats, number, 24
forms, Ajax

markup, 248
overriding, 255

Forward button, browser, 122
forward slash (/), regular expressions, 39
forward() method, history object, 122
fromCharCode() method, strings, 35
func.bind(context), MooTools, 235
function declarations, 101
function keyword, 58–59
functional programming, 89, 205
functional style, 245

functions, 57–77
arguments, 60–65
built-in, 25–26
caching, 75–76
closures, 70–74
constructor, 86–87
context binding, 68–69
creating, 58–59
global, 66, 100, 102–104
memorization, 77
as methods, 66–68
MooTools, 236
overview of, 8–9
recursion, 74–75
return values, 65–66

Fx.Slide, 231–233

G
getAttribute() method, values, 151
getChildren() method, MooTools, 223, 235
getElementById() method, 139
getElements() method, MooTools, 223, 227
getElementsByClassName() method, fi nding

nodes, 139–141
getElementsByTagName(), 131, 139
getParent() method, MooTools, 227, 235
getParents() method, MooTools, 229, 235
GIFs, as loading indicators in Ajax, 239
global functions

controlling browser windows, 120–121
dialog boxes, 119–120
encodeURIComponent(), 43–44
isNaN() and parseInt(), 27–28
parseInt(), 28
setTimeOut(), 102–103
string, 42–44

global objects, 99–106
asynchronous programming, 105–106
calling function normally, 66
global functions, 102–104
global variables, 100–102
overview of, 99–100

global scope, 99
global variables

accidentally creating, 101
best practices, 102
MooTools library and, 195
overview of, 100–101

glossaries
jQuery, 212–213
MooTools, 235–236

go() method, history object, 122

 Index 279

Google's Ajax Libraries API
building slideshow HTML, 201
using with this book, 188

greater-than (>) operator, 33

H
hash, changing URL, 122
hasOwnProperty() method, objects, 83–85, 88
header() function, 252
height() method, jQuery, 213
hexadecimal digits, 24
hide() method, jQuery, 205, 213
hide() method, MooTools, 232
hideMenu() method, 232, 234
history object, browser, 122
host, changing URL, 122
hostname, changing URL, 122
href attribute, HTML, 149–152
href property, location object, 122
HTML

as Ajax data format, 238
building slideshows, 200–202
creating drop-down menus, 216–218
creating slideshow controls, 209–210
event attributes in, 161
as layer of Web development, 113–114
script tags, 108
setting contents of element, 144–145
template, 245–248
where to include <script> tag, 109

html.js, 116, 202
<html> tag

creating drop-down menu, 216
creating image slideshow, 201
HTML page outline, 246
menu HTML and, 216
node trees in DOM, 132
simple animation, 260
walking DOM tree from node to node, 135
working with multiple event handlers, 162

HTML5 elements, 143
htmlentities() function, PHP, 244–245

I
identifi ers, 3
identity (===) operator, 5, 7
if keyword, 11–12
if-else keyword, 11–12
image slideshows, 197–213

centering images, 206–208
code, 208–209
controls, 209–211
creating images, 204–206

debugging code, 198
jQuery glossary, 212–213
sketching outline using comments,

203–204
slideshow ingredients, 199–202
using CSS selectors in JavaScript, 204

images, as layer of Web development, 113
Implements property, MooTools, 230
increment (++) operator, 23
increment expressions, loops, 10, 48
index.php fi le, Ajax

checking your work, 248
form markup, 248
handling response, 252
navigation links, 248
overview of, 242
setting up Ajax, 241

indexOf() method, strings, 37–38
infi nity global variable, 25
inheritance, object-oriented patterns, 94–96
inherited methods, overriding, 231–232
initialize() method, 222, 231–232
initMenuItems() method, drop-down

menus, 223
inline scripts, 108
innerHeight property, browser window, 118
innerHTML() method, DOM, 144–145
innerWidth property, browser window, 118
insertAfter() method, 147
insertBefore() method, 146
insertJson() function, 253–254
instanceof operator, 4, 95–96
Internet Explorer

drop-down menus and, 220
event API, 165
event objects in, 167
mouseenter, mouseleave events and, 179
type attribute error in, 150

