
http://www.it-ebooks.info/


Laravel 5 Essentials

Explore the fundamentals of Laravel, one of the most 
expressive and robust PHP frameworks available

Martin Bean

BIRMINGHAM - MUMBAI

http://www.it-ebooks.info/


Laravel 5 Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015

Production reference: 1240415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-301-7

www.packtpub.com

www.packtpub.com 
http://www.it-ebooks.info/


Credits

Author
Martin Bean

Reviewers
Si Fleming

Michael Peacock

Brayan Laurindo Rastelli

Michele Somma

Commissioning Editor
Akram Hussain

Acquisition Editor
Reshma Raman

Content Development Editor
Mohammed Fahad

Technical Editor
Ankur Ghiye

Copy Editors
Merilyn Pereira

Laxmi Subramanian

Project Coordinator
Danuta Jones

Proofreaders
Safis Editing

Paul Hindle

Indexer
Monica Ajmera Mehta

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

http://www.it-ebooks.info/


About the Author

Martin Bean is a full-stack website developer based in Newcastle upon Tyne, 
UK. Prior to writing this book, he spent 8 years as a professional website developer, 
beginning his career and honing his skills in various agencies. After 5 years, he made 
the switch to running his own development and consultancy firm, where he worked 
with clients, both big and small.

Although this is the first book he has authored, he has written other articles and 
acted as a technical reviewer on a Node.js title. He also blogs regularly on his own 
website, http://martinbean.co.uk.

You can follow Martin on Twitter at https://twitter.com/martinbean.

I would like to thank the team at Packt Publishing for reaching out 
and giving me the opportunity to author this book. It's truly an 
honor to be recognized and asked to write this book. I'd also like to 
thank my girlfriend, Vikki, who was surprisingly calm when I told 
her I was taking time away from work to write this book, and who 
also plied me with dozens of cups of tea throughout the writing 
process. A note of thanks also goes out to the editors and reviewers 
of this title to ensure it is of the highest quality, and a final thank you 
goes to you, the reader, for purchasing this book and making the 
many hours I put into this book worth it.

http://martinbean.co.uk
https://twitter.com/martinbean
http://www.it-ebooks.info/


About the Reviewers

Si Fleming is a senior engineer with experience in working with Java and PHP for 
over a decade. He holds a PhD in computer science from the University of Sussex, 
where his research focused on distributed systems, ad hoc social networks, Q&A, 
security, and privacy.

Michael Peacock is an experienced software developer and team lead from 
Newcastle, UK, with a degree in software engineering from the University of 
Durham.

After spending a number of years running his own web agency and subsequently 
working directly for a number of software start-ups, Michael now runs his own 
software development agency, working on a range of projects for an array of 
different clients.

He is the author of Creating Development Environments with Vagrant, PHP 5 Social 
Networking, PHP 5 E-Commerce Development, Drupal 7 Social Networking, Selling Online 
with Drupal e-Commerce, and Building Websites with TYPO3, all by Packt Publishing. 
The other publications Michael has been involved in include Advanced API Security, 
Mobile Web Development, Jenkins Continuous Integration Cookbook, and Drupal for 
Education and E-Learning, for which he acted as a technical reviewer.

Michael has also presented at a number of user groups and technical conferences, 
including PHP UK Conference, Dutch PHP Conference, ConFoo, PHPNE, PHPNW, 
and CloudConnect Santa Clara.

You can follow Michael on Twitter at @michaelpeacock or find out more about him 
through his website at www.michaelpeacock.co.uk.

www.michaelpeacock.co.uk
http://www.it-ebooks.info/


Brayan Laurindo Rastelli has been involved in web development for more than 
6 years now and is always in pursuit of new and cool technologies to work with. 
Brayan has a passion for making things faster and more efficient. He carries with 
him an extensive knowledge of PHP, most notably the Laravel framework, having 
created a Laravel course to train Brazilians. In addition, Brayan has also created 
and maintained both the website and forum for the Laravel community in Brazil. 
Currently, he works at Speed to Contact on a single page/real-time application using 
Laravel, AngularJS, WebSockets, telephony, and other cutting-edge technologies.

Michael Somma is an Italian web developer skilled in PHP, MySQL, and some 
new frameworks such as jQuery, jQuery UI, and Twitter Bootstrap. For over 2 years, 
he has been a major user of the PHP CodeIgniter framework and has now migrated 
to the Laravel framework. He likes to develop both application frontend and 
backend with new technology that learns. Since 2010, he has worked at a web  
agency in Bari (Italy), developing a large variety of websites and web applications;  
in 2014, he started his own activity. As part of Github, he tries to contribute to 
various projects in his spare time.

http://www.it-ebooks.info/


www.PacktPub.com

Support files, eBooks, discount offers,  
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view 9 entirely free books. Simply use your login credentials for 
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/


http://www.it-ebooks.info/


[ i ]

Table of Contents
Preface v
Chapter 1: An Introduction to Laravel 1

The need for frameworks 2
The limitations of homemade tools 2
Laravel to the rescue 2

A new approach to developing PHP applications 3
A more robust HTTP foundation 3
Embracing PHP 4

Laravel's main features and sources of inspiration 5
Expressiveness and simplicity 7

Prettifying PHP 7
Responsibilities, naming, and conventions 8
Helping you become a better developer 10

Structure of a Laravel application 10
The service container and request lifecycle 12
Exploring Laravel 12
Changes in Version 5 from Version 4 13

Summary 14
Chapter 2: Setting Up a Development Environment 15

Meeting Composer 15
Working with the command line 16
Meet Homestead 17

Installing Homestead 17
Everyday usage of Homestead 20

Adding additional websites 20
Connecting to your databases 21

Creating a new Laravel application 21
Summary 22

http://www.it-ebooks.info/


Table of Contents

[ ii ]

Chapter 3: Your First Application 23
Planning our application 24

Entities, relationships, and attributes 24
The map of our application 24

Starting the application 25
Setting the application namespace 26

Writing the first routes 26
Restricting the route parameters 27
Handling HTTP exceptions 27
Performing redirections 27
Returning views 28

Preparing the database 28
Creating Eloquent models 29
Building the database schema 30
Seeding the database 33

Mastering Blade 34
Creating a master view 34

Back to the routes 36
The overview page 36
Displaying a cat's page 38

Route-model binding 38
Adding, editing, and deleting cats 39

Moving from simple routing to powerful controllers 43
Resource controllers 45

Summary 45
Chapter 4: Eloquent ORM 47

Retrieving data 48
Filtering records 49

Saving data 50
Mass assignment 51

Deleting data 52
Soft deletion 52

Including deleted models in results 53
Query scopes 54
Relationships 55

One-to-one 55
Many-to-many 56

Storing data in the pivot table 58
Has-many-through 58
Polymorphic relations 59
Many-to-many polymorphic relations 60

http://www.it-ebooks.info/


Table of Contents

[ iii ]

Model events 61
Registering event listeners 61
Model observers 62

Collections 62
Checking whether a key exists in a collection 63

Summary 64
Chapter 5: Testing – It's Easier Than You Think 65

The benefits of testing 66
The anatomy of a test 66
Unit testing with PHPUnit 68

Defining what you expect with assertions 68
Preparing the scene and cleaning up objects 69
Expecting exceptions 69
Testing interdependent classes in isolation 70

End-to-end testing 70
Testing – batteries included 71
Framework assertions 71
Impersonating users 72
Testing with a database 72
Inspecting the rendered views 74

Summary 74
Chapter 6: A Command-line Companion Called Artisan 75

Keeping up with the latest changes 75
Inspecting and interacting with your application 76

Fiddling with the internals 77
Turning the engine off 77
Fine-tuning your application 78
Caching routes 78
Generators 79

Rolling out your own Artisan commands 80
Creating the command 80
The anatomy of a command 81
Writing the command 82

Scheduling commands 84
Viewing the output of scheduled commands 85

Summary 86
Chapter 7: Authentication and Security 87

Authenticating users 87
Creating the user model 87
Creating the necessary database schema 90

http://www.it-ebooks.info/


Table of Contents

[ iv ]

Authentication routes and views 92
Middleware 94
Validating user input 97

Form requests 98
Securing your application 100

Cross-site request forgery 100
Escaping content to prevent cross-site scripting (XSS) 101
Avoiding SQL injection 101
Using mass assignment with care 102
Cookies – secure by default 102
Forcing HTTPS when exchanging sensitive data 103

Summary 103
Appendix: An Arsenal of Tools 105

Array helpers 105
The usage examples of array helpers 106

String and text manipulation 108
Boolean functions 108
Transformation functions 108
Inflection functions 109

Dealing with files 109
File uploads 111

Sending e-mails 112
Easier date and time handling with Carbon 113

Instantiating Carbon objects 113
Outputting user-friendly timestamps 114
Boolean methods 114
Carbon for Eloquent DateTime properties 114

Don't wait any longer with queues 115
Creating a command and pushing it onto the queue 115
Listening to a queue and executing jobs 117
Getting notified when a job fails 117
Queues without background processes 118

Where to go next? 118
Index 119

http://www.it-ebooks.info/


[ v ]

Preface
Application frameworks have grown in popularity over the past five years.  
There has been a tremendous shift from handwriting all code to leveraging these 
powerful frameworks with prebuilt components and features. However, with 
anything that comes to be in fashion, there are now a lot of contending options,  
and each of them viable.

While CodeIgniter was one of the first frameworks to enjoy widespread popularity, 
this popularity would come to be its undoing years later, as its large spread use 
and low barrier to entry meant it couldn't take advantage of newer versions of 
PHP without losing backwards compatibility, and potentially breaking lots of 
applications. This saw it then be surpassed by faster-moving alternatives such as 
Symfony and even FuelPHP, which was developed as a response to CodeIgniter's 
unwillingness to embrace change.

Enter: Laravel. Laravel joined the framework scene when there were already many 
players. However, the developers of Laravel used this timing to their advantage, 
instead creating a framework that avoided all of the problems and mistakes previous 
full stack frameworks had made and building on top of the excellent Symfony 
components in order to create a robust, component-based framework.

Instead of providing dozens of inflexible libraries, Laravel provides sensible,  
driver-based components that developers could use to build applications their 
own way, rather than trying to mash everything into the layout the framework 
author defined. This led to Laravel rising in popularity. It was also a fast-moving 
framework, and, by version 4, had become the most starred framework on GitHub,  
a testament to its popularity.

http://www.it-ebooks.info/


Preface

[ vi ]

This book will give you a tour of Laravel and its core features. We'll look at how to 
manage multiple Laravel applications on the same machine and then we'll go ahead 
and start building our own Laravel application from scratch through to completion. 
Once we've got a basic application reading and writing data from a database, we'll take 
a look at Eloquent, Laravel's ORM, which is what makes it easy to read and write from 
a database and the more advanced features it offers. From there, we'll look at Artisan, 
Laravel's command-line utility, and even how to define our own commands. We'll then 
learn how to write automated tests for our application to make sure it keeps working 
the way we want it to, even with future developments. Then, finally, we'll look at how 
to build login and registration systems using Laravel's user authentication component.

By the end of the book, you'll have a complete Laravel application, as well as 
the tools and knowledge of how to build your own Laravel-based applications 
unassisted, and where to continue your learning of the framework.

What this book covers
Chapter 1, An Introduction to Laravel, takes a look at application frameworks in PHP 
in general, a recent history of the Laravel framework, and the principles that the 
Laravel framework is built upon.

Chapter 2, Setting Up a Development Environment, lays the foundation for what's 
needed to build Laravel applications by installing and configuring the Homestead 
virtual machine and the Composer dependency manager.

Chapter 3, Your First Application, builds a working application in Laravel from start to 
finish. Here is where the fun begins!

Chapter 4, Eloquent ORM, takes a look at Eloquent, the object relation mapper that 
ships with Laravel and allows you to query your databases easily.

Chapter 5, Testing – It's Easier Than You Think, goes over the various approaches to 
test your Laravel applications to make sure they're as solid as possible and still work 
as intended after adding new features.

Chapter 6, A Command-line Companion Called Artisan, helps us meet Artisan, the 
command-line utility for Laravel. We cover the commands Artisan offers out of the 
box, as well as how to create our own command-line tools.

Chapter 7, Authentication and Security, shows you the various ways to protect your 
Laravel applications from common attacks, as well as how to authenticate and 
authorize users accessing your application.

Appendix, An Arsenal of Tools, covers the arsenal of tools that Laravel provides, which 
haven't been covered in the previous chapters.

http://www.it-ebooks.info/


Preface

[ vii ]

What you need for this book
As Laravel is a PHP-based application framework, you will need a code editor or 
IDE with syntax highlighting for PHP.

We'll be using the Homestead virtual machine, which requires both Vagrant and 
VirtualBox to be installed on your machine; installation instructions for both of these 
will be provided later in the book.

Also, if you plan to deploy applications to a live web server, then you will need an 
FTP client or SSH access to the remote web server in order to move the files from 
your local machine to the web-accessible server.

Who this book is for
This book is primarily aimed at those interested in learning about the Laravel 
framework, as maybe they've heard about it but not had the chance or time to 
become familiar with it. Therefore, knowledge of PHP and related technologies  
(such as MySQL) is assumed, as is knowledge of object-oriented programming.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"The Illuminate namespace does not refer to a third-party library."

A block of code is set as follows:
sites:
    - map: dev.furbook.com
      to: /home/vagrant/Code/furbook.com/public
databases:
    - furbook

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

Route::post('cats', function() {
  $cat = Furbook\Cat::create(Input::all());
  return redirect('cats/'.$cat->id)
    ->withSuccess('Cat has been created.');
});

http://www.it-ebooks.info/


Preface

[ viii ]

Any command-line input or output is written as follows:

$ composer create-project laravel/laravel furbook.com --prefer-dist

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: " If you 
now try to visit an invalid URL, nginx will display a 404 Not Found error page."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/


Preface

[ ix ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/


http://www.it-ebooks.info/


[ 1 ]

An Introduction to Laravel
PHP frameworks aren't new, but one of the newest on the block is Laravel. Since 
version 3, Laravel has exploded in popularity to become one of the most popular 
and widely used PHP frameworks in a short span of time. At the time of writing, the 
Laravel repository on GitHub has more stars than its more mature contemporaries 
such as Symfony, CakePHP, CodeIgniter, and Yii. So what is it about Laravel that 
makes it so popular?

In this chapter, we will cover the following topics:

• How the productivity can be increased using a framework
• The fundamental concepts and key features of Laravel
• The general structure and conventions of a new Laravel application
• An introduction to the Model-View-Controller (MVC) design pattern, on 

which Laravel is based
• Migration tips for users of the previous versions of Laravel

We will look at its key features and how they have made Laravel an indispensable 
tool for many web developers. We will compare writing PHP applications with 
and without a framework, and see how using a framework can aid in writing more 
robust and better-structured PHP applications. Then, we will take a closer look at the 
anatomy of a Laravel application and the third-party packages that it leverages. After 
reading this chapter, you will have the knowledge needed to get started and build 
your first Laravel application.

http://www.it-ebooks.info/


An Introduction to Laravel

[ 2 ]

The need for frameworks
Of all the server-side programming languages, PHP undoubtedly has the lowest entry 
barriers. It is almost always installed by default on even the cheapest web hosts, and 
it is also extremely easy to set up on any personal computer. For newcomers who 
have some experience with authoring web pages in HTML and CSS, the concepts 
of variables, inline conditions, and include statements are easy to grasp. PHP also 
provides many commonly used functions that one might need when developing 
a dynamic website. All of this contributes to what some refer to as the immediacy 
of PHP. However, this instant gratification comes at a cost. It gives a false sense of 
productivity to beginners, who almost inevitably end up with convoluted spaghetti 
code as they add more features and functionality to their site. This is mainly because 
PHP, out of the box, does not do much to encourage the separation of concerns.

The limitations of homemade tools
If you already have a few PHP projects under your belt, but have not used a web 
application framework before, then you will probably have amassed a personal 
collection of commonly used functions and classes that you can use on new projects. 
These homegrown utilities might help you with common tasks, such as sanitizing 
data, authenticating users, and including pages dynamically. You might also have a 
predefined directory structure where these classes and the rest of your application 
code reside. However, all of this will exist in complete isolation; you will be solely 
responsible for the maintenance, inclusion of new features, and documentation. For  
a lone developer or an agency with ever-changing staff, this can be a tedious and  
time-consuming task, not to mention that if you were to collaborate with other 
developers on the project, they would first have to get acquainted with the way in 
which you build applications.

Laravel to the rescue
This is exactly where a web application framework such as Laravel comes to the 
rescue. Laravel reuses and assembles existing components to provide you with a 
cohesive layer upon which you can build your web applications in a more structured 
and pragmatic way. Drawing inspiration from popular frameworks written not just 
in PHP but other programming languages too, Laravel offers a robust set of tools and 
an application architecture that incorporates many of the best features of frameworks 
like CodeIgniter, Yii, ASP.NET MVC, Ruby on Rails, Sinatra, and others.

Most of these frameworks use the Model-View-Controller (MVC) paradigm or 
design pattern. If you have used one of the aforementioned tools or the MVC pattern, 
then you will find it quite easy to get started with Laravel 5.

http://www.it-ebooks.info/


Chapter 1

[ 3 ]

A new approach to developing PHP 
applications
As previously mentioned, PHP gained a bad reputation over the years due to 
lots of badly-written websites and web applications, and its shortcomings when 
compared to other, more mature languages. PHP is also notorious for its naming 
inconsistencies and questionable design decisions regarding its syntax. As a 
consequence, there has been an exodus to more credible frameworks written in Ruby 
and Python. Since these languages were nowhere as feature-rich for the Web as PHP, 
the creators of Ruby on Rails and Django, for instance, had to recreate some essential 
building blocks, such as classes, to represent HTTP requests and responses and were, 
therefore, able to avoid some of the mistakes that PHP had made before them, due to 
the luxury of starting from a blank slate. These frameworks also forced the developer 
to adhere to a predefined application architecture.

However, it's now a great time to discover (or fall back in love with) PHP again, 
as over the past couple of years the language has rapidly evolved to include new 
features such as closures and traits, and a de facto package manager in Composer. 
Past complaints of PHP when compared to other languages are now exactly that, of 
the past, and PHP is slowly but surely changing the bad reputation it has suffered 
from, for so long.

A more robust HTTP foundation
After years of people developing their own, unique approach of handling common 
tasks, such as handling requests and responses, specifically for their own projects, 
one framework took a different approach and instead, began creating components 
that could be used in any codebase no matter its foundation, be it homegrown or 
based on a framework. The Symfony project adopted these principles to recreate 
a more solid, flexible, and testable HTTP foundation for PHP applications. Along 
with the latest version of Drupal and phpBB, Laravel is one of the many open source 
projects that use this foundation together with several other components that form 
the Symfony framework.

Laravel is such a project that relies on the HTTP foundation created by Symfony. 
It also relies on other components created by Symfony, as well as a variety of other 
popular libraries, such as SwiftMailer for more straightforward e-mailing, Carbon 
for more expressive date and time handling, Doctrine for its inflector and database 
abstraction tools, and a handful of other tools to handle logging, class loading, and 
error reporting. Instead of re-inventing the wheel, Laravel decided to hop on the 
shoulder of giants and embrace these pre-existing mature components.

http://www.it-ebooks.info/


An Introduction to Laravel

[ 4 ]

Embracing PHP
One way in which Laravel differs from its contemporaries is that it openly embraces 
new features of PHP and in turn requires a fairly recent version (at least 5.4). 
Previously, other frameworks would build support for older versions of PHP to 
maintain backwards-compatibility for as long as possible. However, this approach 
meant that those same frameworks couldn't take advantage of new features in the 
newer versions of PHP, in turn, hampering the evolution of PHP. Using Laravel 5, 
you will get to grips with some of the newer features of PHP. If you're new to PHP, 
or coming back to the language after a while, then here's what you can expect to find:

• Namespaces: More mature languages such as Java and C# have namespaces. 
Namespaces help developers avoid naming collisions that might happen if 
say, two different libraries have the same function or class name. In PHP, 
namespaces are separated by backslashes, which is usually mirrored by 
the directory structure, with the only difference being the use of slashes 
on Unix systems, in accordance with the PSR-4 convention. A namespace, 
such as <?php namespace Illuminate\Database\Eloquent is declared 
at the top of the file. To use code from another namespace, it needs to be 
imported, which can be done with the use keyword, and then by specifying 
the namespace, that is, use Illuminate\Database\Eloquent\Model. 
Another advantage of namespaces is that you can alias imported classes, so 
as to avoid collisions with classes with the same name in another namespace 
or the global namespace. To do this, you use the as keyword after the use 
statement as use Foo\Logger as FooLogger;

• Interfaces: Interfaces specify the methods that a class should provide when 
that interface is implemented. Interfaces do not contain any implementation 
details themselves, merely the methods (and the arguments those methods 
should take). For instance, if a class implements Laravel's JsonableInterface 
instance, then that class will also need to have a toJson() method. Within 
Laravel, interfaces tend to be referred to as Contracts.