Irish, Paul, 116
isNaN() function, 25, 27–28

J
JavaScript, 1–19

adding modern JavaScript to older
browsers, 90

compound expressions, 15–19
control fl ow, 11–14
expressions and statements, 2–3
functions and objects, 8–10
as layer of Web development, 113
loops, 10–11
nonblocking and lazy loading libraries, 110
variables and data, 3–7

The JavaScript Pocket Guide280

JavaScript for Netscape 2.0, 111
join() method, converting arrays, 55–56
jQuery

animation with, 269–270
creating image slideshow. See image

slideshows
jQuery library

coding with, 189–190
defi ned, 189
jQuery objects, 190–191
jQuery UI, 192
jQuery utilities, 191–192
YUI3 library vs., 193

js class, 115
JScript, 111
JSON (JavaScript Object Notation)

as Ajax data format, 239
reading data, 243
saving form data to fi le, 244–245
sending for Ajax requests, 245
working with PHP in Ajax to use, 240

JSON-P (JSON with Padding), 256–257

K
keyboard events, 180–182
keyCode property, keyboard events, 180
keydown event, 180
keypress event, 180
keyup event, 181–182

L
lastChild property, document element, 137
lastIndexOf() method, strings, 39
lazy loading, 110
length property, arrays, 46
length property, strings, 33
less-than (<) operator, 33
lexical scope, functions, 70
libraries, JavaScript, 185–195

animation with, 267–271
choosing, 186–187
for consistent APIs across browsers, 111
debugging code in, 198
jQuery, 189–192
MooTools, 194–195
nonblocking and lazy loading, 111
overview of, 185–186
using with this book, 188
YUI3, 192–194

links
drop-down menus, 217–218
overriding navigation, 250
slideshow HTML, 202

slideshow images, 204–205
styling slideshow with CSS, 211

load event, browser, 173
loading indicators, Ajax, 239
loadingFunc() function, Ajax, 250–251
local references, to namespace objects, 98
location object, browser, 122–123
logical AND (&&) operator, 15–16
logical NOT (!) operator, 15–16
logical OR (ll) operator, 15–16, 61
LOLcat images, 199
loops

creating image slideshow, 200, 205
managing control fl ow inside, 14
over arrays, 47–49
over properties of object, 81–82
overview of, 10–11

M
match() method, strings, 40
math

using numbers for simple, 22–23
using recursion, 74

Math object, 25
Math.random(), 25
max-age parameter, reading cookies, 124
memorization, functions and, 77
Menu class

clicking outside the menus, 228–229
creating, 221–222
event handlers, 223–224
extending, 229–233
showing and hiding submenus, 226–228
supporting keyboard navigation, 234

menu.css
creating for drop-down menu, 218–219
progressive enhancement, 219–221

menu.js
creating drop-down menu, 221
MooTools constructor functions, 222
positioning after adding slide effect, 232

metaKey mouse event, 176
methods

adding to DOM elements, 212
defi ned, 9–10
event, 163–165
Event object, 166
functions as, 66–68
jQuery object, 191, 212–213
Math object, 25
MooTools element, 235
overriding inherited, 231–232
prototypes for custom data types, 91–92

 Index 281

methods, array, 49–56
adding items to, 49–51
converting to strings, 55–56
extracting items from, 51–53
ordering, 53–55
removing items from, 51

methods, string, 33–42
changing case, 34
converting to arrays, 36–37
extracting parts, 34–36
helper functions, 42
overview of, 33
regular expressions and, 39
search and replace, 37–41

mobile devices, 111
modal, 119
modulus (%) operator, 22
MooTools

adding slide effect to menu, 229–233
arrays in, 223
constructor functions, 222
creating menu JavaScript, 221–222
event handlers in classes, 223–224
showing and hiding submenus, 226–228

MooTools Builder, 194
MooTools library, 194–195, 216
MooTools More library, 195, 229
mouse events, 175–180

click, 176–177
dblclick, 177
mousedown, mouseup, 177
mouseenter, mouseleave, 179–180
mouseover, mouseout, 178
overview of, 175–176

mousedown event, 177
mouseenter event, 179–180
mouseout event, 178
mouseoverevent, 178
mouseup event, 177
move() function, animation, 261–263
moveBy() method, browser window, 121
moveTo() method, browser window, 121
multiple event handlers, 163

N
namespacing

MooTools library and, 195
objects, 96–98

navigation links
adding Ajax to Web page, 248
overriding with Ajax, 250
updating user interface, 254

navigator object, browser, 126

Netscape 2.0, JavaScript for, 111
new keyword, 92–93
newHandler() function, 163
newlines (\n), 32
nodeName property, DOM, 133–134
nodes. See DOM (Document Object Model)
nodeType property, DOM, 134
nodeValue property, DOM, 134
no-js class

drop-down menus, 216, 220–221
in non-JavaScript situations, 115
slideshow HTML, 201
writing CSS with/without JavaScript,

115–116
nonblocking script loading, 110
non-JavaScript, handling situations of, 114–116
<noscript> tags, 114–115
not (!) versions, comparison operators, 6
null value, 5
Number.MAX_VALUE, 25
Number.MIN_VALUE, 25
numbers, 21–30

basic math, 22–23
constants and functions, 25–26
conversion, 26–28
formats, 24
precision and, 29

O
object literal, creating objects with, 80
object-oriented language

defi ned, 89
JavaScript as, 9

object-oriented patterns, 94–96, 221
objects, 79–98. See also global objects

as arguments, 63–65
arrays as, 4
constructor functions, 86–87
creating, 80–81
deleting properties, 85–86
enumerable properties, 83–85
jQuery, 190–191
jQuery methods, 212–213
local references, 98
looping over properties, 81–82
object-oriented patterns, 94–97
overview of, 9–10

objects, prototypes
changing built-in, 89–90
constructor functions and, 92–93
for custom data types, 91–92
overview of, 87–89

offsetHeight property, DOM elements, 152

The JavaScript Pocket Guide282

offsetLeft property, DOM elements, 152–153
offsetParent property, DOM elements,

152–154
offsetTop property, DOM elements, 152–153
offsetWidth property, DOM elements, 152
offsetX mouse event, 176
offsetY mouse event, 176
onclick attribute, events, 160
onClick() event handler, 210, 224
onClick() function, 224
onkeypress attribute, events, 160
online references

choosing a JavaScript library, 187
Google Ajax Libraries API, 188
jQuery functions and concepts, 212
jQuery UI, 192
library of ActionScript equations, 267
LOLcat images, 199
MooTools, 235
MooTools Builder, 194
MooTools library, 195
MooTools More library, 229
nonblocking and lazy loading, 110
PHP, 242
servers and PHP, 241
SWFAddress library, 240
YUI3 animation, 268
YUI3 Gallery, 193

onload attribute, events, 160
onresize() method, browser, 174
open() method, browser window, 120–121
openLink() method, MooTools, 226–227
operators

combining for compound expressions,
15–19

precedence, 22
string, 32–33

ordering arrays, 53–54
outerHeight property, browser window, 118
outerWidth property, browser window, 118
overriding inherited methods, 231–232

P
pageX mouse events, 175
pageXOffset property, browser window, 118
pageY mouse event, 175
pageYOffset property, browser window, 118
parent nodes, DOM tree, 131–132
parent() method, MooTools, 231
parentheses (), functions, 58–59
parseFloat() function, 28
parseInt() function, 28
path parameter, reading cookies, 124–125
pathname, changing URL, 123

pattern argument, replace() method for
strings, 41

patterns, object-oriented, 96–98, 221
Penner, Robert, 266–267
people.json fi le, Ajax

adding Ajax to Web page, 241
reading data from fi le, 243
saving form data to fi le, 244–245

Person() constructor function, 95
personal style, choosing library, 187
PHP

controller fi le, 242–246
managing data in Ajax with, 240
online reference, 242
servers and, 241

plug-ins, jQuery, 206
plus sign (+) operator, 32–33
pop() method, arrays, 51
ports, changing URL, 123
position property, DOM elements, 152–153
precedence, operator, 22
precision, numbers and, 29
prependChild() method, nodes, 146–147
preventDefault() method, Event object,