• Anonymous functions: These are also known as closures and were 
introduced in PHP 5.3. Somewhat reminiscent of JavaScript, they help you to 
produce shorter code, and you will use them extensively when building Laravel 
applications to define routes, events, filters, and in many other instances. This 
is an example of an anonymous function attached to a route: Route::get('/', 
function() { return 'Hello, world.'; });.In Laravel, this code creates a 
new route when the base path of a website is requested. When it is, the code in 
the closure is executed and returned as the response.

http://www.it-ebooks.info/


Chapter 1

[ 5 ]

• Overloading: Also called dynamic methods, they allow you to call 
methods such as whereUsernameOrEmail($name, $email) that were 
not explicitly defined in a class. These calls get handled by the __call() 
method in the class, which then tries to parse the name to execute one or 
more known methods. In this case, ->where('username', $username)-
>orWhere('email', $email).

• Shorter array syntax: PHP 5.4 introduced the shorter array syntax. Instead of 
writing array('primes' =>array(1,3,5,7)), it is now possible to use just 
square brackets to denote an array, that is, ['primes'=>[1,3,5,7]]. You 
might know syntax if you've used arrays in JavaScript.

Laravel's main features and sources of 
inspiration
So, what do you get out of the box with Laravel 5? Let's take a look and see how the 
following features can help boost your productivity:

• Modularity: Laravel was built on top of over 20 different libraries and is 
itself split into individual modules. Tightly integrated with Composer 
dependency manager, these components can be updated with ease.

• Testability: Built from the ground up to ease testing, Laravel ships with several 
helpers that let you visit routes from your tests, crawl the resulting HTML, 
ensure that methods are called on certain classes, and even impersonate 
authenticated users in order to make sure the right code is run at the right time.

• Routing: Laravel gives you a lot of flexibility when you define the routes 
of your application. For example, you could manually bind a simple 
anonymous function to a route with an HTTP verb, such as GET, POST, PUT, 
or DELETE. This feature is inspired by micro-frameworks, such as Sinatra 
(Ruby) and Silex (PHP).

• Configuration management: More often than not, your application will 
be running in different environments, which means that the database or 
e-mail server credential's settings or the displaying of error messages will 
be different when your app is running on a local development server to 
when it is running on a production server. Laravel has a consistent approach 
to handle configuration settings, and different settings can be applied in 
different environments via the use of an .env file, containing settings unique 
for that environment.

http://www.it-ebooks.info/


An Introduction to Laravel

[ 6 ]

• Query builder and ORM: Laravel ships with a fluent query builder, which 
lets you issue database queries with a PHP syntax, where you simply chain 
methods instead of writing SQL. In addition to this, it provides you with an 
Object Relational Mapper (ORM) and ActiveRecord implementation, called 
Eloquent, which is similar to what you will find in Ruby on Rails, to help 
you define interconnected models. Both the query builder and the ORM are 
compatible with different databases, such as PostgreSQL, SQLite, MySQL, 
and SQL Server.

• Schema builder, migrations, and seeding: Also inspired by Rails, these 
features allow you to define your database schema in PHP code and keep 
track of any changes with the help of database migrations. A migration is a 
simple way of describing a schema change and how to revert to it. Seeding 
allows you to populate the selected tables of your database, for example, 
after running a migration.

• Template engine: Partly inspired by the Razor template language in ASP.
NET MVC, Laravel ships with Blade, a lightweight template language with 
which you can create hierarchical layouts with predefined blocks in which 
dynamic content is injected.

• E-mailing: With its Mail class, which wraps the popular SwiftMailer 
library, Laravel makes it very easy to send an e-mail, even with rich content 
and attachments from your application. Laravel also comes with drivers for 
popular e-mail sending services such as SendGrid, Mailgun, and Mandrill.

• Authentication: Since user authentication is such a common feature in web 
applications, out of the box Laravel comes with a default implementation to 
register, authenticate, and even send password reminders to users.

• Redis: This is an in-memory key-value store that has a reputation for being 
extremely fast. If you give Laravel a Redis instance that it can connect to, 
it can use it as a session and general purpose cache, and also give you the 
possibility to interact with it directly.

• Queues: Laravel integrates with several queue services, such as Amazon 
SQS, Beanstalkd, and IronMQ, to allow you to delay resource-intensive 
tasks, such as the e-mailing of a large number of users, and run them in the 
background, rather than keep the user waiting for the task to complete.

• Event and command bus: Although not new in version 5, Laravel has 
brought a command bus to the forefront in which it's easy to dispatch events  
(a class that represents something that's happened in your application), 
handle commands (another class that represents something that should 
happen in your application), and act upon these at different points in your 
application's lifecycle.

http://www.it-ebooks.info/


Chapter 1

[ 7 ]

Expressiveness and simplicity
Something that is at the core of Laravel is its philosophy that code should be named 
simply and expressively. Consider the following code example:

<?php

Route::get('area/{area}', function($area) {
  if (51 == $area && ! Auth::check()) {
    return Redirect::guest('login');
  } else {
    return 'Welcome to Area '.$area;
  }
})->where('area, '[0-9]+');

Downloading the example code
You can download the example code files for all 
Packt Publishing books you have purchased from 
your account at http://www.packtpub.com. If 
you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and 
register to have the files e-mailed directly to you.

Even though we have not even touched Laravel or covered its routing functions yet, 
you will probably have a rough idea of what this snippet of code does. Expressive 
code is more readable for someone new to a project, and it is probably also easier for 
you to learn and remember.

Prettifying PHP
Prettifying PHP as well as ensuring code in Laravel is named to effectively convey 
its actions in plain English, the authors of Laravel have also gone on to apply these 
principles to existing PHP language functions. A prime example is the Storage class, 
which was created to make file manipulations:

• More expressive: To find out when a file was last modified, use 
Storage::lastModified($path) instead of filemtime(realpath($path)). 
To delete a file, use Storage::delete($path) instead of unlink($path), 
which is the plain old PHP equivalent.

• More consistent: Some of the original file manipulation functions of PHP are 
prefixed with file_, while others just start with file; some are abbreviated 
and other are not. Using Laravel's wrappers, you no longer need to guess or 
refer to PHP's documentation.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/


An Introduction to Laravel

[ 8 ]

• More testable: Many of the original functions can be tricky to use in tests,  
due to the exceptions they throw and also because they are more difficult  
to mock.

• More feature complete: This is achieved by adding functions that did not 
exist before, such as File::copyDirectory($directory, $destination).

There are very rare instances where expressiveness is foregone in the favor of 
brevity. This is the case for commonly-used shortcut functions, such as e(), that 
escape HTML entities, or dd(), with which you can halt the execution of the script 
and dump the contents of one or more variables.

Responsibilities, naming, and conventions
At the beginning of this chapter, we pointed out that one of the main issues with 
standard PHP applications was the lack of a clear separation of concerns; business 
logic becomes entangled with the presentation and data tier. Like many other 
frameworks that favor convention over configuration, Laravel gives you scaffolding 
with predefined places to put code in. To help you eliminate trivial decisions, it 
expects you to name your variables, methods, or database tables in certain ways, 
even though these are editable via configuration. It is, however, far less opinionated 
than a framework such as Ruby on Rails and in areas like routing, where there is 
often more than one way to solve a problem.

You might remember us mentioning that Laravel is a framework that is based on the 
MVC paradigm. Do not worry if you have not used this architectural pattern before; 
in a nutshell, this is what you need to know about MVC in order to be able to build 
your first Laravel applications:

• Models: Models represent resources in your application. More often than 
not, they correspond to records in a data store, most commonly a database 
table. In this respect, you can think of models as representing entities in your 
application, be that a user, a news article, or an event, among others. In 
Laravel, models are classes that usually extend Eloquent's base Model class 
and are named in CamelCase (that is, NewsArticle). This will correspond 
to a database table with the same name, but in snake_case and plural (that 
is, news_articles). By default, Eloquent also expects a primary key named 
id, and will also look for—and automatically update—the created_at and 
updated_at columns. Models can also describe the relationships they have 
with other models. For example, a NewsArticle model might be associated 
with a User model, as a User model might be able to author a NewsArticle 
model. However, models can also refer to data from other data sources, such 
as an XML file, or the response from a web service or API.

http://www.it-ebooks.info/


Chapter 1

[ 9 ]

• Controllers or routes: Controllers, at their simplest, take a request, do 
something, and then send an appropriate response. Controllers are where 
the actual processing of data goes, whether that is retrieving data from a 
database, or handling a form submission, and saving data back to a database. 
Although you are not forced to adhere to any rules when it comes to creating 
controller classes in Laravel, it does offer you two sane approaches: RESTful 
controllers and resource controllers. A RESTful controller allows you to 
define your own actions and what HTTP methods they should respond to. 
Resource controllers are based around an entity and allow you to perform 
common operations on that entity, based on the HTTP method used. Another 
option is to bypass using controller classes altogether and instead write your 
logic in your routes, by way of anonymous functions.

• Views or Templates: Views are responsible for displaying the response 
returned from a controller in a suitable format, usually as an HTML web 
page. They can be conveniently built by using the Blade template language  
or by simply using standard PHP. The file extension of the view, either 
.blade.php or simply .php, determines whether or not Laravel treats  
your view as a Blade template or not.

The following diagram illustrates the interactions between all the constituents 
applied in a typical web application:

http://www.it-ebooks.info/


An Introduction to Laravel

[ 10 ]

Of course, it is possible to go against the MVC paradigm and the framework's 
conventions and write code as you wish, but this will often require more effort on 
the developer's part for no gain.

Helping you become a better developer
Laravel has become a standard-bearer for a new way of developing PHP applications 
through various design decisions and philosophies, such as the way in which it 
advocates developers to write framework-agnostic code and to rely on contracts 
(interfaces) rather than implementations are only a good thing. It has also built such 
a strong community that it is undoubtedly one of its strongest assets and a major 
contributing factor to its success; it is possible to get answers within minutes from other 
users via avenues such as forums, IRC, and social networking websites like Twitter.

However, if time has taught us anything, it is that frameworks come and go 
and it is hard to predict when Laravel will lose its steam and be supplanted by 
a better or more popular framework. Nonetheless, Laravel will not only make 
you more productive in the short term, but it also has the potential to make you 
a better developer in the long run. By using it to build web applications, you will 
indirectly become more familiar with the following concepts, all of which are highly 
transferable to any other programming language or framework. These include the 
MVC paradigm and Object-oriented programming (OOP) design patterns, the use 
of dependency managers, testing and dependency injection, and the power and 
limitations of ORMs and database migration.

It will also inspire you to write more expressive code with descriptive DocBlock 
comments that facilitate the generation of documentation, as well as the future 
maintenance of the application, irrespective of whether it is done by you or  
another developer.

Structure of a Laravel application
Over the course of the next two chapters, we will install Laravel and create our first 
application. Like most frameworks, Laravel starts out with a complete directory tree 
for you to organize your code in, and also includes placeholder files for you to use as 
a starting point. Here is what the directory of a new Laravel 5 application looks like:

./app/                       # Your Laravel application
  ./app/Commands/            # Commands classes  ./app/Console/
    ./app/Console/Commands/  # Command-line scripts
  ./app/Events/              # Events that your application can  
    raise
  ./app/Exceptions/

http://www.it-ebooks.info/


Chapter 1

[ 11 ]

  ./app/Handlers/            # Exception handlers
    ./app/Handlers/Commands  # Handlers for command classes
    ./app/Handlers/Events    # Handlers for event classes
  ./app/Http/
    ./app/Http/Controllers/  # Your application's controllers
    ./app/Http/Middleware/   # Filters applied to requests
    ./app/Http/Requests/     # Classes that can modify requests
    ./app/Http/routes.php    # URLs and their corresponding  
                               handlers
  ./app/Providers            # Service provider classes
  ./app/Services             # Services used in your application

./bootstrap/                 # Application bootstrapping scripts

./config/                    # Configuration files

  ./database/
  ./database/migrations/     # Database migration classes
  ./database/seeds/          # Database seeder classes

./public/                  # Your application's document root

./public/.htaccess         # Sends incoming requests to index.php

./public/index.php         # Starts Laravel application

./resources/
  ./resources/assets/        # Hold raw assets like LESS & Sass  
                               files
  ./resources/lang/          # Localization and language files
  ./resources/views/         # Templates that are rendered as HTML

./storage/
  ./storage/app/             # App storage, like file uploads etc
  ./storage/framework/       # Framework storage (cache)
  ./storage/logs/            # Contains application-generated logs

./tests/                     # Test cases

./vendor/                    # Third-party code installed by  
                               Composer
./.env.example               # Example environment variable file

./artisan                    # Artisan command-line utility

./composer.json              # Project dependencies manifest

./phpunit.xml                # Configures PHPUnit for running  
                               tests

./server.php                 # A lightweight local development  
                               server

http://www.it-ebooks.info/


An Introduction to Laravel

[ 12 ]

Like Laravel's source code, the naming of directories is also expressive, and it is 
easy to guess what each directory is for. The app directory is where most of your 
application's server-side code will reside, which has subdirectories both for how 
your application could be accessed (Console and Http), as well as subdirectories for 
organizing code that could be used in both scenarios (such as Events and Services). 
We will explore the responsibilities of each directory further in the next chapters.

The service container and request lifecycle
Whether you are a beginner in PHP or an experienced developer in a different 
language, it might not always be obvious how an HTTP request reaches a Laravel 
application. Indeed, the request lifecycle is fundamentally different from plain PHP 
scripts that are accessed directly by their URI (for example, GET http://example.
com/about-us.php).

The public/ directory is meant to act as the document root; in other words, the 
directory in which your web server starts looking after every incoming request. 
Once URL rewriting is properly set up, every request that does not match an existing 
file or directory hits the /public/index.php file. This file includes the Composer 
autoloader file, which loads in dependencies (including the Laravel framework 
components) and also where to look for your application's code. Your application is 
then bootstrapped, loading configuration variables based on the environment. Once 
this is done, it instantiates a new service container instance, which in turn handles 
the incoming request, uses the HTTP method and URL used to access the application 
(such as POST /comments), and passes the request off to the correct controller action 
or route for handling.

Exploring Laravel
In this chapter, we are only covering the general mechanisms of how Laravel works, 
without looking at the detailed implementation examples. For the majority of 
developers, who just want to get the job done, this is sufficient. Moreover, it is much 
easier to delve into the source code of Laravel once you have already built a few 
applications. Nevertheless, here are some answers to the questions that might crop 
up when exceptions are thrown or when you navigate through the source code. In 
doing so, you will come across some methods that are not documented in the official 
guide, and you might even be inspired to write better code.

http://www.it-ebooks.info/


Chapter 1

[ 13 ]

Browsing the API (http://laravel.com/api) can be somewhat intimidating at first. 
But it is often the best way to understand how a particular method works under the 
hood. Here are a few tips:

• The Illuminate namespace does not refer to a third-party library. It is the 
namespace that the author of Laravel has chosen for the different modules 
that constitute Laravel. Every single one of them is meant to be reusable and 
used independently of the framework.

• When searching for a class definition, for example, Auth, in the source code 
or the API, you might bump into Facade, which hardly contains any helpful 
methods and only acts as a proxy to the real class. This is because almost 
every dependency in Laravel is injected into the service container when it  
is instantiated.

• Most of the libraries that are included in the vendor/ directory contain 
a README file, which details the functionality present in the library (for 
example, vendor/nesbot/carbon/readme.md).

Changes in Version 5 from Version 4
Laravel 5 started life as Laravel 4.3, but was promoted to its own major version 
when it became apparent that this new version was going to be a radical departure 
from version 4 of the framework. Laravel 5 builds on Laravel 4 as a base, but makes 
architecting larger applications with things like an application namespace out of 
the box. Laravel 4 applications will need a fair bit of work to be ported to Laravel 5. 
Features that are new or have been updated in Laravel 5 include:

• Method injection: In Laravel 4, you could type hint (specify in the 
constructor) the dependencies a class needed, and Laravel would 
automatically resolve those dependencies out of its container. Now, Laravel 
5 takes that one step further and will also resolve dependencies specified in 
class methods, as well as class constructors.

• Form requests: Laravel 5 introduces form request classes. These classes 
can be injected into your controller actions. They take the current request, 
and on it, you can perform data validation and sanitizing and even user 
authorization (that is, check if the currently-logged in user can perform the 
requested action). This streamlines validation, meaning you have to do very 
little, if any, data validation in your controller actions.

• Socialite: New to Laravel 5 is an optional package called Socialite that you 
can declare as a Composer dependency. It makes authenticating with third-
party services a breeze, meaning you can easily implement functionality like 
login with Facebook in a few lines of code.

http://laravel.com/api
http://www.it-ebooks.info/


An Introduction to Laravel

[ 14 ]

• Elixir: Laravel 5 also looks at making front-end development easier. A lot of 
developers these days are using languages like LESS and Sass to create their 
style sheets, and concatenating JavaScript files into one, minified JavaScript 
file to reduce HTTP requests and speed up loading times. Elixir is a wrapper 
around Gulp, a Node.js based build system that simplifies the tasks 
mentioned here. This greatly reduces the time needed to get up and running 
with a new application, as you don't have to install Node.js modules or Gulp 
files from other projects. You get it free from the get-go.

Summary
In this chapter, we have introduced you to Laravel 5 and how it can help you to 
write better, more structured applications while reducing the amount of boilerplate 
code. We have also explained the concepts and PHP features used by Laravel, and 
you should now be well equipped to get started and write your first application!

In the next chapter, you will learn how to set up an environment in which you can 
develop Laravel applications and you will also be introduced to Composer for 
managing dependencies.

http://www.it-ebooks.info/


[ 15 ]

Setting Up a Development 
Environment

Laravel is more than just a framework: a whole ecosystem and toolset has been 
developed around it to make building PHP applications faster and more enjoyable. 
These tools are entirely opt-in and the knowledge of them is not necessary to use and 
build projects in Laravel, but they do go hand-in-hand with the framework, so it's 
worth covering.

In this chapter, we will cover the following topics:

• Meeting Composer, a dependency manager
• Introduction to Homestead, and using it to manage Laravel projects

Meeting Composer
In the previous chapter, you discovered that Laravel is built on top of several third-
party packages. Rather than including these external dependencies in its own source 
code, Laravel uses a dependency manager called Composer to download them and 
keep them up to date. Since Laravel is made up of multiple packages, they too are 
downloaded and installed each time you create a new Laravel project.

Strongly inspired by popular dependency managers in other languages, such as 
Ruby's Bundler or Node.js's Node Package Manager (npm), Composer brings these 
features to PHP and has quickly become the de facto dependency manager in PHP.

http://www.it-ebooks.info/


Setting Up a Development Environment

[ 16 ]

A few years ago, you may have used PHP Extension and Application Repository 
(PEAR) to download libraries. PEAR differs from Composer, in that PEAR would 
install packages on a system-level basis, whereas a dependency manager, such as 
Composer, installs them on a project-level basis. With PEAR, you could only have 
one version of a package installed on a system. Composer allows you to use different 
versions of the same package in different applications, even if they reside on the 
same system.

Working with the command line
If you are just getting started with web development, you might not be completely 
familiar with the command-line interface (CLI). Working with Composer, virtual 
machines, and Homestead, and later on with Artisan, Laravel's CLI utility, will 
require some interaction with it.

Here is how you can start with CLI:

1. On Windows, look for the Command Prompt program. If you cannot find it, 
just navigate to Start | Run and type in cmd.exe.

2. On Mac OS X, CLI is called Terminal, and it can be found at  
/Applications/Utilities.

3. On Linux, depending on your distribution of Linux, it will be called 
Terminal or Konsole, but if you are running Linux, you are probably already 
familiar with it.

You do not need to have any advanced command-line skills to get through this book 
and build applications with Laravel. You will, however, need to be able to navigate 
to the right directory in your file system before running commands. To do this, just 
enter the cd command, followed by the path to your code directory.

On most systems, you can also just enter cd, followed by a 
space, and then drag and drop the directory into the terminal, 
as shown here:

$ cd /path/to/your/code/directory

Otherwise, you can run the following command line on Windows:

> cd C:\path\to\your\code\directory

http://www.it-ebooks.info/


Chapter 2

[ 17 ]

If the path contains spaces, then be sure to include it in double quotes to ensure 
spaces are escaped:

> cd "C:\path\to\your\Laravel Projects"

In the rest of this book, unless the example is specific to Windows, we will always use 
the $ character to denote a shell command and use slashes as directory separators. 
Make sure you adapt the command accordingly, if you are running Windows.

Meet Homestead
If you wanted to develop PHP applications on your personal computer, you needed 
to have a web server installed and running locally. PHP is installed to interpret  
your scripts, and other utilities your website may need, such as working with a 
database. Your website or web application may even have a requirement for other 
services such as Memcached or Redis, which are popular caching systems. This 
saw the rise of utilities such as WampServer and MAMP to create environments for 
developing dynamic websites without getting connected to the Internet, but these 
required configuring.