166–167
previousHandler() function, 163
primitive values, 4, 6
print() method, browser window, 121
print_r() function, PHP, 242
privacy measures, end user, 111
progressive enhancement

client-side scripting, 112–116
drop-down menus, 219–221
slideshow HTML as example of, 202

prompt() function, dialog box, 119
properties

array, 46
browser windows, 118–119
collection, 60
constructor functions, 87
DOM element, 152–153
DOM node, 133–134
enumerable, 81–84
Event object, 166
keyboard event, 180
Math object, 25
object, 9, 80, 85–86
prototype, 88–89, 91–92
string, 33

propertyIsEnumerable() function, objects, 83
protocols, changing URL, 123
prototypes, 87–93

changing built-in, 89–90
constructor functions and, 92–93

 Index 283

for custom data types, 91–92
of DOM nodes, 148–149
object-oriented patterns and, 95
overview of, 87–89

proxies, circumventing same-origin policy,
256

push() method, arrays, 50
push() method, functions, 67

Q
query string, page number from, 243–244
querySelector() method, nodes, 141
querySelectorAll() method, nodes, 142

R
radix, 28
random integers, 25
reading cookies, 125
recursion, 74–75
regular expressions, 39, 125
relatedTarget mouse event, 176
remote scripts, 108
removeChild() method, 146
removeEventListener() method, 164–165
repaint, 145
replace() method

strings, 40–41
in templatize() function, 254

requests, Ajax, 252–253
resize event, browser, 174
resizeBy() method, browser window, 121
resizeTo() method, browser window, 121
response, handling in Ajax, 251–253
retrieve() method, MooTools, 226, 235
return keyword, 65–66
return values

event attributes and, 161
functions, 65–66
setTimeOut() function, 103

reverse() method, arrays, 54
run() method, YUI3 animation, 269

S
same-origin policy, Ajax

getting around, 256–257
overview of, 238

says() method, inheritance, 94
scientifi c notation, formatting numbers, 24
scope, functions having lexical, 70
screen coordinate system, 119
screen reader software, 111
screenLeft property, browser window, 118

screenTop property, browser window, 118
screenX event, mouse, 175
screenX property, browser window, 118–119
screenY event, mouse, 175
screenY property, browser window, 118–119
Script tab, Firebug, 198
<script> tag

client-side scripting, 108–109
drop-down menus with HTML, 216
including code in Web page, 108
nonblocking and lazy loading, 110
requesting data from other servers with

JSON-P APIs, 256–257
where to include, 109
writing CSS with/without JavaScript,

115–116
scripting. See client-side scripting
scrollBy() method, browser window, 121
scrollTo() method, browser window, 121
search

changing URL, 123
for DOM nodes, 139–140

search and replace methods, strings
indexOf(), 37–38
lastIndexOf(), 39
match(), 40
regular expressions and, 39
replace(), 40–41
search(), 40

search() method, strings, 40
secure parameter, reading cookies, 124
security

Ajax, 238
JSON-P limitations, 257

self-invoking functions
caching, 76
closures, 71
creating, 59
slideshow.js, 203

SEO (search engine optimization)
Ajax and, 240
progressive enhancement and, 114

serialize() method, jQuery, 255
servers

Ajax, 238
and PHP, 241

set() method, MooTools, 235
setattribute() method, animation, 271
setInterval() function

as asynchronous programming, 105–106
overview of, 103–104
running slideshow, 209

setOptions() method, MooTools, 231
setStyle() method, MooTools, 235

The JavaScript Pocket Guide284

setTimeOut() function
as asynchronous programming, 105–106
as global function, 102–103
simple animation, 261
time-based animation, 262–263

setup expressions, loops, 10, 47–49
setup, Ajax, 241
shift() method, arrays, 51
shiftKey event, mouse, 176
showImage() function, slideshow, 208–211
showMenu() method, 232, 234
simpleAnimation() function, 261
single primes ('), as escape characters, 32
single-threaded, JavaScript, 102–103
sleep() function, 252
slice() method

arrays, 51–52
strings, 35–36

slide effect, drop-down menus, 229–233
slideshow. See image slideshows
slideshow.css

building page links to, 201
creating, 202
defi ned, 199

slideshow.fi nd(), 203–204
slideshow.js

building slideshow HTML, 201
creating slideshow code, 208
debugging code, 198
entering code, 203

sort() method, arrays, 54–55
splice() method, arrays, 52–53
split() method, strings, 36–37
src attribute, remote scripts, 108
statements

control fl ow, 11–14
overview of, 2–3
variable declarations as, 3

stopPropagation() method, 167, 171
store() method, MooTools, 226, 235
String.prototype, 89–90
strings, 33–42

changing case, 34
converting arrays to, 55–56
converting numbers to, 26–28
converting to arrays, 36–37
converting to numbers, 27
escape characters, 32
extracting parts, 34–36
global functions for encoding and

decoding, 42–44
helper functions, 42
length property, 33
operators, 32–33

overview of, 31, 33
regular expressions and, 39
search and replace, 37–41

stringTrim() function, 42, 89–90
style attribute

animation, 270–271
DOM element styles, 156–157

style.left property
simple animation, 261
time-based animation, 262–263

styles, DOM element, 154–156
submenus, showing and hiding, 226–228
submit event, form elements, 183
substr() method, strings, 35–36
switch/case, 12–13
symbols, JavaScript, 1–2
syntax, 1–2

T
tabindex property, MooTools, 234
tabs (\t), escape sequences for, 32
tallest() method, slideshow images, 207
target element, event bubbling, 168–169
target property, Event object, 166
template, HTML, 246–248
template.php fi le, 241, 246–248, 252
templatize() function, 254
ternary expressions, 19
test expressions, 10–11, 48
text

adding inside element node, 143
as Ajax data format, 238
as DOM node type, 130
handling with strings. See strings

this keyword
accessing elements, 161–162
accessing function context, 66
creating slideshow images, 205
inside constructor function, 87
practical function context binding,

224–225
running function in global context, 99

throw keyword, 13–14
time-based animation, 261
timeBased() function, 262–263, 265–266
timeBasedEasing() function, 265–266
timer functions, 102–104
timeStamp property, Event object, 166
toFixed() method, 28
toggleLink() method, 224–226
toLowerCase() method, strings, 34
toString() method, converting arrays, 56
toUpperCase() method, strings, 34

 Index 285

tree, DOM, 131–132, 169
troubleshooting PHP, 242
truthiness

Boolean operators managing, 15–18
of values, 6–7

try/catch/fi nally, 13
type attribute, HTML elements, 149–152
type property, Event object, 166
typeof operator, 4

U
unescape(string) function, 42–43
Unicode characters, 32, 210
unload event, browser, 173
unshift() method, arrays, 50–51
updatePageLinks() function, 254
URLs

changing browser, 122–123
using back buttons and bookmarks in

Ajax, 239–240
user experience, Ajax, 239–240
user interface

adding Ajax to Web page, 253–254
animations enhancing, 271

utilities
jQuery, 191
library animation, 267
MooTools, 195, 235–236

V
validation, form data, 244
values

adding to arrays, 49–50
assigning argument default, 61
attribute, 150–152
combining for compound expressions,

15–19
functions returning, 8
overview of, 4–5
properties as collections of, 9
property, 80
removing from arrays, 51

var keyword
creating global variables accidentally, 101
creating variable declarations, 58

variable assignment expressions, 3

variable declarations, 3
variable scope, 70–71, 99–100
variables

assigning functions to, 8–9
comparison, 5–6
and data, 3–7
debugging code, 198
global, 100–102
overview of, 3
truthiness and falsiness, 6–7
values and, 4–5

W
W3C, 111
whatNode() function, 170–171
WHATWG, 111
while loops, with arrays, 84
while statement, 10
whitespace text nodes, 133, 137–138
widest() method, slideshow images, 207
width() method, jQuery, 213
window

as global object, 99
global variables as properties of, 100–101
programming in browser. See browser

windows
window.open(), spammers and advertisers, 119

X
XAMPP, installing, 241
XML, Ajax data format, 238–239
XMLHttpRequest object, and Ajax, 237–238, 252

Y
Y.Anim constructor, 267–268
YUI3 library

animation with, 267–268
animation with jQuery vs., 270
coding with, 192–194
defi ned, 192
using with this book, 188
YUI3 Gallery, 193

Z
zero, base-8 numbers, 24

Simply visit www.peachpit.com/safarienabled
and enter code YDZXZAA to try it today.