Building on from installed environments like these, the recommended practice for 
developing dynamic websites and applications is to use virtual machines (VMs). 
These allow you to emulate your production web server's setup on your local 
machine. You can also use differently configured VMs for different projects—with 
a WAMP- or MAMP-like setup, every project had to use the same version of PHP, 
MySQL, and anything else you installed.

The creators of Laravel have created an official Vagrant box called Homestead. 
Vagrant is software that allows you to create virtual development environments 
on your personal computer. You can install Homestead and start creating Laravel 
projects right away. And if you don't need it any more, you can just remove it from 
your machine, without anything else being affected. Best of all, if you are currently 
using a globally installed development environment such as WAMP or MAMP, 
Homestead won't conflict with it.

Installing Homestead
Homestead is a Vagrant-based VM. Therefore, before using it you will need to install 
two utilities:

• VirtualBox (https://www.virtualbox.org/wiki/Downloads)
• Vagrant (http://www.vagrantup.com/downloads.html)

https://www.virtualbox.org/wiki/Downloads
http://www.vagrantup.com/downloads.html
http://www.it-ebooks.info/


Setting Up a Development Environment

[ 18 ]

Both have installers for Windows, Mac OS X, and Linux that will guide you through 
the installation process. To install Homestead, follow these steps:

1. One of the best things about Homestead is that it is hosted on Packagist. This 
means you can install it via Composer by using the following command:
> $ composer global require "laravel/homestead=~2.0"

2. Once downloaded, you need to initialize the VM using the following command 
(you may need to add Homestead to your path first, if you are using Windows):
> $ homestead init

3. This will create a configuration file that you can edit to point to your projects, 
as well as create any databases you may need. To edit this file, you can run 
the following command:
> $ homestead edit

4. The file will open in your default text editor. When it does, you will see the 
file is organized into sections. To get up and running, the two sections of 
most importance are the folders section and the sites section:

 ° folders: This specifies the directory that you want to be shared  
on the VM.

 ° sites: This allows you to map a domain to a folder on the 
Homestead VM, similar to Apache Virtual Hosts.

http://www.it-ebooks.info/


Chapter 2

[ 19 ]

5. Once you have configured your shared folders and sites, you can boot the 
VM with the following command:
> $ homestead up

6. Finally, you need to add the VM's IP address to your computer's hosts file. 
The location of this file differs, depending on the platform you're using.

 ° On Windows, it is located at C:\Windows\System32\Drivers\etc\
hosts.

 ° On a *nix system (such as Mac OS X and Linux), it can be found at  
/etc/hosts.

7. Usually, you would need to be an administrator to edit this file. On Mac OS 
X and Linux, you can open the file with elevated permissions by using the 
following command:
> $ sudo open /etc/hosts

8. You might be prompted for an administrator's password. In your hosts file, 
add the following line to the bottom:
192.168.10.10  homesteap.app

http://www.it-ebooks.info/


Setting Up a Development Environment

[ 20 ]

9. Now, if in a web browser you try to visit http://homestead.app, instead 
of your browser trying to find a website with the domain, it will try to find 
the website on the machine with the specified IP address. In this instance, 
the IP address will belong to your Homestead VM and serve the site you've 
configured for that domain in your configuration file.

For more information on Homestead and advanced 
configuration, you can view the official documentation at 
http://laravel.com/docs/master/homestead.

Everyday usage of Homestead
There are various commands that you can use to interact with your Homestead 
virtual machine. For example, if the virtual machine is running, how do you stop it? 
There are two ways.

The first method is with the $ homestead suspend command. This will save the 
current state of your VM, and allow you to $ homestead resume at a later point 
in time. Alternatively, you can issue the $ homestead halt command, which will 
shut down the virtual machine and discard anything in memory. You can think of 
the differences as either putting the virtual machine to sleep, or completely shutting 
it down. To bring a halted VM back, you can simply run the $ homestead up 
command again.

You can also interact and run commands on the virtual machine via the command 
line. You can SSH into Homestead just like you would an external server. Instead of 
having to remember the virtual machine's host name and your credentials though, 
there's a handy $ homestead ssh command that will connect to the machine and 
then place you in a command prompt ready and waiting. If you are using Windows, 
there are various tools to execute SSH commands, such as PuTTY.

Adding additional websites
One of Homestead's benefits is that you can host more than one application on it. 
This means you can run as many Laravel applications on it as you want (subject 
to constraints such as disk space). The process for each site is to map the directory 
between your host machine and the virtual machine, and to configure nginx to look 
in this directory when a specific domain name is requested. To do this by hand 
would mean editing various configuration files, which would become tedious if we 
needed to do this on a regular basis. Thankfully, Homestead comes with a handy 
script to make adding new sites a breeze.

http://laravel.com/docs/master/homestead
http://www.it-ebooks.info/


Chapter 2

[ 21 ]

You first need to start a new SSH session as mentioned before. Then, run the  
following script:

serve example.app /home/vagrant/Code/example.app/public

Replace example.app with the host name you want to use. Then, add a new line to 
your hosts file and you are good to go!

Connecting to your databases
Homestead runs a MySQL instance, which contains the data for all of your 
configured applications. Laravel exposes the port of the MySQL server via port 
forwarding, which means you can connect to it from your host machine by using a 
database management tool such as Navicat, Sequel Pro, or MySQL Workbench. To 
connect, all you have to do is specify the following parameters:

• Host: 127.0.0.1
• Port: 33060
• Username: homestead
• Password: secret

Once connected, you can then browse all of the databases on the Homestead virtual 
machine, tables, and data, just as you would if the MySQL server was installed on 
your machine.

Homestead also ships with a PostgreSQL database server. Connecting is the same as 
with the MySQL database server, but you instead use port 54320.

Creating a new Laravel application
With Homestead set up, you now have a development environment to build Laravel 
applications that can easily be removed at a later date without disturbing your 
machine. You must be itching to get started with Laravel, so here we go!

In the next chapter, we will go through building a simple application in Laravel from 
start to finish. So now, we will prepare this project in Homestead:

1. First, check whether Homestead is running by using the following command:
> $ homestead status

2. If the status is anything other than running, bring it up with the homestead 
reload command. We now need to add our site. It will be a browsable 
database of cat profiles, so let's call it "Furbook" and give it the fictional 
domain name of furbook.com.

http://www.it-ebooks.info/


Setting Up a Development Environment

[ 22 ]

3. We can set this up in Homestead by editing the configuration file and adding 
the following mappings:
sites:
    - map: dev.furbook.com
      to: /home/vagrant/Code/furbook.com/public
databases:
    - furbook

4. Run $ homestead reload, which should reprovision the sites and also 
create a new, empty database.

5. Now with our workspace prepared, we need to actually create a new Laravel 
project. To do this, we need to SSH into our running VM. Homestead makes 
this incredibly simple:
> $ homestead ssh

6. This will create a new SSH session and log us in to the running Homestead 
VM instance. We can now run a Composer command to create a brand new 
Laravel project as follows:
$ cd /home/vagrant/Code/furbook.com

$ composer create-project laravel/laravel . --prefer-dist

This will create a new Laravel skeleton project, as well as download all of the 
libraries that make up the Laravel framework.

Summary
In this chapter, we have begun working with the command line. We've installed 
Composer and looked at how a dependency manager such as Composer aids 
development by utilizing prebuilt packages in our projects (of which the Laravel 
framework is one). We've looked at the concept of virtual machines for developing 
in, and taken a look and installed the official Laravel VM: Homestead.

The next chapter is where the fun begins! Now that we have a complete development 
environment set up and a fresh Laravel application created, we will go through the 
different steps involved in creating a complete Laravel application.

http://www.it-ebooks.info/


[ 23 ]

Your First Application
Having learned about Laravel's conventions, working with dependencies using 
Composer, and setting up a development environment with Homestead, you are 
now ready to build your first application!

In this chapter, you will use the concepts presented in the previous two chapters in  
a practical way and learn how to do the following:

• Plan the URLs and entities of your application
• Troubleshoot common issues when getting started
• Define routes and their actions, as well as models and their relationships
• Prepare your database and learn how to interact with it using Eloquent
• Use the Blade template language to create hierarchical layouts

The first step in creating a web application is to identify and define its requirements. 
Then, once the main features have been decided, we derive the main entities as well 
as the URL structure of the application. Having a well-defined set of requirements 
and URLs is also essential for other tasks such as testing; this will be covered later in 
the book.

A lot of new concepts are presented in this chapter. If you have trouble 
understanding something or if you are not quite sure where to place a particular 
snippet of code, you can download the annotated source code of the application from 
http://packtpub.com/support, which will help you to follow along.

http://packtpub.com/support
http://www.it-ebooks.info/


Your First Application

[ 24 ]

Planning our application
We are going to build a browsable database of cat profiles. Visitors will be able to 
create pages for their cats and fill in basic information such as the name, date of birth, 
and breed of each cat. This application will implement the default Create-Retrieve-
Update-Delete (CRUD) operations. We will also create an overview page with the 
option to filter cats by breed. All of the security, authentication, and permission 
features are intentionally left out, since they will be covered in the further chapters.

Entities, relationships, and attributes
Firstly, we need to define the entities of our application. In broad terms, an entity is a 
thing (person, place, or object) about which the application should store data. From 
the requirements, we can extract the following entities and attributes:

• Cats: They have a numeric identifier, a name, a date of birth, and a breed
• Breeds: They only have an identifier and a name

This information will help us when defining the database schema that will store the 
entities, relationships, attributes, as well as the models, which are the PHP classes 
that represent the objects in our database.

The map of our application
We now need to think about the URL structure of our application. Having clean 
and expressive URLs has many benefits. On a usability level, the application will be 
easier to navigate and will look less intimidating to the user (descriptive URLs look 
far more appealing than a lengthy query string). For frequent users, individual pages 
will be easier to remember or bookmark and, if they contain relevant keywords, they 
will often rank higher in search engine results.

To fulfill the initial set of requirements, we are going to need the following routes in our 
application. A route is a URL and HTTP method to which the application will respond.

Method Route Description
GET / Index
GET /cats Overview page
GET /cats/breeds/:name Overview page for specific breed
GET /cats/:id Individual cat page
GET /cats/create Form to create a new cat page
POST /cats Handle creation of new cat page

http://www.it-ebooks.info/


Chapter 3

[ 25 ]

Method Route Description
GET /cats/:id/edit Form to edit existing cat page
PUT /cats/:id Handle updates to cat page
GET /cats/:id/delete Form to confirm deletion of page
DELETE /cats/:id Handle deletion of cat page

You will shortly learn how Laravel helps us to turn this routing sketch into actual 
code. If you have written PHP applications without a framework, you can briefly 
reflect on how you would have implemented such a routing structure. To add 
some perspective, this is what the second to last URL could have looked like with 
a traditional PHP script (without URL rewriting): /index.php?p=cats&id=1&_
action=delete&confirm=true.

The preceding table can be prepared using a pen and paper, in a spreadsheet 
editor, or even in your favorite code editor, using ASCII characters. In the initial 
development phases, this table of routes is an important prototyping tool that makes 
you to think about URLs first and helps you define and refine the structure of your 
application iteratively.

If you have worked with REST APIs, this kind of routing structure will look familiar 
to you. In RESTful terms, we have a cats resource that responds to the different 
HTTP verbs and provides an additional set of routes to display the necessary forms.

If, on the other hand, you have not worked with RESTful sites, the use of the PUT 
and DELETE HTTP methods might be new to you. Even though web browsers do not 
support these methods for standard HTTP requests, Laravel uses a technique that 
other frameworks such as Rails use, and emulates those methods by adding a _method 
input field to the forms. This way, they can be sent over a standard POST request and 
are then delegated to the correct route or controller method in the application.

Note also that none of the form submissions endpoints are handled with a GET 
method. This is primarily because they have side effects; a user can trigger the 
same action multiple times accidentally when using the browser history. Therefore, 
when they are called, these routes never display anything to the users. Instead, they 
redirect them after completing the action (for instance, DELETE /cats/:id will 
redirect the user to GET /cats).

Starting the application
Now that we have the blueprints for the application, let's roll up our sleeves and 
start writing some code.

http://www.it-ebooks.info/


Your First Application

[ 26 ]

Start by opening a new terminal window and launch Homestead:
$ homestead ssh

Navigate to the directory you have mapped to Homestead (by default this is ~/Code):

$ cd ~/Code

Then use Composer to create a new Laravel project, as follows:
$ composer create-project laravel/laravel furbook.com --prefer-dist

$ cd furbook.com

Once Composer finishes downloading Laravel and resolving its dependencies, you 
will have a directory structure identical to the one presented in the first chapter.

Setting the application namespace
Applications in Laravel are namespaced. By default, this is just App—Laravel's great, 
but it still can't guess the name of your application! To set it to something more 
appropriate, we can use the Artisan command:

$ php artisan app:name Furbook

This will update our application's namespace to be Furbook instead.

Writing the first routes
Let's start by writing the first two routes of our application at app/Http/routes.
php. This file already contains some comments as well as a couple of sample routes. 
Remove the existing routes (but leave the opening <?php declaration) before adding 
the following routes:

Route::get('/', function() {
  return 'All cats';
});

Route::get('cats/{id}', function($id) {
  return sprintf('Cat #%s', $id);
});

The first parameter of the get method is the URI pattern. When a pattern is matched, 
the closure function in the second parameter is executed with any parameters that 
were extracted from the pattern. Note that the slash prefix in the pattern is optional; 
however, you should not have any trailing slashes. You can make sure that your 
routes work by opening your web browser and visiting http://dev.furbook.com/
cats/123.

http://www.it-ebooks.info/


Chapter 3

[ 27 ]

Restricting the route parameters
In the pattern of the second route, {id} currently matches any string or number.  
To restrict it so that it only matches numbers, we can chain a where method to our 
route as follows:

Route::get('cats/{id}', function($id) {
  sprintf('Cat #%d', $id);
})->where('id', '[0-9]+');

The where method takes two arguments: the first one is the name of the parameter 
and the second one is the regular expression pattern that it needs to match.

If you now try to visit an invalid URL, nginx (the server software serving the 
application) will display a 404 Not Found error page.

Handling HTTP exceptions
When an error occurs in your application, Laravel raises an exception. This is also 
true for HTTP errors, as Laravel will raise an appropriate HTTP exception. Usually 
when an HTTP error occurs, you will want to display a response informing the user 
what went wrong. This is easy in Laravel 5, as all you need to do is create a view 
named after the HTTP status code you want it to display for in the resources/
views/errors directory.

For example, if you wanted to display a view for 404 Not Found errors, then all you 
need to do is create a view at resources/views/errors/404.blade.php.

You can use this approach to handle other HTTP errors as well, such as 403 Forbidden 
errors; simply create a view at resources/views/errors/403.blade.php.

We'll cover views later on in this chapter. In the meantime, you can find a list of HTTP 
status codes at http://en.wikipedia.org/wiki/List_of_HTTP_status_codes.

Performing redirections
It is also possible to redirect visitors using the redirect() helper in your routes. 
If, for example, we wanted everyone to be redirected to /cats when they visit the 
application for the first time, we would write the following lines of code:

Route::get('/', function() {
  return redirect('cats');
});

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://www.it-ebooks.info/


Your First Application

[ 28 ]

Now, we can create the route for the URL we're redirecting to:

Route::get('cats', function() {
  return 'All cats';
});

Returning views
The most frequent object that you will return from your routes is the View object. Views 
receive data from a route (or controller action) and inject it into a template, therefore 
helping you to separate the business and presentation logic in your application.

To add your first view, simply create a file called about.php at resources/views 
and add the following content to it:

<h2>About this site</h2>
There are over <?php echo $number_of_cats; ?> cats on this site!

Then, return the view using the view() helper function with the variable,  
$number_of_cats:

Route::get('about', function() {
  return view('about')->with('number_of_cats', 9000);
});

Finally, visit /about in your browser to see the rendered view. This view was written 
with plain PHP; however, Laravel comes with a powerful template language called 
Blade, which will be introduced later in this chapter.

Preparing the database
Before we can expand the functionality of our routes, we need to define the models 
of our application, prepare the necessary database schema, and populate the 
database with some initial data.

Homestead ships with a MySQL server built in, so we can use MySQL for our 
database; however, it does require a little bit of configuration first, before we can use 
a MySQL database in our application.

The first step is to open our application's configuration file, which should have been 
created at .env when we created the application with Composer. Find the line that 
says DB_DATABASE=homestead and change it to DB_DATABASE=furbook.

http://www.it-ebooks.info/


Chapter 3

[ 29 ]

We can also add the database name to our Homestead configuration file, so that the 
database is created automatically for us. Open the file from the command line, using 
the following command:

$ homestead edit

Under the databases section, add a new line:

databases:
    - homestead
    - furbook

Save the file, then run the homestead provision command to create the database.

Creating Eloquent models
The first and easiest step is to define the models with which our application is going 
to interact. At the beginning of this chapter, we identified two main entities: cats 
and breeds. Laravel ships with Eloquent, a powerful ORM that lets you define these 
entities, map them to their corresponding database tables, and interact with them 
using PHP methods, rather than raw SQL. By convention, they are written in the 
singular form; a model named Cat will map to the cats table in the database, and a 
hypothetical Mouse model will map to the mice table. You can also manually define 
the name of the database table using the aptly-named $table property, in case your 
table name doesn't follow the convention expected by Laravel:

protected $table = 'custom_table_name';

The Cat model, saved at app/Cat.php, will have a belongsTo relationship with the 
Breed model, which is defined in the following code snippet:

<?php namespace Furbook;

use Illuminate\Database\Eloquent\Model;

class Cat extends Model {
  protected $fillable = ['name','date_of_birth','breed_id'];
  public function breed() {
    return $this->belongsTo('Furbook\Breed');
  }
}

http://www.it-ebooks.info/


Your First Application

[ 30 ]

The $fillable array defines the list of fields that Laravel can fill by mass assignment, 
which is a convenient way to assign attributes to a model. By convention, the column 
that Laravel will use to find the related model has to be called breed_id in the 
database. The Breed model, app/Breed.php, is defined with the inverse hasMany 
relationship as follows:

<?php namespace Furbook;

use Illuminate\Database\Eloquent\Model;

class Breed extends Model {
  public $timestamps = false;
  public function cats(){
    return $this->hasMany('Furbook\Cat');
  }
}

By default, Laravel expects a created_at and updated_at timestamp field in the 
database table. Since we are not interested in storing these timestamps with the 
breeds, we disable them in the model by setting the $timestamps property to false:

protected $timestamps = false;

This is the entire code that is required in our models for now. We will discover 
various other features of Eloquent as we progress in this book; however, in this 
chapter, we will primarily use two methods: all() and find(). To illustrate their 
purpose, here are the SQL queries that they generate:

Furbook\Breed::all()     => SELECT * FROM breeds;
Furbook\Cat::find(1)     => SELECT * FROM cats WHERE id = 1;

The properties of an Eloquent model can be retrieved with the -> operator:  
$cat->name. The same goes for the properties of the related models, which are 
accessible with: $cat->breed->name. Behind the scenes, Eloquent will perform the 
necessary SQL joins.

Building the database schema
Now that we have defined our models, we need to create the corresponding database 
schema. Thanks to Laravel's support for migrations and its powerful schema builder, 
you will not have to write any SQL code and you will also be able to keep track of 
any schema changes in a version control system. To create your first migration, open 
a new terminal window and enter the following command:

$ php artisan make:migration create_breeds_table --create=breeds

http://www.it-ebooks.info/


Chapter 3

[ 31 ]

This will create a new migration at database/migrations/. If you open the newly 
created file, you will find some code that Laravel has generated for you. Migrations 
always have an up() and down() method that defines the schema changes when 
migrating up or down. Migrating up is modifying the database schema (that is, adding 
a table at a later date), whereas, migrating down is the process of undoing that schema 
change. By convention, the table and field names are written in snake_case. Also, the 
table names are written in plural form.