Get free online access
to this book for 45 days!
And get access to thousands more by signing
up for a free trial to Safari Books Online!

With the purchase of this book you have instant online,

searchable access to it for 45 days on Safari Books Online!

And while you’re there, be sure to check out Safari Books

Online’s on-demand digital library and their free trial offer

(a separate sign-up process). Safari Books Online subscribers

have access to thousands of technical, creative and business

books, instructional videos, and articles from the world’s

leading publishers.

www.peachpit.com/safarienabled

	Contents
	Introduction
	Why JavaScript Is Cool
	Who Should Read This Book
	What You Need to Follow Along
	What’s in This Book
	What’s Not in This Book
	Resources
	Writing JavaScript Code
	Case Sensitivity
	Comments
	Semicolons
	Whitespace and New Lines
	Reserved Words
	Balanced Brackets and Quotes

	Firebug

	Chapter 1: JavaScript Basics
	Expressions and Statements
	Variables and Data
	Values
	Comparison
	Truthiness and Falsiness

	Functions and Objects
	Objects

	Loops
	Control Flow
	if/if-else/else
	switch/case
	try/catch/finally
	throw
	break and continue

	Compound Expressions
	Boolean Operators
	Logical NOT: !
	Logical AND: &&
	Logical OR: ||
	Combining Boolean Operators
	Ternary Expressions

	Chapter 2: Numbers
	Basic Math
	Number Formats
	Constants and Functions
	The Math Object
	Even More Properties and Methods
	Generating Random Integers

	Conversion
	Number Precision

	Chapter 3: Strings
	Escape Characters
	Operators
	Properties
	Methods
	Changing Case: toUpperCase(), toLowerCase()
	Extracting Parts of a String
	charAt(x), charCodeAt(x)
	slice(x[, y])
	substr(x[, y])

	Converting Strings to Arrays: split([delimiter, limit])
	Search and Replace
	indexOf(substring[, start])
	lastIndexOf(substring[, start])
	search(regexp)
	match(regexp)
	replace(pattern, replacement)

	Helper Functions
	stringTrim()

	Global Functions
	escape(string), unescape(string)
	encodeURI(string), decodeURI(string)
	encodeURIComponent(string), decodeURIComponent(string)

	Chapter 4: Arrays
	Creating Arrays
	Properties
	Looping Over Arrays
	forEach(loopFunc)

	Methods
	Adding Items to Arrays
	concat(x[,y,z …])
	push(x[,y,z …])
	unshift(x[,y,z …])

	Removing Items from Arrays
	pop()
	shift()

	Extracting Items from Arrays
	slice(x[,y])
	splice(start[, length, newValue …])

	Ordering Arrays
	reverse()
	sort([func])

	Converting Arrays to Strings
	join([delimiter])
	toString()

	Chapter 5: Functions
	Creating Functions
	Declarations
	Expressions
	Self-invoking Functions

	Arguments
	Default Values for Arguments
	Objects as Arguments

	Return Values
	Functions as Methods
	Context Binding
	Closures
	Recursion
	Caching
	Memoization

	Chapter 6: Objects
	Basics
	Looping Over Properties
	Enumerable Properties
	Deleting Properties

	Constructor Functions
	Prototypes
	Changing Built-in Prototypes
	Adding Modern JavaScript to Older Browsers
	Prototypes for Custom Data Types
	How to Understand Constructor Functions and Prototypes

	Object-Oriented Patterns
	Namespacing
	Local References

	Chapter 7: The Global Object
	Global Variables
	Accidentally Creating Global Variables

	Global Functions
	Timers
	setTimeout(func, delay)
	setInterval(func, delay)
	clearInterval(id), clearTimeout(id)

	Chapter 8: Client-Side Scripting
	Script Tags
	Inline Scripts
	Remote Scripts
	Where to Include the <script> Tag

	The Browser Problem
	Progressive Enhancement
	Handling Non-JavaScript Situations
	The <noscript> Tag
	JavaScript-Specific CSS Classes