Our breeds table migration will look like this:

  public function up() {
    Schema::create('breeds', function($table) {
      $table->increments('id');
      $table->string('name');
    });
  }
  public function down() {
    Schema::drop('breeds');
  }

We can repeat the process to also create our cats table schema:

public function up() {
  Schema::create('cats', function($table) {
    $table->increments('id');
    $table->string('name');
    $table->date('date_of_birth');
    $table->integer('breed_id')->unsigned()->nullable();
    $table->foreign('breed_id')->references('id')->on('breeds');
  });
}
public function down() {
  Schema::drop('cats');
}

The date() and string() methods create fields with the corresponding types 
(in this case, DATE and VARCHAR) in the database, increments() creates an auto-
incrementing INTEGER primary key, and timestamps() adds the created_at and 
updated_at DATETIME fields that Eloquent expects, by default. The nullable() 
method specifies that the column can have NULL values.

http://www.it-ebooks.info/


Your First Application

[ 32 ]

Laravel offers the following methods for defining migrations:

Command Description
$table->bigIncrements('name'); It creates an auto-incrementing big integer 

column
$table->bigInteger('name'); It creates a BIGINT column
$table->binary('name'); It creates a BLOB column
$table->boolean('active'); It creates a BOOLEAN column
$table->char('name', 8); It creates a CHAR column with the given length
$table->date('birthdate'); It creates a DATE column
$table->dateTime('created_at'); It creates a DATETIME column
$table->decimal('amount', 5, 
2);

It creates a DECIMAL column with the given 
precision and scale

$table->double('column', 10, 
5);

It creates a DOUBLE column, with 10 digits in 
total and 5 after the decimal point

$table->enum('gender', 
['Female', 'Male']);

It creates an ENUM column

$table->float('amount'); It creates a FLOAT column
$table->increments('id'); It creates an auto-incrementing integer column
$table->integer('rating'); It creates an INTEGER column
$table->json('options'); It creates a JSON column
$table->longText('description'); It creates a LONGTEXT column
$table->mediumInteger('name'); It creates a MEDIUMINT column
$table->mediumText('name'); It creates a MEDIUMTEXT column
$table->morphs('taggable'); It creates two columns: INTEGER taggable_

id and STRING taggable_type
$table->nullableTimestamps(); This is similar to timestamps (next), but allows 

NULL values
$table->rememberToken(); It adds a remember_token VARCHAR column
$table->tinyInteger('name'); It creates a TINYINT column
$table->softDeletes(); It adds a deleted_at column for soft deletes
$table->string('name'); It creates a VARCHAR column
$table->string('name', 255); It creates a VARCHAR column of the given length
$table->text('name'); It creates a TEXT column
$table->time('name'); It creates a TIME column
$table->timestamp('name'); It creates a TIMESTAMP column
$table->timestamps(); It creates created_at and deleted_at 

columns

http://www.it-ebooks.info/


Chapter 3

[ 33 ]

We've also created a foreign key in the cats migration. This links the breed_id 
column value to an ID in the breeds table. This is so that we don't have to keep 
specifying the breed name over and over again. We can just reference one record in the 
breeds table. If that record is updated, then all cats linked to it will also be updated.

To run both of the migrations, enter the following command:

$ php artisan migrate

When it is run for the first time, this command will also create a migrations table that 
Laravel will use to keep track of the migrations that have been run. It will then run any 
outstanding migrations. On subsequent runs, the command will use the migrations 
table to determine if any migration files need running, and run them, if so.

We created our breeds table migration before the cats table migration because we 
have a foreign key in our cats table. If we were to try and create the cats table first, 
it will fail as the column it is referencing does not exist yet.

Seeding the database
Rather than manually populating our database, we can use the seeding helpers offered 
by Laravel. This time, there is no Artisan command to generate the file, but all we need 
to do is create a new class called BreedsTableSeeder.php at database/seeds/. This 
class extends Laravel's Seeder class and defines the following run() method:

class BreedsTableSeeder extends Seeder {
  public function run() {
    DB::table('breeds')->insert([
      ['id' => 1, 'name' => "Domestic"],
      ['id' => 2, 'name' => "Persian"],
      ['id' => 3, 'name' => "Siamese"],
      ['id' => 4, 'name' => "Abyssinian"],
    ]);
  }
}

You can bulk insert an array but you can also insert arbitrary code in the run() 
method to load data from say, a CSV or JSON file. There are also third-party libraries 
that can help you generate large amounts of test data to fill your database, such as 
the excellent Faker.

To control the order of execution of the seeders, Laravel lets you call them 
individually at database/seeds/DatabaseSeeder.php. In our case, since we only 
have one seeder, all we need to write is the following line:

$this->call('BreedsTableSeeder');

http://www.it-ebooks.info/


Your First Application

[ 34 ]

Then, we can seed the database by calling it, using the following command:

$ php artisan db:seed

Seeding is good for initially populating a database. If we were to re-run the seed 
command, we would actually get an error as we're defining primary keys for our 
records; if we tried re-seeding, the database will trigger a duplicate primary key 
error. We can first truncate the table, but this will be dangerous if deployed to a 
production environment, as it will delete any user-contributed records, as well as 
your seed data definitions!

Mastering Blade
Now that we have some information in our database, we need to define the 
templates that are going to display it. Blade is Laravel's lightweight template 
language and its syntax is very easy to learn. Here are some examples of how Blade 
can reduce the number of keystrokes and increase the readability of your templates:

Standard PHP syntax Blade syntax
<?php echo $var; ?> {!! $var !!}

<?php echo htmlentities($var); ?> {{ $var }}

<?php if ($cond): ?>…<?php endif; ?> @if ($cond) … @endif

If you use the default double braces notation, then variables are escaped. This 
is to protect against XSS vulnerabilities (explained in more detail in Chapter 7, 
Authentication and Security). If you really need the raw value of variable un-escaped, 
then you can use single braces, with two exclamation marks inside on each side. You 
should only do this if you trust the value that the variable contains.

Blade also supports all of PHP's major constructs to create loops and conditions:  
@for, @foreach, @while, @if, and @elseif, allowing you to avoid opening and 
closing the <?php tags everywhere in your templates.

Creating a master view
Blade lets you build hierarchical layouts by allowing the templates to be nested and 
extended. The following code snippet is the master template that we are going to use 
for our application. We will save it as resources/views/layouts/master.blade.php.

<!DOCTYPE html>
<html lang="en">
  <head>

http://www.it-ebooks.info/


Chapter 3

[ 35 ]

    <meta charset="utf-8" />
    <title>Furbook</title>
    <link rel="stylesheet" href="{{ asset('css/bootstrap.min.css')  
      }}">
  </head>
  <body>
    <div class="container">
      <div class="page-header">
        @yield('header')
      </div>
      @if (Session::has('success'))
        <div class="alert alert-success">
          {{ Session::get('success') }}
        </div>
      @endif
      @yield('content')
    </div>
  </body>
</html>

The Bootstrap CSS framework is included to speed up the prototyping of the 
application interface. You can download it from http://getbootstrap.com and 
place the minified CSS file at public/css/. To ensure that its path prefix is set 
correctly, even when Laravel is run from a subfolder, we use the asset() helper. 
You can see the complete list of Blade template helpers that are available to you, visit 
http://laravel.com/docs/helpers.

To inform the user about the outcome of certain actions, we have prepared a 
notification area between the header and the page content. This flash data (in other 
words, the session data that is only available for the next request) is passed and 
retrieved to and from the Session object.

The @yield directives act as placeholders for the different sections that a child 
view can populate and override. To see how a child template can re-use them, we 
are going to recreate the about view by changing its extension to .blade.php and 
extending our master layout template instead:

@extends('layouts.master')
@section('header')
  <h2>About this site</h2>
@stop
@section('content')
  <p>There are over {{ $number_of_cats }} cats on this site!</p>
@stop

http://getbootstrap.com
http://laravel.com/docs/helpers
http://www.it-ebooks.info/


Your First Application

[ 36 ]

The @section ... @stop directives delimit the blocks of content that are going  
to be injected into the master template. You can see how this is done in the  
following diagram:

If you now reopen the /about route in your web browser, without changing 
anything in your previous route definition, you will see the new view. Laravel's view 
finder will simply use the new file, and since its name ends with .blade.php, treat it 
like a Blade template.

Back to the routes
Now that we have a main layout template that we can extend and re-use, we can 
start to create the individual routes of our application at app/Http/routes.php, 
along with the different views that will display the application data.

The overview page
This is the index page that is going to display all of the cats using the cats.index 
view. We will also re-use this view for the second route where cats are filtered by 
breed, since both the routes are almost identical. Note that Laravel expects you to  
use the dot notation (cats.index and not cats/index) to refer to a view located 
inside a subdirectory:

Route::get('cats', function() {
  $cats = Furbook\Cat::all();
  return view('cats.index')->with('cats', $cats);
});

http://www.it-ebooks.info/


Chapter 3

[ 37 ]

Route::get('cats/breeds/{name}', function($name) {
  $breed = Furbook\Breed::with('cats')
    ->whereName($name)
    ->first();
  return view('cats.index')
    ->with('breed', $breed)
    ->with('cats', $breed->cats);
});

The only novelty in these routes is the slightly more advanced Eloquent queries. 
While we already know that the all() method in the first route loads all of the entries 
from the cats table, the second route uses a more complex query. The with('cats') 
method will load any related cat models. The whereName is a dynamic method that 
creates a WHERE SQL clause, which will translate to WHERE name = $name. The long-
hand expression of this will be where('name', '=', $name). Finally, we fetch the 
first breed record (and related cat models) with the first() method.

The template, saved at cats/index.blade.php, will look like this:

@extends('layouts.master')

@section('header')
  @if (isset($breed))
    <a href="{{ url('/') }}">Back to the overview</a>
  @endif
<h2>
  All @if (isset($breed)){{ $breed->name }}@endif Cats

  <a href="{{ url('cats/create') }}" class="btn btn-primary  
    pull-right">
    Add a new cat
  </a>
</h2>
@stop
@section('content')
  @foreach ($cats as $cat)
    <div class="cat">
      <a href="{{ url('cats/'.$cat->id) }}">
        <strong>{{ $cat->name }}</strong> - {{ $cat->breed->name  
          }}
      </a>
    </div>
  @endforeach
@stop

http://www.it-ebooks.info/


Your First Application

[ 38 ]

With the help of a foreach loop, the view iterates over the list of cats that it received 
from the route. Since we will be using this view to display both the index page  
(/cats) as well as the breed overview page (/cats/breeds/{breed}), we used the  
@if directives in two places to conditionally display more information.

Displaying a cat's page
The next route is used to display a single cat. To find a cat by its ID, we use 
Eloquent's find() method:

Route::get('cats/{id}', function($id) {
  $cat = Furbook\Cat::find($id);
  return view('cats.show) ->with('cat', $cat);
});

Route-model binding
Route-model binding is the method of automatically transforming a route parameter 
to a model instance, so we don't have to manually retrieve the model. Since this 
is such a common pattern, Laravel provides you with a way to automatically 
bind a model to a route and, therefore, make your code shorter and more 
expressive. To bind the $cat variable to the Cat model, open app/Providers/
RouteServiceProvider.php. Modify the boot() method so that it looks like this:

public function boot(Router $router) {
  parent::boot($router);
  $router->model('cat', 'Furbook\Cat');
}

This allows you to shorten your route and pass a Cat object to it instead:

Route::get('cats/{cat}', function(Furbook\Cat $cat) {
  return view('cats.show')->with('cat', $cat);
});

The view, cats/show.blade.php, does not contain any new directives. It simply 
displays the name of the cat with the links to edit or delete it. In the content section, 
we return its age and breed if the breed is set; this is shown in the following snippet:

@extends('layouts.master')

@section('header')
  <a href="{{ url('/') }}">Back to overview</a>
  <h2>
      {{ $cat->name }}

http://www.it-ebooks.info/


Chapter 3

[ 39 ]

  </h2>
  <a href="{{ url('cats/'.$cat->id.'/edit') }}">
    <span class="glyphicon glyphicon-edit"></span> 
    Edit
  </a>
  <a href="{{ url('cats/'.$cat->id.'/delete') }}">
    <span class="glyphicon glyphicon-trash"></span> 
    Delete
  </a>
  <p>Last edited: {{ $cat->updated_at->diffForHumans() }}</p>
@stop

@section('content')
  <p>Date of Birth: {{ $cat->date_of_birth }}</p>
  <p>
    @if ($cat->breed)
      Breed:
      {{ link_to('cats/breeds/'.$cat->breed->name, 
        $cat->breed->name) }}
    @endif
  </p>
@stop

Adding, editing, and deleting cats
The next series of routes and views will be used to create, edit, and delete a cat page.

Until version 5, Laravel came with a package for creating common HTML and form 
elements. In Laravel 5 applications, we need to bring this package back into use. We 
do this via Composer.

In the require section of composer.json, add the following code:

"laravelcollective/html": "5.0.*"

Then run $ composer update. This will install the package. Next, we need to 
register the service provider and façades. Open config/app.php and add the 
following the $providers array:

'Collective\Html\HtmlServiceProvider',

Then add the following two lines to the $facades array:

'Form' => 'Collective\Html\FormFacade', 
'HTML' => 'Collective\Html\HtmlFacade',

This now gives us a lot of helpful methods with which to build forms in our templates.

http://www.it-ebooks.info/


Your First Application

[ 40 ]

Although Blade templates are hierarchical, it is still possible to include other 
templates in views, as you may be used to doing with the include() or require() 
functions in PHP. We will use this to share the form fields needed for both the create 
and edit templates.

In resources/views/partials/forms/cat.blade.php, add the following content:

<div class="form-group">
  {!! Form::label('name', 'Name') !!}
  <div class="form-controls">
    {!! Form::text('name', null, ['class' => 'form-control']) !!}
  </div>
</div>
<div class="form-group">
  {!! Form::label('date_of_birth', 'Date of Birth') !!}
  <div class="form-controls">
    {!! Form::date('date_of_birth', null, ['class' =>  
      'form-control']) !!}
  </div>
</div>
<div class="form-group">
  {!! Form::label('breed_id', 'Breed') !!}
  <div class="form-controls">
    {!! Form::select('breed_id', $breeds, null, ['class' =>  
      'form-control']) !!}
  </div>
</div>
{!! Form::submit('Save Cat', ['class' => 'btn btn-primary']) !!}

The Form::select() helper builds a <select> dropdown with the different choices. 
It expects the list of choices to be passed to a multidimensional array. Rather than 
binding this array to each route, we can use view composers, another feature of 
Laravel, which allows you to bind a variable to a specific view each time.

We can initialize a view composer by adding it to our application's service provider. 
Open app/Providers/AppServiceProvider.php and change the boot() method to 
look like this:

public function boot(ViewFactory $view) {
  $view->composer('partials.forms.cat',  
    'App\Http\Views\Composers\CatFormComposer');
}

http://www.it-ebooks.info/


Chapter 3

[ 41 ]

We also need to resolve ViewFactory. At the top of the file, underneath the 
namespace declaration, add the following line:

use Illuminate\Contracts\View\Factory as ViewFactory;

We now need to create the actual view composer class. We've specified the path, so 
let's create the file and add the following code to it:

<?php namespace Furbook\Http\Views\Composers;
use Furbook\Breed;
use Illuminate\Contracts\View\View;

class CatFormComposer {
  protected $breeds;
  public function __construct(Breed $breeds) {
    $this->breeds = $breeds;
  }
  public function compose(View $view) {
    $view->with('breeds', $this->breeds->lists('name', 'id');
  }
}

Now when the partials.forms.cat template partial is called, the view composer 
kicks in. When Laravel instantiates it, it'll read the constructor and automatically inject 
instances of the specified types. In our view composer's constructor, we specify that we 
need an instance of our Breed model, and then store the instance as a class property.

Once the view composer has been initialized, the compose() method is called. This 
is where the actual binding of data to the view occurs. As our model is an Eloquent 
model, we can use the lists() method that fetches all records in an associative 
array, which is just what we need for our select list. The first parameter is the value 
that the user will see (the breed name in this instance) and the second parameter is 
what will be used as the value attribute in the <option> tag (the breed ID).

Now that we have a partial form with breed options automatically being injected 
when requested, we can continue on with building the create, edit, and delete views.

The create view is straightforward: we extend out master layout, open our form, 
and then include the partial we've just created. In resources/views/cats/create.
blade.php, add the following code:

@extends('layouts.master')
@section('header')
  <h2>Add a new cat</h2>
@stop
@section('content')

http://www.it-ebooks.info/


Your First Application

[ 42 ]

  {!! Form::open(['url' => '/cats']) !!}
    @include('partials.forms.cat')
  {!! Form::close() !!}
@stop

The edit template (resources/views/cats/edit.blade.php) will look similar, 
barring a few small changes:

@extends('layouts.master')
@section('header')
  <h2>Edit a cat</h2>
@stop
@section('content')
  {!! Form::model($cat, ['url' => '/cats/'.$cat->id], 
    'method' => 'put') !!} 
    @include('partials.forms.cat')
  {!! Form::close() !!}
@stop

We didn't include the opening and closing form tags in the partial, as we need 
to change the action URL and method depending on the action. Also, in the edit 
template, we're using form-model binding to bind the Cat instance passed to our 
template, to the form. This automatically populates the values of the form fields with 
the value of the attributes in our Cat model instance.

Now that we have our views, we can create the corresponding routes:

Route::get('cats/create', function() {
  return view('cats.create');
});

Route::post('cats', function() {
  $cat = Furbook\Cat::create(Input::all());
  return redirect('cats/'.$cat->id)
    ->withSuccess('Cat has been created.');
});

Route::get('cats/{cat}/edit', function(Furbook\Cat $cat) {
  return view('cats.edit')->with('cat', $cat);
});

Route::put('cats/{cat}', function(Furbook\Cat $cat) {
  $cat->update(Input::all());
  return redirect('cats/'.$cat->id)
    ->withSuccess('Cat has been updated.');
});

http://www.it-ebooks.info/


Chapter 3

[ 43 ]

Route::delete('cats/{cat}', function(Furbook\Cat $cat) {
  $cat->delete();
  return redirect('cats')
    ->withSuccess('Cat has been deleted.');
});

You might have noticed that a new method withSuccess() is being used in the 
preceding routes in conjunction with our redirects. This isn't an explicitly defined 
method; instead, it is an example of overloading in Laravel. In the context of 
redirects, Laravel looks at method calls that have with in the beginning; it takes the 
latter part and assigns it to the session flash data. This includes the session variables 
that will be available in the next request, and the next request only. This makes it 
perfect for single-use data such as success messages, as we have seen earlier.

If you look back at our master layout template, you can see the provision we have to 
check for any session variables with the key success; if it exists, we simply display it 
in a Bootstrap success alert.

Any input data that is received by the application and that you would normally 
access via the $_GET or $_POST variables is instead retrievable by using the 
Input::get() method. It is also possible to retrieve an array of all the input data 
with Input::all(). In the POST /cats and PUT /cats/{cat} routes respectively, 
we use the create() and update() methods from Eloquent with Input::all() as 
their argument. This is only possible because we specified the fields that are fillable 
in the Cat model beforehand.

We now have a working application where users can add, edit, and delete cats.

Moving from simple routing to powerful 
controllers
So far, we have been creating closure-based routes. This is great for quickly 
prototyping applications, and is prevalent in micro-frameworks such as Silex and 
Slim; however, as your application grows, this approach might become cumbersome 
and limiting. The alternative (and recommended) approach to defining the logic to 
be executed when a route is requested is in controllers, the C in MVC.

A controller is usually a class, containing one or more methods, also known as 
actions. You usually have a route map to a controller action.

http://www.it-ebooks.info/


Your First Application

[ 44 ]

Consider the following example:

Route::get('user/{id}', ['middleware' => ['auth'], function($id) {
  // Perform some operations
  return 'Something';
}]);

To achieve the same functionality with a controller and remove the business logic 
from the routes, create a new file at app/Http/Controllers/UserController.php:

<?php namespace Furbook\Http\Controllers;

class UserController extends Controller {
  public function __construct()
  {
    $this->middleware('auth');
  }
  public function show($id)
  {
    $this->doSomething();
    return 'Something';
  }
  protected function doSomething()
  {
    // Perform some operations
  }
}

This approach can greatly improve the reusability and testability of your code, 
especially if your theoretical doSomething() method is used in more than one 
controller action. You can test it just once in isolation, and then rely on it. When you 
venture into more advanced topics such as dependency injection, you can even swap 
entire classes when you instantiate the controller, but we will not cover this here.

Finally, to tell Laravel which controller action to use, simply rewrite the route 
declaration as follows:

Route::get('user/{id}', ['uses' => 'UserController@show']);

The root controller namespace (App\Http\Controllers) is automatically prepended 
to the controller class name to avoid the task of specifying it for each and every route.

http://www.it-ebooks.info/


Chapter 3

[ 45 ]

Resource controllers
Laravel greatly simplifies the creation of REST APIs with resource controllers. Since 
they adhere to conventions, there is only a limited defined set of actions that can 
be performed from the controller. In fact, all the routes we created earlier can be 
rewritten as follows:

Route::resource('cat', 'CatController');

This will register the following routes:

Verb Path Action Route Name
GET /cat index cat.index

GET /cat/create create cat.create

POST /cat store cat.store

GET /cat/{id} show cat.show

GET /cat/{id}/edit edit cat.edit

PUT/PATCH /cat/{id} update cat.update

DELETE /cat/{id} destroy cat.destroy

Then, in your CatController class, you will have all of the different actions: index, 
create, show, edit, and so on. These will then be wired up to respond to the correct 
route and HTTP verb.

You can create a stub resource controller with the following Artisan command:

$ php artisan make:controller CatController

Why not try re-writing the closure-based route actions into your new 
CatController class?

Summary
We have covered a lot in this chapter. You learned how to define routes, prepare the 
models of the application, and interact with them. Moreover, we have had a glimpse at 
the many powerful features of Eloquent, Blade, as well as the other convenient helpers 
in Laravel to create forms and input fields—all of this in under 200 lines of code!

In the next chapter, you will learn more about Laravel's powerful ORM, Eloquent, 
which allows you to perform powerful database queries without writing a line of SQL.

http://www.it-ebooks.info/


http://www.it-ebooks.info/


[ 47 ]

Eloquent ORM
In the previous chapter, we touched on Eloquent, the object-relational mapper 
(ORM) that ships with Laravel. Eloquent acts as the model layer (the M in MVC) in 
our applications. As it is such a big part of most applications built in Laravel, we are 
going to take a look at Eloquent in more detail.

In this chapter, we will cover the following topics:

• Reading and writing data to our database
• Relationships between models
• Query scopes
• Model events and observers
• Collections

Eloquent conventions
Eloquent has some conventions, which, if followed, will make your life easier. This 
approach is known as convention over configuration, which means, if you follow these 
conventions, you will have to do very little configuration for things to "just work".

An Eloquent model is contained in a single class and is the "studly-cased", singular 
version of your database table's name. Studly-case is similar to camel-casing, but the 
first letter is uppercase as well. So if you have a database table called cats, then your 
model class will be called Cat.

There is no set place in the filesystem to place your Eloquent models; you are free 
to organize them as you see fit. You can use an Artisan command to create a model 
stub (a simple class with the basic structure of an Eloquent model). The command is:

$ php artisan app:model Cat

http://www.it-ebooks.info/


Eloquent ORM

[ 48 ]

By default, Artisan places new model classes in the app directory. You are free to 
move your model classes and store them in whatever directory you wish, just be sure 
to update the namespace declaration at the top of the file to reflect its new location.

Our model stub class will look like this:

<?php namespace App;
use Illuminate\Database\Eloquent\Model;
class Cat extends Model {
  //
}

This will attempt to use a table called cats by default.

Our model class extends the base Eloquent Model class, which contains all of the 
goodness we're going to use over the course of this chapter. The first thing you 
should do after creating a model is define the database table it maps to. In our case, 
the database table will be called cats:

class Cat extends Model {
  protected $table = 'cats';
}

This is a working Eloquent model at its simplest and you can now use it to fetch 
records from your database table.

Retrieving data
Eloquent provides you with numerous ways to fetch records from your database, 
each with their own appropriate use case. You can simply fetch all records in one go; 
a single record based on its primary key; records based on conditions; or a paginated 
list of either all or filtered records.

To fetch all records, we can use the aptly-named all method:

use App\Cat;
$cats = Cat::all();

To fetch a record by its primary key, you can use the find method:

$cat = Cat::find(1);

http://www.it-ebooks.info/


Chapter 4

[ 49 ]

Along with the first and all methods, there are aggregate methods. These allow 
you to retrieve aggregate values (rather than a record set) from your database tables:

use App\Order;

$orderCount    = Order::count();
$maximumTotal  = Order::max('amount');
$minimumTotal  = Order::min('amount');
$averageTotal  = Order::avg('amount');
$lifetimeSales = Order::sum('amount');

Filtering records
Eloquent also ships with a feature-rich query builder that allows you to build queries 
in code, without having to write a single line of SQL. This abstraction layer makes it 
easier to swap database platforms, should you ever need to. With Laravel, the only 
thing you need to do is update your database configuration and your application 
will continue to function as before.

Laravel's query builder has methods for common SQL-like directives such as WHERE, 
ORDER, and LIMIT; and more advanced concepts such as joins. For example, the 
previous find illustration can be expressed—albeit in longhand—as:

$cat = Cat::where('id', '=', 1)->first();

This will retrieve the first record WHERE 'id' = 1. We will only expect one record 
when querying based on the primary key, so use the first method. If we have a 
more open WHERE clause, where we were expecting potentially more than one record, 
we can use the get method, as we did in the first code example, and it will only 
return records that matched that clause.

Clauses can also be chained. This allows you to build up complex query conditions 
by adding clauses together. Consider the following example code:

use App\User;

$users = User::where('gender', '=', 'Male')
  ->where('birth_date', '>', '1989-02-12')
  ->all();

This will find all male users who were born after February 12, 1989. Instead of 
specifying dates manually, we can also use Carbon, a date and time library. Here is 
an example of using Carbon to find all users who are older than 21 years of age:

use App\User;
use Carbon\Carbon;

http://www.it-ebooks.info/


Eloquent ORM

[ 50 ]

$users = User::where('birth_date', '<', Carbon::now()- >subYears(21))
  ->all();

You can find more information on Carbon and its available 
functions at its official GitHub repository https://github.
com/briannesbitt/Carbon. Common Carbon methods are 
also covered in Appendix, An Arsenal of Tools.

Along with filtering records by WHERE conditions, you can also limit the number of 
records by using ranges using the take method:

$women = User::where('gender', '=', 'Female')->take(5)->get();

This will get the first five female users. You can also specify offsets by using the skip 
method:

$women = User::where('gender', '=', 'Female')->take(5)-> 
  skip(10)->get();

In SQL, this will look similar to the following:

SELECT * FROM users WHERE gender = 'Female' OFFSET 10 LIMIT 5

Queries can also be ordered by using the orderBy method:

$rankings = Team::orderBy('rating', 'asc')->get();

This will correspond to a SQL statement that looks like this:

SELECT * FROM teams ORDER BY rating ASC

Saving data
Applications that display data are great, but they're not very interactive. The 
fun comes when you allow users to submit data, whether these users are trusted 
contributors adding content via a content management system or contributions from 
general users on a site like Wikipedia.

When you retrieve a record via Eloquent, you can access its properties as follows:

$cat = Cat::find(1);
print $cat->name;

We can update attribute values in the same manner:

$cat->name = 'Garfield';

https://github.com/briannesbitt/Carbon
https://github.com/briannesbitt/Carbon
http://www.it-ebooks.info/


Chapter 4

[ 51 ]

This will set the value in the model instance, but we need to persist the change to the 
database. We do this by calling the save method afterwards:

$cat->name = 'Garfield';

$cat->save();

If you have a table with lots of columns, then it will become tiresome to assign 
each property manually like this. To this end, Eloquent allows you to fill models 
by passing an associative array with values, and the keys representing the column 
names. You can fill a model while either creating or updating it:

$data = [
  'name' => 'Garfield',
  'birth_date' => '1978-06-19',
  'breed_id' => 1,
];

$cat->create($data);

However, this will throw a MassAssignmentException error.

Mass assignment
The preceding example is an example of mass assignment. That is where a model's 
attributes are blindly updated with values en masse. If the $data array in the 
previous example came from say, a user's form submission, then they can update 
any and all values in the same database.

Consider that you have a users table with a column called is_admin, which 
determines whether or not that user can view your website's administration area. 
Also consider that users on the public side of your website can update their profile. 
If, during form submission, the user also included a field with the name of is_admin 
and a value of 1, that would update the column value in the database table and grant 
them access to your super secret admin area—this is a huge security concern and is 
exactly what mass-assignment protection prevents.

To mark columns whose values are safe to set via mass-assignment (such as name, 
birth_date, and so on.), we need to update our Eloquent models by providing a 
new property called $fillable. This is simply an array containing the names of the 
attributes that are safe to set via mass assignment:

class Cat extends Model {

  protected $table = 'cats';
  protected $fillable = [
    'name',

http://www.it-ebooks.info/


Eloquent ORM

[ 52 ]

    'birth_date',
    'breed_id',
  ];
}

Now, we can create and update models by passing an array of data as before, 
without facing a MassAssignmentException being thrown.

Along with creating a new record, there are a couple of sibling methods that you can 
use. There is firstOrCreate, where you can pass an array of data—Eloquent will 
first try and find a model with the matching values. If it can't find a match, it will 
instead create the record.

There's also the similarly named firstOrNew method. However, instead of 
immediately saving the record to the database, it will instead just return a new 
Eloquent instance with the attribute values set, allowing you to set any other values 
first before manually saving it yourself.

A good time to use these methods is when allowing users to log in by using a 
third-party service such as Facebook or Twitter. These services will usually return 
information identifying the user, such as an e-mail address, allowing you to check 
your database for a matching user. If one exists, you can simply log them in, 
otherwise you can create a new user account for them.

Deleting data
There are two ways of deleting records. If you have a model instance that you have 
fetched from the database, then you can call the delete method on it:

$cat = Cat::find(1);
$cat->delete();

Alternatively, you can call the destroy method, specifying the IDs of the records you 
want to delete, without having to fetch those records first:

Cat::destroy(1);
Cat::destroy(1, 2, 3, 4, 5);

Soft deletion
By default, Eloquent will hard-delete records from your database. This means, 
once it's deleted, it's gone forever. If you need to retain deleted data (that is, for 
auditing), then you can use soft deletes. When deleting a model, the record is kept 
in the database but instead a deleted_at timestamp is set, and any records with this 
timestamp set will not be included when querying your database.

http://www.it-ebooks.info/


Chapter 4

[ 53 ]

Soft deletes can be easily added to your Eloquent model. All you need to do is 
include the trait:

use Illuminate\Database\Eloquent\SoftDeletes;
class Cat extends Model {
  use SoftDeletes;
  protected $dates = ['deleted_at'];
}

We've also designated that the deleted_at column should be treated as a date 
column. This will yield the value as a Carbon instance and allow us to perform 
operations on it or display it in a variety of formats, should we need to.

You'll also need to make sure the deleted_at column is added to your table 
migration. An example of such a migration is as follows:

public function up() {
  $table->softDeletes();
}

Including deleted models in results
If you find you need to include deleted records when querying your database (for 
example, in an administration area), then you can use the withTrashed query scope. 
Query scopes are just methods you can use in chaining:

$cats = Cat::withTrashed()->get();

This will mix deleted records with non-deleted records. If you find you need to 
retrieve only deleted records, then you can use the onlyTrashed query scope:

$cats = Cat::onlyTrashed()->get();

If you find you need to "un-delete" a record, then the SoftDeletes trait provides you 
with a new restore method to undo this:

$cat->restore();

Finally, if you find you really need to delete a record from your database, you can use 
the forceDelete method. As the name implies, once you delete a record with this 
method, it's truly gone.

$cat->forceDelete();

http://www.it-ebooks.info/


Eloquent ORM

[ 54 ]

Query scopes
The previous section introduced you to the concept of query scopes. This builds 
on from the query builder that allows you to build conditions on an ad hoc basis. 
However, what if you need certain conditions to apply to every request? Or a single 
condition that is actually the combination of multiple WHERE clauses? This is where 
query scopes come in.

Query scopes allow you to define these conditions once in your model, and then re-
use them without having to manually define the clauses that make up that condition. 
For example, imagine we need to find users above the age of 21 in multiple places in 
our application. We can express this as a query scope:

class User extends Model {

  public function scopeOver21($query)
  {
    $date = Carbon::now()->subYears(21);
    return $query->where('birth_date', '<', $date);
  }
}

Thanks to the fluent query builder, we can now use this as follows:

$usersOver21 = User::over21()->get();

As you can see, query scopes are methods that begin with the word "scope", take the 
current query as a parameter, modify it in some way, and then return the modified 
query, ready to be used in another clause. This means you can chain query scopes 
just as you would any other query expression:

$malesOver21 = User::male()->over21()->get();

Along with simple scopes like these, we can create more "dynamic" scopes that 
accept parameters and can be passed to the scope's conditions. Consider the 
following example code:

class Cat extends Model {
  public function scopeOfBreed($query, $breedId)
  {
    return $query->where('breed_id', '=', $breedId);
  }
}

We can then find cats of a specific breed as follows:

$tabbyCats = Cat::ofBreed(1)->get();

http://www.it-ebooks.info/


Chapter 4

[ 55 ]

Relationships
When we built our application in Chapter 3, Your First Application, we made use of 
relationships. Each cat in our application was of a particular breed. However, instead 
of storing the name of the breed next to every individual cat and potentially having 
the breed repeating numerous times, we created a separate breeds table and each 
cat's breed was a value that referred to the ID of a record in that table. This gave us 
an example of two types of relationships: a cat belongs to a breed, but a breed can  
have many cats. This is defined as a one-to-many relationship.

There are other types of relationships, for each of which Eloquent provides  
good support:

• One-to-one
• Many-to-many
• Has-many-through
• Polymorphic relations
• Many-to-many polymorphic relations

Here, we will look through them with an example of each.

One-to-one
Sometimes, you may want to split data across multiple tables for ease of 
management, or because they represent two different parts of one entity. A common 
example is a user, and a user's profile. You may have a users table that contains 
core information about that user such as their name, account e-mail address, and 
password hash; however, if it's a social networking website, then they may also have 
a profile with more information, such as their favorite color. This information can 
then be stored in a separate profiles table, with a foreign key representing the user 
that the profile belongs to.

In your models, this relation will look like this:

class User extends Model {

  public function profile()
  {
    return $this->hasOne('App\Profile');
  }
}

http://www.it-ebooks.info/


Eloquent ORM

[ 56 ]

And in the Profile model, the relation will look like this:

class Profile extends Model {

  public function user()
  {
    return $this->belongsTo('App\User');
  }
}

When querying Users, we can also access their profile separately:

$profile = User::find(1)->profile;

Relations are accessed using the name of the method used to define it in the model. 
Since in the User model we defined the relation in a method called profile, this is 
the name of the property we use to access the data of that related model.

Many-to-many
A many-to-many relationship is more complicated than a one-to-one (where one 
model belongs to exactly one other model) or a one-to-many relationship (where 
many models can belong to one other model). As the name suggests, many models 
can belong to many other models. To accomplish this, instead of just two tables being 
involved, a third is introduced. This can be quite difficult to comprehend, so let's 
look at an example.

Imagine you're building a permissions system to limit what actions each user can 
perform. Instead of assigning permissions on a per-user basis, you instead have 
roles, where each user is given a subset of permissions, depending on which role 
they've been assigned. In this description, we've identified two entities: a User and 
a Role. Also in this scenario, a user can have many roles, and a role can belong to 
many users. To map roles to users, we create a third table, called a join table. Laravel 
refers to these tables as pivot tables, a term you may have heard of if you have 
worked with spreadsheets before.

By default, Eloquent expects join tables to contain the singular names of the two 
target tables, listed alphabetically and separated by an underscore. So in our 
scenario, this would be role_user. The table itself contains only two columns  
(other than the primary key). These columns represent the foreign key of the Role 
model and the User model it is creating a relation between. Again in convention  
over configuration, these should be lowercase, singular, with _id appended, that is,  
role_id and user_id.

http://www.it-ebooks.info/


Chapter 4

[ 57 ]

The relationship is defined in both our User and Role models using the 
belongsToMany method:

class User extends Model {
  public function roles()
  {
    return $this->belongsToMany('App\Role');
  }
}

class Role extends Model {
  public function users()
  {
    return $this->belongsToMany('App\User');
  }
}

We can now find out what roles a user has been assigned:

$roles = User::find(1)->roles;

We can also find out all users with a particular role:

$admins = Role::find(1)->users;

If you need to add a new role to a user, you can do so by using the attach method:

$user = User::find(1);
$user->roles()->attach($roleId);

And, of course, the opposite of attach is detach:

$user->roles()->detach($roleId);

Both the attach and detach methods also accept arrays, allowing you to add/
remove multiple relations in one operation.

Alternatively, you can use the sync method. The difference with sync is, only after 
the operation is complete are the IDs that are passed present in the join table, rather 
than adding/removing them from the existing relations.

$user->roles()->sync(1, 2, 3, 4, 5);

http://www.it-ebooks.info/


Eloquent ORM

[ 58 ]

Storing data in the pivot table
Along with storing the primary keys of both the related models in the pivot 
table, you can also store additional data. Imagine we have users and groups in 
an application. Many users can belong to many groups, but users can also be 
moderators of groups. To indicate which users are moderators of a group, we can 
add a is_moderator column on the pivot table. To specify the additional data that 
should be stored in the pivot table, we can specify a second parameter when calling 
the attach method:

$user->groups()->attach(1, ['is_moderator' => true]);

We can use the same approach when using the sync method too:

$user->groups()->sync([1 => ['is_moderator' => true]]);

Has-many-through
With related data, things are simple when you want data from a model that is 
directly related to the current one you're working with; but what happens if you 
want data that is two hops away from your current model?

Consider a simple e-commerce website. You may have a Product model, an Order 
model, and an OrderItem model that belongs to both a product and an order. You 
have been tasked with finding all orders that contain a particular product. How 
do you do this if Product isn't directly associated with Order? Thankfully, in our 
scenario, they have a common relation—the OrderItem model.

We can use a "has-many-through" relationship to reach orders a product is part of 
via the intermediate OrderItem model. We set the relationship up in our Product 
model, as follows:

class Product extends Model {

  public function orders()
  {
    return $this->hasManyThrough('App\Order', 'App\OrderItem');
  }
}

The first parameter in the hasManyThrough method is the target model, and the 
second parameter is the intermediate model we go through to get to it. We can now 
easily list the orders a product is part of:

$product = Product::find(1);
$orders = $product->orders;

http://www.it-ebooks.info/


Chapter 4

[ 59 ]

Polymorphic relations
Polymorphic relations are difficult to grasp at first; however, once you have an 
understanding of them, they are really powerful. They allow a model to belong to 
more than one other model on a single association.

A common use case for a polymorphic relationship is to create an image library and 
then allow your other models to contain images by linking to the relevant records in 
the image library table. A base Image model will look like this:

class Image extends Model {

  public function imageable()
  {
    return $this->morphTo();
  }
}

The morphTo method is what makes this model polymorphic. Now, in our other 
models, we can create a relation to the Image model, as follows:

class Article extends Model {
  public function images()
  {
    $this->morphMany('App\Image', 'imageable');
  }
}

You can now fetch any related Image models through your Article model:

$article = Article::find(1);

foreach ($article->images as $image) {
  // Do something with image
}

You may think that this is no different to a one-to-many relationship, but the 
difference becomes apparent when you look at the relation from the other side. 
When retrieving an Image instance, if you access the imageable relation, you'll 
receive an instance of whatever model "owns" the image. This may be an Article, 
a Product, or another model type in your application. Eloquent achieves this by not 
only storing a foreign key value, but also the name of the model class. In the case of 
our Image model, the columns would be imageable_id and imageable_type. When 
creating your migration, there is a method to create these two columns:

$table->morphs('imageable');

http://www.it-ebooks.info/


Eloquent ORM

[ 60 ]

Many-to-many polymorphic relations
The final relation type we will look at is the many-to-many polymorphic relation, by 
far the most complex. Staying with our image library example, we can see that it has 
one drawback, an Image can only belong to one other model at a time. So, while we 
can see all images that have been uploaded by models in our application, we can't  
re-use an uploaded image like we would in a true image library. This is where a 
many-to-many polymorphic relation would come in.

Keeping our images and articles tables, we need to introduce a third table, 
imageables. The relation data is removed from the images table, and instead placed 
in this new table, which also has another column that is a foreign key pointing to the 
Image primary key. The three columns are:

• image_id

• imageable_id

• imageable_type

With this schema, a single Image can have multiple relations. That is, the image can 
be re-used in multiple models, whether that is multiple Article records, or models 
of different types. Our updated model classes then take this form:

class Article extends Model {
  public function images()
  {
    return $this->morphedByMany('App\Image', 'imageable');
  }
}

The Image model is also updated, containing methods for each of its relationships:

class Image extends Model {
  public function articles()
  {
    return $this->morphToMany('App\Article', 'imageable');
  }
  public function products()
  {
    return $this->morphToMany('App\Product', 'imageable');
  }
  // And any other relations
}

You can still access the images relation as with a normal polymorphic relationship.

http://www.it-ebooks.info/


Chapter 4

[ 61 ]

Model events
Eloquent fires numerous events at different points, such as when a model is being 
saved or deleted. The following is a list of methods Eloquent models can fire:

• creating

• created

• updating

• updated

• saving

• saved

• deleting

• deleted

• restoring

• restored

The names are self-explanatory. The difference in the past and present participles is 
that events such as creating are fired before the model is created, whereas created 
is fired after the model has been created. Therefore, if you were to halt execution 
within a handler for the creating event, the record will not be saved; whereas, if 
you halted execution within a handler for the created event, the record would still 
be persisted to the database.

Registering event listeners
It's quite open-ended as to where to register listeners for model events. One place is 
in the boot method within the EventServiceProvider class:

public function boot(DispatcherContract $events)
{
  parent::boot($events);

  User::creating(function($user)
  {
    // Do something
  });
}

Be sure to import the namespace for the DispatcherContract at the top of the file:

use Illuminate\Contracts\Bus\Dispatcher as DispatcherContract;

http://www.it-ebooks.info/


Eloquent ORM

[ 62 ]

Eloquent models provide a method for each event that you can pass an anonymous 
function to. This anonymous function receives an instance of the model that you can 
then act upon. So if you wanted to create a URL-friendly representation of an article 
headline each time your Article model was saved, you can do this by listening on 
the saving event:

Article::saving(function($article)
{
  $article->slug = Str::slug($article->headline);
});

Model observers
As you add more and more model event handlers to your EventServiceProvider 
class, you may find it becoming overcrowded and difficult to maintain. This is where 
an alternative to handling model events comes into play—model observers.