	Chapter 9: Browsers and Windows
	Properties
	Global Functions
	Dialog Boxes
	Manipulating Browser Windows

	The history Object
	The location Object
	Cookies
	Setting Cookies
	Reading Cookies
	Deleting Cookies

	The navigator Object

	Chapter 10: The DOM
	Nodes
	Node Collections
	Node Trees

	Node Properties
	nodeName
	nodeType
	nodeValue

	Walking the DOM
	Starting with document
	Managing Whitespace
	children

	Finding Nodes
	getElementById(domId)
	getElementsByTagName(name)
	getElementsByClassName(name)
	querySelector(selector)
	querySelectorAll(selector)

	Creating Nodes
	Using DOM Methods
	createElement(tagName)
	createTextNode(nodeValue)
	cloneNode(deep)
	Using innerHTML
	Using Document Fragments
	Adding, Removing, and Reordering Nodes
	appendChild(node)
	insertBefore(node, reference)
	removeChild(childNode)
	Utility Functions

	Inspecting and Changing Elements
	Attributes
	Calculated Attribute Values
	Special Properties
	Element Styles
	The class Attribute
	The style Attribute
	Computed Styles

	Chapter 11: Events
	Event Attributes
	Return Values
	Event Attribute Method Context
	Multiple Event Handlers

	Event Methods
	addEventListener(eventType, handler, capture)
	removeEventListener(eventType, handler, capture)

	The Event Object
	Properties
	Methods

	Event Bubbling and Capturing
	Bubbling
	Capturing
	Stop Propagation
	Event Delegation

	Event Examples
	Browser Events
	load
	unload
	beforeunload
	resize
	DOMContentLoaded
	Mouse Events
	click
	mousedown, mouseup
	dblclick
	mouseover, mouseout
	mouseenter, mouseleave
	Keyboard Events
	keydown
	keypress
	keyup
	Form Element Events
	change
	submit
	Other Events
	focus
	blur

	Chapter 12: Libraries
	Choosing a Library
	Using Libraries with This Book
	jQuery
	Coding with jQuery
	jQuery Objects
	jQuery Utilities
	jQuery UI

	YUI [(sub)3]
	Coding with YUI [(sub)3]
	YUI [(sub)3] Gallery

	MooTools
	Coding with MooTools
	Namespacing
	MooTools More

	Chapter 13: Image Slideshow
	Debugging Your Code
	Slideshow Ingredients
	Slideshow HTML
	Slideshow CSS

	Slideshow JavaScript
	Creating the Slideshow Images
	Centering the Images
	The Slideshow Code
	Slideshow Controls

	jQuery Glossary
	The jQuery Function: $()
	jQuery Object Methods

	Chapter 14: Drop-Down Menus
	Menu HTML
	Menu Markup

	Menu CSS
	Progressive Enhancement
	Menu JavaScript
	MooTools Constructor Functions
	Arrays in MooTools
	Event Handlers in MooTools Classes
	Showing and Hiding Submenus
	Clicking Outside the Menus

	Extending the Menu Class
	Overriding Inherited Methods
	Using MooTools Effects

	MooTools Glossary
	Element Utilities
	Element Methods
	Array Utilities
	Function Utilities

	Chapter 15: Ajax
	Ajax Considerations
	Servers
	Same-Origin Policy
	Data Formats
	User Experience

	Ajax Example
	Setup
	Data File
	Controller File
	Reading Data from the File
	Get the Page Number from the Query String
	Saving Form Data to the File
	Arrange the Data Just for the Page
	Send JSON for Ajax Requests
	Send an HTML Template for Normal Page Requests
	The HTML Template
	HTML Page Outline
	Data Table Markup
	Navigation Links
	Form Markup
	Checking Your Work
	Ajaxifying the Page
	Script Outline
	Overriding the Previous and Next Links
	Waiting for the Request to Load
	Error Handling
	Handling the Response
	Updating the User Interface
	Overriding the Form

	Getting Around the Same-Origin Policy
	Proxies
	JSON-P

	Chapter 16: Animation
	Simple Animation
	Time-Based Animation
	Easing

	Animation with Libraries
	YUI [(sub)3] Animation Objects
	The jQuery animate() Method
	Resetting Animation

	Using Animation

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