Model observers are standalone classes that you attach to a model, and implement 
methods for as many events as you need to listen out for. So our slug-creating 
function can be re-factored into a model observer as follows:

use Illuminate\Support\Str;

class ArticleObserver {
  public function saving($article)
  {
    $article->slug = Str::slug($article->headline);
  }
}

We can then register our observer in our EventServiceProvider class:

public function boot(DispatcherContract $events)
{
  parent::boot($events);
  Article::observe(new ArticleObserver);
}

Collections
Historically, other frameworks that have shipped with their own ORMs and query 
builders have returned result sets as either multidimensional arrays or Plain Old 
PHP Objects (POPOs). Eloquent has taken its cue from other, more mature ORMs 
and instead returns result sets as an instance of a collection object.

http://www.it-ebooks.info/


Chapter 4

[ 63 ]

The collection object is powerful as it not only contains the data returned from the 
database, but also many helper methods, allowing you to manipulate that data 
before displaying it to the user.

Checking whether a key exists in a collection
If you need to find out whether a particular key exists in a collection, you can use the 
contains method:

$users = User::all();
if ($users->contains($userId))
{
  // Do something
}

When querying models, any relations are also returned as subcollections, allowing 
you to use the exact same methods on relations too:

$user = User::find(1);
if ($user->roles->contains($roleId))
{
  // Do something
}

By default, models return an instance of Illuminate\Database\Eloquent\
Collection. However, this can be overridden to instead use a different class. This is 
handy if we wanted to add additional methods to collections.

Say for a collection of roles and we want to determine if administrator is one of those 
roles. If we imagine the administrator role to have a primary key value of 1, we can 
create a new method, like this:

<?php namespace App;
use Illuminate\Database\Eloquent\Collection as EloquentCollection;
class RoleCollection extends EloquentCollection {
  public function containsAdmin()
  {
    return $this->contains(1);
  }
}

The second part is to then tell the Role model to use our new collection:

use App\RoleCollection;

class Role extends Model {

http://www.it-ebooks.info/


Eloquent ORM

[ 64 ]

  public function newCollection(array $models = array())
  {
    return new RoleCollection($models);
  }
}

Instead of instantiating the default Eloquent collection, it will instead create a new 
instance of our RoleCollection class, filling it with the results from our query. 
This means that every time we request roles, we can use our new containsAdmin 
method:

$user = User::find(1);

if ($user->roles->containsAdmin())
{
  // Let user administrate something
}
else
{
 // User does not have administrator role
}

Eloquent collections also have a plethora of other helpful functions for allowing you 
to manipulate, filter, and iterate over items. You can view more information on these 
methods at http://laravel.com/docs/master/eloquent#collections.

Summary
Although we have covered a lot in this chapter, Eloquent is so feature-rich that 
unfortunately, there isn't room to cover each and every one of its features. We have 
covered the most important aspects of Eloquent, though, and that will set you  
well on your way to saving and retrieving data, creating relations of varying 
complexity between your models, and handling various events raised during your 
models' lifecycle.

The next chapter sees us move on to learn all about testing our application so it 
remains as bulletproof as possible.

http://laravel.com/docs/master/eloquent#collections
http://www.it-ebooks.info/


[ 65 ]

Testing – It's Easier  
Than You Think

Testing is an often-neglected part in PHP development. Compared to languages 
such as Java and Ruby, where testing is strongly ingrained into the workflow of 
developers, PHP has been lagging behind. This is mainly because simple PHP 
applications tend to be tightly coupled and are, therefore, difficult to test. However, 
thanks to standardization and modularization efforts and frameworks that 
encourage the separation of concerns, PHP testing has become more accessible and 
the mentality towards it is slowly changing.

Laravel 5 is a framework that was built from the ground up to facilitate testing. It 
comes with all the necessary files to get started, along with different helpers to test 
your application, thus helping beginners to overcome some of the biggest obstacles.

In this chapter, we will demonstrate how Laravel makes it very simple to get started 
with testing, without forcing you to go for a test-first approach, or making you aim 
for complete test coverage. In this gentle introduction to testing, we will look at the 
following topics:

• The advantages of writing tests for your application
• How to prepare your tests
• The software design patterns that Laravel fosters
• How to use Mockery to test objects in isolation
• The built-in features and helpers that facilitate testing

http://www.it-ebooks.info/


Testing – It's Easier Than You Think

[ 66 ]

The benefits of testing
If you have not written tests for your web applications before, the advantages of 
testing might not always be obvious to you. After all, preparing and writing tests 
involves significant time investment, and for short-lived prototypes or hackathon 
projects, they can even seem to be a complete waste of time. However, in almost 
all the other cases, when your project is likely to grow in complexity, or when you 
collaborate with other developers, tests have the potential to save you and other 
people a lot of time and headaches.

Tests also introduce some changes to your workflow. In the development stage, you 
will no longer have to switch back and forth between your code editor and your web 
browser. Instead, if you are using a text editor or an IDE that supports it, you could 
bind a test runner to a keyboard shortcut.

Once you have proven that a certain bit of functionality works, you will have a way of 
quickly ensuring that it continues to work as expected, if the source code is changed 
at a later date. In addition to this, it forces you to clearly and unambiguously define 
the expected behavior of your application and can therefore complement or replace a 
significant part of the documentation. This can be particularly helpful, not only for new 
developers who start collaborating on the project, but also for yourself, if you have not 
touched the project for a while.

The anatomy of a test
Your application tests will reside in tests/. In this directory, you will find a base test 
case inside TestCase.php, which is responsible for bootstrapping the application 
in the testing environment. This class extends Laravel's main TestCase class, which 
in turn extends the PHPUnit_Framework_TestCase class, along with many helpful 
testing methods that we will cover later in this chapter. All of your tests will extend 
this first TestCase class and define one or more methods that are meant to test one 
or more features of your application.

In every test, we generally perform the following three distinct tasks:

1. We arrange or initialize some data.
2. We execute a function to act on this data.
3. We assert or verify that the output matches what we expected.

Given we had the following Helper class:

class Helper { 
  public static function sum($arr) { return array_sum($arr); } 
}

http://www.it-ebooks.info/


Chapter 5

[ 67 ]

An example test case, HelperTest.php, which illustrates the three preceding steps, 
will look like this:

class HelperTest extends PHPUnit_Framework_TestCase {
  public function testSum() {
    $data = [1,2,3];                   // 1) Arrange
    $result = Helper::sum($data);      // 2) Act
    $this->assertEquals(6, $result);   // 3) Assert
  }
  public function testSomethingElse() {
    // ...
  }
}

When the preceding code snippet is executed, PHPUnit will run each method within 
the test case and keep track of how many tests failed or passed. With PHPUnit 
installed on your system, you can run this test, using the following command:

$ phpunit --colors HelperTest.php

This will produce the following output:

Most code editors also provide ways to run this directly 
within the editor by pressing a shortcut key. Examples of such 
editors include PhpStorm. It is even possible to run them 
automatically before each commit or before you deploy your 
code to a remote server.

http://www.it-ebooks.info/


Testing – It's Easier Than You Think

[ 68 ]

Unit testing with PHPUnit
A positive effect of testing is that it forces you to split your code into manageable 
dependencies, so that you can test them in isolation. The testing of these individual 
classes and methods is referred to as unit testing. Since it relies on the PHPUnit 
testing framework, which already provides a large number of tools to set up test 
suites, Laravel does not need to provide any additional helpers for this type of testing.

A great way to learn about any framework, and at the same time learn about the 
different ways in which it can be tested, is to look at how its authors have written 
tests for it. Therefore, our next examples will be taken directly from Laravel's test 
suite, which is located at vendor/laravel/framework/tests/.

Defining what you expect with assertions
Assertions are the fundamental components of unit tests. Simply put, they are used 
to compare the expected output of a function with its actual output.

To see how assertions work, we will examine the test for the Str::is() helper, 
which checks whether a given string matches a given pattern.

The following test can be found near the bottom of the Support/SupportStrTest.
php file:

use Illuminate\Support\Str;
class SupportStrTest extends PHPUnit_Framework_TestCase {
  // ...
  public function testIs()
  {
    $this->assertTrue(Str::is('/', '/'));
    $this->assertFalse(Str::is('/', ' /'));
    $this->assertFalse(Str::is('/', '/a'));
    $this->assertTrue(Str::is('foo/*', 'foo/bar/baz'));
    $this->assertTrue(Str::is('*/foo', 'blah/baz/foo'));
  }
}

The preceding test performs five assertions to test whether the method is indeed 
returning the expected value when called with different parameters.

http://www.it-ebooks.info/


Chapter 5

[ 69 ]

PHPUnit provides many other assertion methods that can, for example, help you test 
for numerical values with assertGreaterThan(), equality with assertEquals(), 
types with assertInstanceOf(), or existence with assertArrayHasKey().  
While there are many more possible assertions, these are the ones you will probably 
end up using most frequently. In total, PHPUnit provides around 40 different 
assertion methods, all of which are described in the official documentation at 
http://phpunit.de/manual/.

Preparing the scene and cleaning up objects
If you need to run a function before each test method to set up some test data or 
reduce code duplication, you can use the setUp() method. If, on the other hand, you 
need to run some code after each test to clear any objects that were instantiated in 
your tests, you can define it inside the tearDown() method. A good example would 
be to remove any records from a database inserted in the setUp() method.

Expecting exceptions
It is also possible to test for exceptions by decorating your function with 
an @expectedException DocBlock, like Laravel does inside Database/ 
DatabaseEloquentModelTest.php:

/**
 * @expectedException Illuminate\Database\Eloquent\
MassAssignmentException
 */
public function testGlobalGuarded()
{
  $model = new EloquentModelStub;
  $model->guard(['*']);
  $model->fill(['name' => 'foo', 'age' => 'bar',  
    'votes' => 'baz']);
}

In this test function, there is no assertion, but the code is expected to throw an 
exception when it is executed. Also note the use of an EloquentModelStub object. A 
stub creates an instance of an object that provides or simulates the methods that our 
class needs—in this case, an Eloquent model on which we can call the guard() and 
fill() methods. If you look at the definition of this stub further down in the test, 
you will see that it does not actually interact with a database, but it provides canned 
responses instead.

http://phpunit.de/manual/
http://www.it-ebooks.info/


Testing – It's Easier Than You Think

[ 70 ]

Testing interdependent classes in isolation
In addition to stubs, which we looked at in the previous section, there is another 
way in which you can test one or more interdependent classes in isolation. It is by 
using mocks. In Laravel, mocks are created using the Mockery library, and they help 
define the methods that should be called during the test, the arguments they should 
receive, and their return values as well. Laravel heavily relies on mocks in its own 
tests. An example can be found in the AuthEloquentUserProviderTest class, where 
the Hasher class is mocked:

use Mockery as M;

class AuthEloquentUserProviderTest extends  
  PHPUnit_Framework_TestCase {

  public function tearDown(){
    M::close();
  }
  // ...

  public function getProviderMock() {
    $hasher = m::mock('Illuminate\Contracts\Hashing\Hasher');
    return $this->getMock('Illuminate\Auth\EloquentUserProvider', 
      array('createModel'), array($hasher, 'foo'));
  }
}

As opposed to stubs, mocks allow us to define which methods need to be called,  
how many times they should be called, which parameters they should receive, and 
which parameters they should return. If any of these preconditions are not met, the 
test will fail.

To ensure that we do not have an instance of a mocked object that persists and interferes 
with future tests, Mockery provides a close() method that needs to be executed after 
each test. Thanks to this mock, the class can be tested in complete isolation.

End-to-end testing
When we are confident that all of the interdependent classes work as expected, 
we can then conduct another type of testing. It consists of simulating the kind of 
interaction that a user would have through a web browser. This user would, for 
example, visit a specific URL, perform certain actions, and expect to see some kind  
of feedback from the application.

http://www.it-ebooks.info/


Chapter 5

[ 71 ]

This is perhaps the most straightforward type of testing, as it mimics the kind of 
testing that you manually perform each time you refresh your browser after a code 
change. When you get started, it is absolutely fine to only perform this type of 
testing. However, you must bear in mind that if any errors occur, you will still have 
to drill deep down into your code to find the exact component that caused the error.

Testing – batteries included
When you start a new project with Laravel, you are provided with both a 
configuration file with sensible defaults for PHPUnit at the root of the project inside 
phpunit.xml as well as a directory, tests/, where you are expected to save your 
tests. This directory even contains an example test that you can use as a starting point.

With these settings in place, from the root of our project, all we need to do is SSH 
into our Homestead virtual machine and run the following command:

$ phpunit

This command will read the XML configuration file and run our tests. If, at this stage, 
you get an error message telling you that PHPUnit cannot be found, you either need 
to add the phpunit command to your PATH variable or install it with Composer.

Laravel applications come with PHPUnit already declared in the autoload-dev 
block in your composer.json file. After running composer update, you will be able 
to call PHPUnit by using the following command:

$ vendor/bin/phpunit

Framework assertions
Now that we know about the two major types of tests and have PHPUnit installed, 
we are going to write a few tests for the application that we developed in Chapter 3, 
Your First Application.

This first test will verify whether visitors are redirected to the correct page when they 
first visit our site:

  public function testHomePageRedirection() {
    $this->call('GET', '/');
    $this->assertRedirectedTo('cats');
  }

http://www.it-ebooks.info/


Testing – It's Easier Than You Think

[ 72 ]

Here, we made use of the call() method that simulated a request to our application, 
which executes the request through Laravel's HTTP kernel. Then, we used one 
of the assertion methods provided by Laravel to make sure that the response is a 
redirection to the new location. If you now run the phpunit command, you should 
see the following output:

OK (1 test, 2 assertions)

Next, we can try to write a test to make sure that the creation form is not accessible to 
the users that are not logged in; this is shown in the following code snippet:

  public function testGuestIsRedirected() {
    $this->call('GET', '/cats/create');
    $this->assertRedirectedTo('login');
  }'

Impersonating users
Sometimes, you may wish to run a test as if you were a registered user of the 
application. This is possible by using the be() method and passing a User instance 
to it or whichever Eloquent model you use, along with Laravel's authentication class:

  public function testLoggedInUserCanCreateCat() {
    $user = new App\User([ 
      'name' => 'John Doe', 
      'is_admin' => false, 
    ]);
    $this->be($user);
    $this->call('GET', '/cats/create');
    $this->assertResponseOk();
  }

Testing with a database
While some developers would advise against writing tests that hit the database, it 
can often be a simple and effective way of making sure that all the components work 
together as expected. However, it should only be done once each individual unit has 
been tested. Let's also not forget that Laravel has support for migrations and seeding; 
in other words, it has all of the tools that are required to recreate an identical data 
structure from scratch, before each test.

To write tests that depend on a database, we need to override the setUp() method  
in our tests to migrate and seed the database each time a test is run. It is also 
important to run the parent setUp() method, otherwise, the test case will not be  
able to start properly:

http://www.it-ebooks.info/


Chapter 5

[ 73 ]

  public function setUp(){
    parent::setUp();
    Artisan::call('migrate');
    $this->seed();
  }

Then, we need to configure a test database connection in config/database.php; if 
the application does not contain any database-specific queries, we can use SQLite's 
in-memory feature by setting :memory: instead of a path to the database file. The 
following configuration also has the potential to speed up our tests:

'sqlite' => [
  'driver'   => 'sqlite',
  'database' => ':memory:',
],

And lastly, since we are going to test the editing and deletion features, we are going 
to need at least one row in the cats table of our database, so we prepare a seeder that 
will insert a cat with a forced id of value 1:

class CatsTableSeeder extends Seeder {
  public function run(){
    Cat::create(['id' => 1, 'name' => '''Tom', 'user_id' => 1]);
  }
}

Once this is done, we can test the deletion feature as follows:

public function testOwnerCanDeleteCat() {
  $user = new App\User(['id' => 1, 'name' => 'User #1', 
    'is_admin' => false]);
  $this->be($user);
  $this->call('DELETE', '/cats/1');
  $this->assertRedirectedTo('/cats');
  $this->assertSessionHas('message');
}

Note that this time, we did not need to enable the filters since the permissions are 
checked by a method in the User model. Since the database is wiped and re-seeded 
after each test, we do not need to worry about the fact that the previous test deleted 
that particular cat. We can also write a test to ensure that a user who is not an 
administrator cannot edit someone else's cat profile:

public function testNonAdminCannotEditCat() {
  $user = new App\User(['id' => 2, 'name' => 'User #2', 
    'is_admin' => false]);
  $this->be($user);
  $this->call('DELETE', '/cats/1');

http://www.it-ebooks.info/


Testing – It's Easier Than You Think

[ 74 ]

  $this->assertRedirectedTo('/cats/1');
  $this->assertSessionHas('error');
}

Inspecting the rendered views
Since Laravel ships with Symfony's DomCrawler and CssSelector components, it is 
possible to inspect the contents of a rendered view. By issuing a request through the 
test client instance with $this->client->request(), you can filter its contents with 
CSS queries as follows:

public function testAdminCanEditCat() {
  $user = new App\User(['id' => 3, 'name' => 'Admin',
    'is_admin' => true));
  $this->be($user);
  $newName = 'Berlioz';
  $this->call('PUT', '/cats/1', ['name' => $newName]);
  $crawler = $this->client->request('GET', '/cats/1');
  $this->assertCount(1, $crawler 
    ->filter('h2:contains("'.$newName.'")'));
}

The complete documentation for the DomCrawler component can be found at 
http://symfony.com/doc/current/components/dom_crawler.html. If you are 
already familiar with jQuery, its syntax will look familiar to you.

Summary
While the main ideas behind testing are easy to grasp, it is often their 
implementation that can prove to be an obstacle, especially when working with 
a new framework. However, after reading this chapter, you should have a good 
overview of how you can test your Laravel applications. The techniques presented in 
this chapter will enable you to write more robust and future-proof applications.

In the next chapter, we will explore the possibilities offered by Artisan, Laravel's 
command-line utility.

http://symfony.com/doc/current/components/dom_crawler.html
http://www.it-ebooks.info/


[ 75 ]

A Command-line Companion 
Called Artisan

In the last few chapters, we have used Artisan for various tasks, such as running 
database migrations. However, as we will see in this chapter, Laravel's command-
line utility has far more capabilities and can be used to run and automate all sorts of 
tasks. In the next pages, you will learn how Artisan can help you:

• Inspect and interact with your application
• Enhance the overall performance of your application
• Write your own commands

By the end of this tour of Artisan's capabilities, you will understand how it can 
become an indispensable companion in your projects.

Keeping up with the latest changes
New features are constantly being added to Laravel. If a few days have passed 
since you first installed it, try running a composer update command from your 
terminal. You should see the latest versions of Laravel and its dependencies being 
downloaded. Since you are already in the terminal, finding out about the latest 
features is just one command away:
$ php artisan changes

This saves you from going online to find a change log or reading through a long 
history of commits on GitHub. It can also help you learn about features that you 
were not aware of. You can also find out which version of Laravel you are running 
by entering the following command:
$ php artisan --version

Laravel Framework version 5.0.16

http://www.it-ebooks.info/


A Command-line Companion Called Artisan

[ 76 ]

All Artisan commands have to be run from your project's root directory.

With the help of a short script such as Artisan Anywhere, 
available at https://github.com/antonioribeiro/
artisan-anywhere, it is also possible to run Artisan from 
any subfolder in your project.

Inspecting and interacting with your 
application
With the route:list command, you can see at a glance which URLs your 
application will respond to, what their names are, and if any middleware has been 
registered to handle requests. This is probably the quickest way to get acquainted 
with a Laravel application that someone else has built.

To display a table with all the routes, all you have to do is enter the following 
command:

$ php artisan route:list

For example, the following is what the application we built in Chapter 3, Your First 
Application, looks like:

https://github.com/antonioribeiro/artisan-anywhere
https://github.com/antonioribeiro/artisan-anywhere
http://www.it-ebooks.info/


Chapter 6

[ 77 ]

In some applications, you might see /{v1}/{v2}/{v3}/{v4}/
{v5} appended to particular routes. This is because the developer 
has registered a controller with implicit routing, and Laravel will 
try to match and pass up to five parameters to the controller.

Fiddling with the internals
When developing your application, you will sometimes need to run short, one-off 
commands to inspect the contents of your database, insert some data into it, or check 
the syntax and results of an Eloquent query. One way you could do this is by creating 
a temporary route with a closure that is going to trigger these actions. However, this 
is less than practical since it requires you to switch back and forth between your code 
editor and your web browser.

To make these small changes easier, Artisan provides a command called tinker, 
which boots up the application and lets you interact with it. Just enter the  
following command:

$ php artisan tinker

This will start a Read-Eval-Print Loop (REPL) similar to what you get when running 
the php -a command, which starts an interactive shell. In this REPL, you can enter 
PHP commands in the context of the application and immediately see their output:

> $cat = 'Garfield';

> App\Cat::create(['name' => $cat,'date_of_birth' => new DateTime]);

> echo App\Cat::whereName($cat)->get();

[{"id":"4","name":"Garfield 2","date_of_birth":…}]

> dd(Config::get('database.default'));

Version 5 of Laravel leverages PsySH, a PHP-specific REPL that provides a more 
robust shell with support for keyboard shortcuts and history.

Turning the engine off
Whether it is because you are upgrading a database or waiting to push a fix for a 
critical bug to production, you may want to manually put your application on hold 
to avoid serving a broken page to your visitors. You can do this by entering the 
following command:

$ php artisan down

http://www.it-ebooks.info/


A Command-line Companion Called Artisan

[ 78 ]

This will put your application into maintenance mode. You can determine what 
to display to users when they visit your application in this mode by editing the 
template file at resources/views/errors/503.blade.php (since maintenance 
mode sends an HTTP status code of 503 Service Unavailable to the client). To 
exit maintenance mode, simply run the following command:

$ php artisan up

Fine-tuning your application
For every incoming request, Laravel has to load many different classes and this can 
slow down your application, particularly if you are not using a PHP accelerator such 
as APC, eAccelerator, or XCache. In order to reduce disk I/O and shave off precious 
milliseconds from each request, you can run the following command:

$ php artisan optimize

This will trim and merge many common classes into one file located inside  
storage/framework/compiled.php. The optimize command is something you 
could, for example, include in a deployment script.

By default, Laravel will not compile your classes if app.debug is set to true. You can 
override this by adding the --force flag to the command but bear in mind that this 
will make your error messages less readable.

Caching routes
Apart from caching class maps to improve the response time of your application, you 
can also cache the routes of your application. This is something else you can include 
in your deployment process. The command? Simply enter the following:

$ php artisan route:cache

The advantage of caching routes is that your application will get a little faster as 
its routes will have been pre-compiled, instead of evaluating the URL and any 
matches routes on each request. However, as the routing process now refers to a 
cache file, any new routes added will not be parsed. You will need to re-cache them 
by running the route:cache command again. Therefore, this is not suitable during 
development, where routes might be changing frequently.

http://www.it-ebooks.info/


Chapter 6

[ 79 ]

Generators
Laravel 5 ships with various commands to generate new files of different types. 
Throughout the book, we've already used a couple (that is, for generating new 
migration files), but there are others too. If you run $ php artisan list under the 
make namespace, you will find the following entries:

• make:command

• make:console

• make:controller

• make:event

• make:middleware

• make:migration

• make:model

• make:provider

• make:request

These commands create a stub file in the appropriate location in your Laravel 
application containing boilerplate code ready for you to get started with. This saves 
keystrokes, creating these files from scratch. All of these commands require a name 
to be specified, as shown in the following command:

$ php artisan make:model Cat

This will create an Eloquent model class called Cat at app/Cat.php, as well as 
a corresponding migration to create a cats table. If you do not need to create a 
migration when making a model (for example, if the table already exists), then you 
can pass the --no-migration option as follows:

$ php artisan make:model Cat --no-migration

A new model class will look like this:

<?php namespace App;
use Illuminate\Database\Eloquent\Model;
class Cat extends Model {
  //
}

From here, you can define your own properties and methods.

http://www.it-ebooks.info/


A Command-line Companion Called Artisan

[ 80 ]

The other commands may have options. The best way to check is to append --help 
after the command name, as shown in the following command:

$ php artisan make:command --help

You will see that this command has --handler and --queued options to modify the 
class stub that is created.

Rolling out your own Artisan commands
At this stage you might be thinking about writing your own bespoke commands. As 
you will see, this is surprisingly easy to do with Artisan. If you have used Symfony's 
Console component, you will be pleased to know that an Artisan command is simply 
an extension of it with a slightly more expressive syntax. This means the various 
helpers will prompt for input, show a progress bar, or format a table, are all available 
from within Artisan.

The command that we are going to write depends on the application we built in 
Chapter 3, Your First Application. It will allow you to export all cat records present in 
the database as a CSV with or without a header line. If no output file is specified, the 
command will simply dump all records onto the screen in a formatted table.

Creating the command
There are only two required steps to create a command. Firstly, you need to create 
the command itself, and then you need to register it manually.

We can make use of the following command to create a console command we  
have seen previously:

$ php artisan make:console ExportCatsCommand

This will generate a class inside app/Console/Commands. We will then need to 
register this command with the console kernel, located at app/Console/Kernel.php:

protected $commands = [ 
  'App\Console\Commands\ExportCatsCommand', 
];

If you now run php artisan, you should see a new command called command:name. 
This command does not do anything yet. However, before we start writing the 
functionality, let's briefly look at how it works internally.

http://www.it-ebooks.info/


Chapter 6

[ 81 ]

The anatomy of a command
Inside the newly created command class, you will find some code that has been 
generated for you. We will walk through the different properties and methods and 
see what their purpose is.

The first two properties are the name and description of the command. Nothing 
exciting here, this is only the information that will be shown in the command line 
when you run Artisan. The colon is used to namespace the commands, as shown here:

protected $name = 'export:cats';

protected $description = 'Export all cats';

Then you will find the fire method. This is the method that gets called when you 
run a particular command. From there, you can retrieve the arguments and options 
passed to the command, or run other methods.

public function fire()

Lastly, there are two methods that are responsible for defining the list of arguments 
or options that are passed to the command:

protected function getArguments() { /* Array of arguments */ }
protected function getOptions() { /* Array of options */ }

Each argument or option can have a name, a description, and a default value that can 
be mandatory or optional. Additionally, options can have a shortcut.

To understand the difference between arguments and options, consider the following 
command, where options are prefixed with two dashes:

$ command --option_one=value --option_two -v=1 argument_one  
  argument_two

In this example, option_two does not have a value; it is only used as a flag. The -v 
flag only has one dash since it is a shortcut. In your console commands, you'll need 
to verify any option and argument values the user provides (for example, if you're 
expecting a number, to ensure the value passed is actually a numerical value).

Arguments can be retrieved with $this->argument($arg), and options—you 
guessed it—with $this->option($opt). If these methods do not receive any 
parameters, they simply return the full list of parameters. You refer to arguments 
and options via their names, that is, $this->argument('argument_name');.

http://www.it-ebooks.info/


A Command-line Companion Called Artisan

[ 82 ]

Writing the command
We are going to start by writing a method that retrieves all cats from the database 
and returns them as an array:

protected function getCatsData() {
  $cats = App\Cat::with('breed')->get();
  foreach ($cats as $cat) {
    $output[] = [
      $cat->name,
      $cat->date_of_birth,
      $cat->breed->name,
    ];
  }
  return $output;
}

There should not be anything new here. We could have used the toArray() method, 
which turns an Eloquent collection into an array, but we would have had to flatten 
the array and exclude certain fields.

Then we need to define what arguments and options our command expects:

protected function getArguments() {
  return [
    ['file', InputArgument::OPTIONAL, 'The output file', null],
  ];
}

To specify additional arguments, just add an additional element to the array with the 
same parameters:

return [
  ['arg_one', InputArgument::OPTIONAL, 'Argument 1', null],
  ['arg_two', InputArgument::OPTIONAL, 'Argument 2', null],
];

The options are defined in a similar way:

protected function getOptions() {
  return [ 
    ['headers', 'h', InputOption::VALUE_NONE, 'Display headers?', 
    null],
  ];
}

http://www.it-ebooks.info/


Chapter 6

[ 83 ]

The last parameter is the default value that the argument and option should have if it 
is not specified. In both the cases, we want it to be null.

Lastly, we write the logic for the fire method:

public function fire() {
  $output_path = $this->argument('file');

  $headers = ['Name', 'Date of Birth', 'Breed'];
  $rows = $this->getCatsData();

  if ($output_path) {
    $handle = fopen($output_path, 'w');
      if ($this->option('headers')) {
        fputcsv($handle, $headers);
      }
      foreach ($rows as $row) {
        fputcsv($handle, $row);
      }
      fclose($handle);

  } else {
        $table = $this->getHelperSet()->get('table');
        $table->setHeaders($headers)->setRows($rows);
        $table->render($this->getOutput());
    }
}

While the bulk of this method is relatively straightforward, there are a few novelties. 
The first one is the use of the $this->info() method, which writes an informative 
message to the output. If you need to show an error message in a different color, you 
can use the $this->error() method.

Further down in the code, you will see some functions that are used to generate 
a table. As we mentioned previously, an Artisan command extends the Symfony 
console component and, therefore, inherits all of its helpers. These can be accessed 
with $this->getHelperSet(). Then it is only a matter of passing arrays for the 
header and rows of the table, and calling the render method.

To see the output of our command, we will run the following command:

$ php artisan export:cats

$ php artisan export:cats --headers file.csv

http://www.it-ebooks.info/


A Command-line Companion Called Artisan

[ 84 ]

Scheduling commands
Traditionally, if you wanted a command to run periodically (hourly, daily, weekly, 
and so on), then you would have to set up a Cron job in Linux-based environments, 
or a scheduled task in Windows environments. However, this comes with 
drawbacks. It requires the user to have server access and familiarity with creating 
such schedules. Also, in cloud-based environments, the application may not be 
hosted on a single machine, or the user might not have the privileges to create Cron 
jobs. The creators of Laravel saw this as something that could be improved, and have 
come up with an expressive way of scheduling Artisan tasks.

Your schedule is defined in app/Console/Kernel.php, and with your schedule being 
defined in this file, it has the added advantage of being present in source control.

If you open the Kernel class file, you will see a method named schedule. Laravel 
ships with one by default that serves as an example:

$schedule->command('inspire')->hourly();

If you've set up a Cron job in the past, you will see that this is instantly more 
readable than the crontab equivalent:

0 * * * * /path/to/artisan inspire

Specifying the task in code also means we can easily change the console command to 
be run without having to update the crontab entry.

By default, scheduled commands will not run. To do so, you need a single Cron job 
that runs the scheduler each and every minute:

* * * * * php /path/to/artisan schedule:run 1>> /dev/null 2>&1

When the scheduler is run, it will check for any jobs whose schedules match and then 
runs them. If no schedules match, then no commands are run in that pass.

You are free to schedule as many commands as you wish, and there are various 
methods to schedule them that are expressive and descriptive:

$schedule->command('foo')->everyFiveMinutes();
$schedule->command('bar')->everyTenMinutes();
$schedule->command('baz')->everyThirtyMinutes();
$schedule->command('qux')->daily();

You can also specify a time for a scheduled command to run:

$schedule->command('foo')->dailyAt('21:00');

http://www.it-ebooks.info/


Chapter 6

[ 85 ]

Alternatively, you can create less frequent scheduled commands:

$schedule->command('foo')->weekly();
$schedule->command('bar')->weeklyOn(1, '21:00');

The first parameter in the second example is the day, with 0 representing Sunday, 
and 1 through 6 representing Monday through Saturday, and the second parameter 
is the time, again specified in 24-hour format. You can also explicitly specify the day 
on which to run a scheduled command:

$schedule->command('foo')->mondays();
$schedule->command('foo')->tuesdays();
$schedule->command('foo')->wednesdays();
// And so on
$schedule->command('foo')->weekdays();

If you have a potentially long-running command, then you can prevent it from 
overlapping:

$schedule->command('foo')->everyFiveMinutes()  
         ->withoutOverlapping();

Along with the schedule, you can also specify the environment under which a 
scheduled command should run, as shown in the following command:

$schedule->command('foo')->weekly()->environments('production');

You could use this to run commands in a production environment, for example, 
archiving data or running a report periodically.

By default, scheduled commands won't execute if the maintenance mode is enabled. 
This behavior can be easily overridden:

$schedule->command('foo')->weekly()->evenInMaintenanceMode();

Viewing the output of scheduled commands
For some scheduled commands, you probably want to view the output somehow, 
whether that is via e-mail, logged to a file on disk, or sending a callback to a pre-
defined URL. All of these scenarios are possible in Laravel.

To send the output of a job via e-mail by using the following command:

$schedule->command('foo')->weekly() 
         ->emailOutputTo('someone@example.com');

http://www.it-ebooks.info/


A Command-line Companion Called Artisan

[ 86 ]

If you wish to write the output of a job to a file on disk, that is easy enough too:

$schedule->command('foo')->weekly()->sendOutputTo($filepath);

You can also ping a URL after a job is run:

$schedule->command('foo')->weekly()->thenPing($url);

This will execute a GET request to the specified URL, at which point you could send  
a message to your favorite chat client to notify you that the command has run.

Finally, you can chain the preceding command to send multiple notifications:

$schedule->command('foo')->weekly() 
         ->sendOutputTo($filepath) 
         ->emailOutputTo('someone@example.com');

However, note that you have to send the output to a file before it can be e-mailed if 
you wish to do both.

Summary
In this chapter, you have learned the different ways in which Artisan can assist you 
in the development, debugging, and deployment process. We have also seen how 
easy it is to build a custom Artisan command and adapt it to your own needs.

If you are relatively new to the command line, you will have had a glimpse into the 
power of command-line utilities. If, on the other hand, you are a seasoned user of the 
command line and you have written scripts with other programming languages, you 
can surely appreciate the simplicity and expressiveness of Artisan.

In the next chapter, we will take a look at the features Laravel offers us to secure our 
application, as well as authenticating and authorizing users.

http://www.it-ebooks.info/


[ 87 ]

Authentication and Security
In this chapter, we will improve the application we built in Chapter 3, Your First 
Application, by adding a simple authentication mechanism and addressing any 
security issues with the existing code base. In doing so, you will learn about:

• Configuring and using the authentication service
• Middleware and how to apply it to specific routes
• Data validation and form requests
• The most common security vulnerabilities in web applications
• How Laravel can help you write more secure code

Authenticating users
Allowing users to register and sign in is an extremely common feature in web 
applications. Yet, PHP does not dictate how it should be done, nor does it give you 
any helpers to implement it. This has led to the creation of disparate, and sometimes 
insecure, methods of authenticating users and restricting access to specific pages. In 
that respect, Laravel provides you with different tools to make these features more 
secure and easier to integrate. It does so with the help of its authentication service 
and functionality that we have not covered yet—middleware.

Creating the user model
First of all, we need to define the model that will be used to represent the users of our 
application. Laravel already provides you with sensible defaults inside config/auth.
php, where you can change the model or table that is used to store your user accounts.

http://www.it-ebooks.info/


Authentication and Security

[ 88 ]

It also comes with an existing User model inside app/User.php. For the purposes of 
this application, we are going to simplify it slightly, remove certain class variables, 
and add new methods so that it can interact with the Cat model as follows:

namespace App;

use Illuminate\Auth\Authenticatable;
use Illuminate\Database\Eloquent\Model;
use Illuminate\Auth\Passwords\CanResetPassword;
use Illuminate\Contracts\Auth\Authenticatable  
  as uthenticableContract;
use Illumunate\Contracts\Auth\CanResetPassword  
  as CanResetPasswordContract;
use App\Cat;

class User extends Model implements AuthenticatableContract,  
  CanResetPasswordContract {
  use Authenticable, CanResetPassword;
  public function cats() {
    return $this->hasMany('App\Cat');
  }
  public function owns(Cat $cat) {
    return $this->id == $cat->user_id;
  }
  public function canEdit(Cat $cat) {
    return $this->is_admin || $this->owns($cat);
  }
}

The first thing to note is that this model implements the Authenticable interface. 
Remember that an interface does not give any implementation details. It is nothing 
more than a contract that specifies the names of the methods that a class should 
define when it implements the interface. In this case, the Authenticable interface 
mandates that the following methods be implemented:

• getAuthIdentifier

• getAuthPassword

• getRememberToken

• setRememberToken

• getRememberTokenName

If you open the app/User.php file, you might wonder where these methods are. 
These methods are actually provided by the Authenticable trait. You can see the 
trait being included after the User class's opening brace:

use Authenticable, CanResetPassword;

http://www.it-ebooks.info/


Chapter 7

[ 89 ]

Traits allow the reuse of code within classes. This is to make up for a shortcoming 
of the PHP language, which does not allow multiple inheritance in classes. So, as a 
workaround, you can compose methods that may be dropped into multiple classes 
that might already be extending another base class.

In our User model, the cats() method simply defines the hasMany relationship 
with the Cat model. The last two methods will be used to check whether a given Cat 
instance is owned or is editable by the current User instance.

Finally, let's create a helper method on the User model that will allow us to check 
whether we have an administrator or not. This method will be suitably named 
isAdministrator as shown here:

public function isAdministrator()
{
  return $this->getAttribute('is_admin');
}

If using MySQL, this will return a string of either 0 or 1 (as MySQL doesn't have a 
native Boolean data type). We can, however, cast this model attribute to be a Boolean 
to make value checking a bit better. At the top of your model, add the following code:

protected $casts = [
  'is_admin' => 'boolean',
];

In this array, we define the attribute and what data type we actually want. Then, 
when we retrieve an attribute from the model, it will be cast to the specified data type.

Other data types that model attributes can be cast to are as follows:

• string

• integer

• real

• float

• double

• array

The array type can be used for columns that contain a serialized JSON string, which 
will de-serialize the data and present it as a plain PHP array.

The is_admin attribute doesn't exist in our users table currently, so let's fix that.

http://www.it-ebooks.info/


Authentication and Security

[ 90 ]

Creating the necessary database schema
As well as a User model, Laravel also comes pre-packaged with two migration files: 
one for creating the users table and the other to create the password_resets table.

By default, the user's table migration creates a table with columns for each user's 
ID, name, password, remember token, as well as the created at and updated at 
timestamps. We need to extend that table by adding a new column designating 
whether each user is an administrator of our application or not.

To do this, we can create another migration. Migrations can be used to alter existing 
tables as well as creating entirely new ones. In this instance, we're going to create a 
migration to add a Boolean column named is_admin to the users table.

Run the following command to create the migration file in database/migrations:

$ php artisan make:migration add_is_admin_column_to_users

Then change the up method as follows to contain the schema change:

public function up() {
  Schema::table('users', function(Blueprint $table) {
    $table->boolean('is_admin')->default(false) 
      ->after('password');
  }
}

We set the default value to false so that we have to explicitly set it to true for any 
users we want to be administrators, rather than every new user (and any existing 
users in the database table) automatically being granted administrator privileges  
on creation.

As with any other migration, we also have to provide the down method to revert any 
changes. As we've created a column, we need to remove it if a user decides to roll 
back the migration:

public function down() {
  Schema::table('users', function(Blueprint $table) {
    $table->dropColumn('is_admin');
  });
}

Now, we also need to update the cats database table to add a column associating it 
with a user. By following the preceding steps, we create a new schema, as follows, 
describing the change:

$ php artisan make:migration add_user_id_column_to_cats

http://www.it-ebooks.info/


Chapter 7

[ 91 ]

We then complete the methods as follows:

public function up() {
  Schema::table('cats', function(Blueprint $table) {
    $table->integer('user_id')->unsigned();
    $table->foreign('user_id')->references('id')->on('users') 
      ->onDelete('cascade');
  });
}

With the preceding code, we alter the cats table to have a user_id column that stores 
the id of the Cat owner. After creating the column, we create a foreign key constraint 
on the table so that a user_id value has to match the primary key of a record in the 
users table. Foreign keys help you to enforce the consistency of data (for example, 
you will not be able to assign Cat to a nonexistent user). Cascading deletes also means 
that when a user is deleted, their associated cat records will be deleted too; otherwise, 
the database will end up containing cats that no longer have any owners!

The code to reverse this migration will simply remove the foreign key constraint and 
the column and then drop the user_id column:

public function down() {
  Schema::table('cats', function(Blueprint $table) {
    $table->dropForeign('cats_user_id_foreign');
    $table->dropColumn('user_id');
  });
}

Next, we prepare a database seeder to create two users for our application, one of 
which will be an administrator.

Use App\User;

class UsersTableSeeder extends Seeder {
  public function run() {
    User::create([
      'username' =>'admin',
      'password' => bcrypt('hunter2'),
      'is_admin' => true, 
    ]);

    User::create([
      'username' => 'scott',
      'password' => bcrypt('tiger'),
      'is_admin' => false,
    ]);
  }
}

http://www.it-ebooks.info/


Authentication and Security

[ 92 ]

Once you have saved this code inside a new file named database/seeds/
UsersTableSeeder.php, do not forget to call it inside the main DatabaseSeeder class.

Laravel expects all passwords to be hashed with the bcrypt 
helper, which uses the Bcrypt algorithm to create a strong 
hash. You should never store passwords in cleartext or hash 
them with weak algorithms, such as md5 or sha1.

To run the migration and seed the database at the same time, enter the  
following command:

$ php artisan migrate --seed

Authentication routes and views
We have mentioned earlier that PHP has no standard way to authenticate users, but 
this is not true of Laravel. Laravel realizes that the most modern web applications will 
require users to register and log in, so it comes with controllers, routes, and views 
to facilitate this from the get-go. You can find the main authentication controller at 
app/Http/Controllers/Auth/AuthController.php. If you open the file, you will 
see that all it contains is a constructor because like the User model, it uses a trait to 
provide functionality, in this case, AuthenticatesAndRegistersUsers:

namespace App\Http\Controllers\Auth;

use App\Http\Controllers\Controller;
use Illuminate\Contracts\Auth\Guard;
use Illuminate\Contracts\Auth\Registrar;
use Illuminate\Foundation\Auth\AuthenticatesAndRegistersUsers;

class AuthController extends Controller {

  use AuthenticatesAndRegistersUsers;

  public function __construct(Guard $auth, Registrar $registrar) {
    $this->auth = $auth;
    $this->registrar = $registrar;

    $this->middleware('guest', ['except' => 'getLogout']);
  }
}

http://www.it-ebooks.info/


Chapter 7

[ 93 ]

The middleware method will apply the guest middleware to all actions in the 
controller, except the getLogout() action. We'll look at middleware in more depth 
later in this chapter.

This controller (as well as the controller used for handling password resets) can be 
found in the application's routes file:

$router->controllers([
  'auth' => 'Auth\AuthController',
  'password' => 'Auth\PasswordController',
]);

Laravel also includes two views, login.blade.php and register.blade.php, at 
resources/views/auth.

Let's look at integrating Laravel's auth views into our application. We will start by 
amending our master layout (resources/views/layouts/master.blade.php) to 
display the login link to guests and the logout link to users who are logged in. To 
check whether a visitor is logged in, we use the Auth::check() method:

<div class="container">
  <div class="page-header">
    <div class="text-right">
      @if (Auth::check())
        Logged in as 
        <strong>{{ Auth::user()->username }}</strong>
        {!! link_to('auth/logout', 'Log Out') !!}
      @else
        {!! link_to('auth/login', 'Log In') !!}
      @endif
    </div>
  @yield('header')
  </div>
  @if (Session::has('message'))
    <div class="alert alert-success">
      {{ Session::get('message') }}
    </div>
  @endif

  @if (Session::has('error'))
    <div class="alert alert-warning">
      {{ Session::get('error') }}
    </div>
  @endif
  @yield('content')
</div>

http://www.it-ebooks.info/


Authentication and Security

[ 94 ]

We can replace the login view, inside resources/views/auth/login.blade.php, 
with a simpler form:

@extends('layouts.master')
@section('header')<h2>Log In</h2>@stop
@section('main')
  {!! Form::open(['url' => 'auth/login']) !!}
  <div class="form-group">
    {!! Form::label('username', 'Username', ['class' =>  
      'control-label']) !!} 
    <div class="form-controls">
      {!! Form::text('username', null, ['class' =>  
        'form-control']) !!} 
    </div>
  </div>
  <div class="form-group">
    {!! Form::label('Password') !!}
    <div class="form-controls">
      {!! Form::password('password', ['class' =>  
      'form-control']) !!}
    </div>
  </div>
  {!! Form::submit('Log in', ['class' => 'btn btn-primary']) !!}
  {!! Form::close() !!}
@stop

We use the Blade syntax to get the raw value ({!! $value !!}) from the HTML and 
Form helpers because they return HTML mark-up, and if we were to use the default 
syntax ({{ $value }}) to render these, we'd instead get the HTML string printed to 
the screen.

Middleware
If you refer back to the AuthController, you will notice the following line in the 
constructor method:

$this->middleware('auth', ['except' => 'getLogout']);

Middleware includes classes that can be attached to requests coming into your 
application, and used to alter the results of those requests. Middleware are a 
replacement for route filters that were found in Laravel 4.

Middleware can be registered either when defining routes, or in controllers as 
mentioned earlier. The preceding example attaches the auth middleware to all 
requests that will be handled by the AuthController, except for requests to the 
getLogout method.

http://www.it-ebooks.info/


Chapter 7

[ 95 ]

Middleware classes can be found in the app/Http/Middleware directory. In 
here, you can find the default Authentication middleware class, as well as two 
others: RedirectIfAuthenticated, and VerifyCsrfToken. We can inspect the 
Authentication class to see how a middleware class works:

public function __construct(Guard $auth) {
  $this->auth = $auth;
}

public function handle($request, Closure $next) {
  if ($this->auth->guest()) {
    if ($request->ajax()) {
      return response('Unauthorized', 401);
    } else {
      return redirect()->guest('auth/login');
    }
  }
  return $next($request);
}

There are two methods: the constructor and the handle methods. In the preceding 
example, the class is checking whether the current user is authenticated (using the 
guest() method on the Guard class) and if they are a guest, returning a response if 
the request was made via AJAX, or redirecting the user to the login form. Because the 
response is returned then and there, the request will not be processed any further.

We can use this approach to not only check if users have authenticated, but also to 
check whether they are administrators. We can use the in-built Artisan generator to 
create a new middleware class as follows:

$ php artisan make:middleware IsAdministrator

This will create a new file at app/Http/Middleware/IsAdministrator.php. Like 
the Authentication class, we need the Guard implementation, so add a constructor 
that type-hints the dependency so that the service container automatically injects it:

public function __construct(Guard $auth) { 
  $this->auth = $auth; 
}

We'll also need to import the full namespace at the top of the file as follows:

use Illuminate\Contracts\Auth\Guard;

http://www.it-ebooks.info/


Authentication and Security

[ 96 ]

Now we have a Guard instance and we assign it to a class property; we can now flesh 
out the handle method as follows:

public function handle($request, \Closure $next) {
  if ( ! $this->auth->user()->isAdministrator()) {
    if ($this->request->ajax()) {
      return response('Forbidden.', 403);
    } else {
      throw new AccessDeniedHttpException;
    }
  }
}

This time, we get the current user from the Guard (which will yield a User Eloquent 
model instance). We can then call any methods on this model. In the preceding 
example, we call our isAdministrator() method, which will return a Boolean 
value as to whether the user should be treated as an administrator or not. If not—like 
the Authenticated class—we return a simple string response (and the appropriate 
HTTP status code) if the request was made via AJAX; otherwise, we throw an 
AccessDeniedHttpException. This exception is actually part of the Symfony 
HttpKernel library, so we need to import the class's full namespace at the top  
of the file:

use Symfony\Component\HttpKernel\Exception\ 
  AccessDeniedHttpException;

The final step in creating a middleware is to tell the HTTP Kernel class about it. 
You can find this file at app/Http/Kernel.php. By opening the file, you will see two 
properties defined: $middleware and $routeMiddleware. Adding the class's full 
namespace to the $middleware array would add the middleware to every request. 
We don't want to do this because if we did, no one would be able to access the login 
page as they'd be unauthenticated at this point! Instead, we want to add an entry to 
the $routeMiddleware array as follows:

protected $routeMiddleware = [
  'auth' => 'App\Core\Http\Middleware\Authenticate',
  'auth.basic' =>  
    Illuminate\Auth\Middleware\AuthenticateWithBasicAuth',
  'guest' =>  
    'App\Core\Http\Middleware\RedirectIfAuthenticated',
  'admin' => 'App\Http\Middleware\IsAdministrator',
];

http://www.it-ebooks.info/


Chapter 7

[ 97 ]

The key in the array is what we can then use on routes and in controllers, and the 
corresponding class will be applied when requesting the specified resource.

The following is an example applying it to a route:

Route::get('admin/dashboard', [
  'middleware' => ['auth', 'admin'],
  'uses' => '\Admin\DashboardController@index',
]);

As you can see, you can specify multiple middleware classes to apply to a single 
request. In the previous route example, first the Authenticated middleware class 
will be called; if all is good (and the user wasn't redirected to the login page), it will 
then be passed to the IsAdministrator middleware class, which will check whether 
the currently logged in user is an administrator.

Validating user input
Our application still has a major flaw—it does not perform any validation on the 
data submitted by users. While you might end up with a series of conditions with 
regular expressions here and there if you were to do this in plain PHP, Laravel offers 
a far more straightforward and robust way to achieve this.

Validation is performed by passing an array with the input data and an array with 
the validation rules to the Validator::make($data, $rules) method. In the case 
of our application, here are the rules we could write:

$rules = [
  'name' => 'required|min:3', // Required, > 3 characters
  'date_of_birth' => ['required, 'date'] // Must be a date
];

Multiple validation rules can be separated by either pipes or passed as an array 
(examples of both are shown in the preceding code). Laravel provides over 30 
different validation rules, and they are all documented in here:

http://laravel.com/docs/validation#available-validation-rules

Here is how we will check these rules with the data submitted in the form:

$validator = Validator::make($rules, Input::all());

http://laravel.com/docs/validation#available-validation-rules
http://www.it-ebooks.info/


Authentication and Security

[ 98 ]

You can then make your application act based on the output of $validator->fails(). 
If this method call returns true, you will retrieve an object containing all error messages 
with $validator->messages(). If you were validating data in a controller action, you 
could attach this object to a redirection that sends the user back to the form:

return redirect()
  ->back()
  ->with('errors, $validatior->messages());

Since each field can have zero or more validation errors, you will use a condition and 
a loop with the following methods to display those messages:

if ($errors->has('name')) {
  foreach ($errors->get('name') as $error) {
    echo $error;
  }
}

You might also use a tool such as Ardent, which extends Eloquent and lets you to 
write validation rules directly inside the model. You can download Ardent from the 
following link:

https://github.com/laravelbook/ardent

Form requests
In Laravel 4, you were free to place validation anywhere you wanted. This led to 
developers implementing validation in a myriad of ways, including in the controller 
or as a validation service. In version 5, Laravel introduced a way of standardizing 
how validation was performed on submitted data, via form requests.

Form requests are classes that wrap the standard Request class in Laravel, but 
implements a trait named ValidatesWhenResolved. This trait contains a Validator 
instance, and uses rules you define in your form request class to validate the data in 
the request. If the validator passes, then the controller action it was applied to will be 
executed as normal. If the validator fails, then the user is redirected to the previous 
URL with the errors in the session. This means you don't need to define validation 
routines in your controller actions, and you can even re-use them across controller 
actions where the same data can be submitted but in different scenarios.

Let's create a form request for saving a cat's details. Again, Artisan comes with a 
generator to create a new form request class for us:

$ php artisan make:request SaveCatRequest

https://github.com/laravelbook/ardent
http://www.it-ebooks.info/


Chapter 7

[ 99 ]

This will create the file at app/Http/Requests/SaveCatRequest.php. Inside the file, 
you will find two methods: authorize and rules.

Before validation is performed, the form request authorizes the current request. The 
implementation detail is up to you. You might want the current user to be logged 
in, or to be an administrator. You can define that logic in this method. By default, it 
simply returns false. This isn't ideal as it means no one would be able to perform 
this request. Since we're handling user authentication via middleware, we can simply 
switch this to return true instead.

The second method, rules, is where we supply the array of validation rules to be 
fed to the Validator instance. Taking the preceding Validator example, this can be 
changed to the following code:

public function rules() {
  return [
    'name' => 'required|min:3',
    'date_of_birth' => 'required|date',
  ];
}

The reason rules are defined in a method and not simply as a class property is 
to allow for conditional validation. There may be times when you only want to 
validate a certain field, for example, if a value is provided in another field. Imagine 
a checkout form in an e-commerce website that asks a user for a billing address and 
an optional shipping address if it's different from the billing address. Most online 
stores will have a checkbox that when checked, will display the fields to enter the 
shipping address. If we were to create the validation for this scenario, then it may 
look something like the following code:

public function rules() {
  $rules = [
    'billing_address' => 'required',
  ];
  if ($request->has('shipping_address_different') {
    $rules['shipping_address'] = 'required';
  }
  return $rules;
}

The preceding example checks whether a field with shipping_address_different 
(the checkbox) is present and, if so, appends a validation rule to specify that 
shipping_address is required. As you can see, this makes validation in form 
requests very powerful.

http://www.it-ebooks.info/


Authentication and Security

[ 100 ]

Form request classes are instantiated by specifying them as a parameter to the 
controller action you want them to apply. In our case of saving cats, this will apply to 
both the create and update methods in our CatsController class:

public function create(SaveCatRequest $request) {
  // method body
}

public function update(SaveCatRequest $request) {
  // method body
}

Now, whenever either of these actions is requested, the SaveCatRequest class will 
first be called and checked to see whether the data is valid. This means our controller 
methods can stay lean, and only deal with the actual persisting of the new data to  
the database.

Securing your application
Before you deploy your application in a hostile environment, full of merciless bots 
and malicious users, there are a number of security considerations that you must 
keep in mind. In this section, we are going to cover several common attack vectors 
for web applications and learn about how Laravel protects your application against 
them. Since a framework cannot protect you against everything, we will also look at 
the common pitfalls to avoid.

Cross-site request forgery
Cross-site request forgery (CSRF) attacks are conducted by targeting a URL that has 
side effects (that is, it is performing an action and not just displaying information). 
We have already partly mitigated CSRF attacks by avoiding the use of GET for routes 
that have permanent effects such as DELETE/cats/1, since it is not reachable from a 
simple link or embeddable in an <iframe> element. However, if an attacker is able 
to send his victim to a page that he controls, he can easily make the victim submit a 
form to the target domain. If the victim is already logged in on the target domain, the 
application would have no way of verifying the authenticity of the request.

The most efficient countermeasure is to issue a token whenever a form is 
displayed and then check that token when the form is submitted. Form::open 
and Form::model both automatically insert a hidden _token input element, and 
middleware is applied to check the supplied token on incoming requests to see 
whether it matches the expected value.

http://www.it-ebooks.info/


Chapter 7

[ 101 ]

Escaping content to prevent cross-site 
scripting (XSS)
Cross-site scripting (XSS) attacks happen when attackers are able to place client-side 
JavaScript code in a page viewed by other users. In our application, assuming that 
the name of our cat is not escaped, if we enter the following snippet of code as the 
value for the name, every visitor will be greeted with an alert message everywhere 
the name of our cat is displayed:

Evil Cat <script>alert('Meow!')</script>

While this is a rather harmless script, it would be very easy to insert a longer script 
or link to an external script that steals the session or cookie values. To avoid this kind 
of attack, you should never trust any user-submitted data or escape any dangerous 
characters. You should favor the double-brace syntax ({{ $value }}) in your Blade 
templates, and only use the {!! $value !!} syntax, where you're certain the data is 
safe to display in its raw format.

Avoiding SQL injection
An SQL injection vulnerability exists when an application inserts arbitrary and 
unfiltered user input in an SQL query. This user input can come from cookies, server 
variables, or, most frequently, through GET or POST input values. These attacks are 
conducted to access or modify data that is not normally available and sometimes to 
disturb the normal functioning of the application.

By default, Laravel will protect you against this type of attack since both the query 
builder and Eloquent use PHP Data Objects (PDO) class behind the scenes. PDO 
uses prepared statements, which allows you to safely pass any parameters without 
having to escape and sanitize them.

In some cases, you might want to write more complex or database-specific queries in 
SQL. This is possible using the DB::raw method. When using this method, you must 
be very careful not to create any vulnerable queries like the following one:

Route::get('sql-injection-vulnerable', function() {
  $name = "'Bobby' OR 1=1";
  return DB::select( 
    DB::raw("SELECT * FROM cats WHERE name = $name"));
});

http://www.it-ebooks.info/


Authentication and Security

[ 102 ]

To protect this query from SQL injection, you need to rewrite it by replacing the 
parameters with question marks in the query and then pass the values in an array as 
a second argument to the raw method:

Route::get('sql-injection-not-vulnerable', function() {
  $name = "'Bobby' OR 1=1";
  return DB::select(
    DB::raw("SELECT * FROM cats WHERE name = ?", [$name]));
});

The preceding query is known as a prepared statement, as we define the query and 
what parameters are expected, and any harmful parameters that would alter the 
query or data in the database in an unintended way are sanitized.

Using mass assignment with care
In Chapter 3, Your First Application, we used mass assignment, a convenient feature 
that allows us to create a model based on the form input without having to assign 
each value individually.

This feature should, however, be used carefully. A malicious user could alter the 
form on the client side and add a new input to it:

<input name="is_admin" value="1" />

Then, when the form is submitted, we attempt to create a new model using the 
following code:

Cat::create(Request::all())

Thanks to the $fillable array, which defines a white list of fields that can be filled 
through mass assignment, this method call will throw a mass assignment exception.

It is also possible to do the opposite and define a blacklist with the $guarded 
property. However, this option can be potentially dangerous since you might forget 
to update it when adding new fields to the model.

Cookies – secure by default
Laravel makes it very easy to create, read, and expire cookies with its Cookie class.

You will also be pleased to know that all cookies are automatically signed and 
encrypted. This means that if they are tampered with, Laravel will automatically 
discard them. This also means that you will not be able to read them from the client 
side using JavaScript.

http://www.it-ebooks.info/


Chapter 7

[ 103 ]

Forcing HTTPS when exchanging sensitive 
data
If you are serving your application over HTTP, you need to bear in mind that every 
bit of information that is exchanged, including passwords, is sent in cleartext. An 
attacker on the same network could therefore intercept private information, such as 
session variables, and log in as the victim. The only way we can prevent this is to use 
HTTPS. If you already have an SSL certificate installed on your web server, Laravel 
comes with a number of helpers to switch between http:// and https:// and 
restrict access to certain routes. You can, for instance, define an https filter that will 
redirect the visitor to the secure route as shown in the following code snippet:

Route::filter('https', function() { 
  if ( ! Request::secure()) 
    return Redirect::secure(URI::current()); 
});

Summary
In this chapter, we learned how to make use of many of Laravel's tools to add 
authentication features to a website, validate data, and avoid common security 
problems. You should now have all the necessary information to create a Laravel 
application, test them, and secure them.

In the Appendix, An Arsenal of Tools, you will be presented with a handy reference for 
many of the other helpful features that Laravel offers out of the box.

http://www.it-ebooks.info/


http://www.it-ebooks.info/


[ 105 ]

An Arsenal of Tools
Laravel comes with several utilities that help you perform specific tasks, such as 
sending e-mails, queuing functions, and manipulating files. It ships with a ton of 
handy utilities that it uses internally; the good news is that you can also use them in 
your applications. This chapter will present the most useful utilities so you do not 
end up rewriting a function that already exists in the framework!

The structure of this chapter is partly based on Jesse O'Brien's cheat sheet, which 
is accessible at http://cheats.jesse-obrien.ca/. The examples are based on 
Laravel's tests as well as its official documentation and API.

Array helpers
Arrays are the bread and butter of any web application that deals with data. PHP 
already offers nearly 80 functions to perform various operations on arrays, and 
Laravel complements them with a handful of practical functions that are inspired by 
certain functions found in Python and Ruby.

Several of Laravel's classes, including Eloquent collections, 
implement the PHP ArrayAccess interface. This means 
that you can use them like a normal array in your code and, 
for instance, iterate over the items in a foreach loop or use 
them with the array functions described here.

Most of the functions support a dot notation to refer to nested values, which is similar 
to JavaScript objects. For example, rather than writing $arr['foo']['bar']['baz'], 
you can use the array_get helper and write array_get($arr, 'foo.bar.baz');.

http://cheats.jesse-obrien.ca/
http://www.it-ebooks.info/


An Arsenal of Tools

[ 106 ]

In the following usage examples, we will use three dummy arrays and assume that 
they are reset for each example:

$associative = [
  'foo' => 1,
  'bar' => 2,
];
$multidimensional = [
  'foo' => [
      'bar' => 123,
  ],
];
$list_key_values = [
  ['foo' => 'bar'], 
  ['foo' => 'baz'],
];

The usage examples of array helpers
We will now take a look at how we can use Laravel's array helper functions to extract 
and manipulate the values of those arrays:

• To retrieve a value with a fallback value if the key does not exist, we use the 
array_get function as follows:
array_get($multidimensional, 'foo.bar', 'default');
// Returns 123

This is helpful if you are referencing an array key that may or may not exist 
(that is, in an array of request data). If the key does not exist, then the default 
value will be returned instead.

• To remove a value from an array using the dot notation, we use the  
array_forget function as follows:
array_forget($multidimensional, 'foo.bar');
// $multidimensional == ['foo' => []];

• To remove a value from an array and return it, we use the array_pull 
function as follows:
array_pull($multidimensional, 'foo.bar');
// Returns 123 and removes the value from the array

• To set a nested value using the dot notation, we use the array_set function 
as follows:
array_set($multidimensional, 'foo.baz', '456');
// $multidimensional == ['foo' => ['bar' =>  
  123, 'baz' => '456']];

http://www.it-ebooks.info/


Appendix

[ 107 ]

• To flatten a multidimensional associative array, we use the array_dot 
function as follows:
array_dot($multidimensional);
// Returns ['foo.bar' => 123];
array_dot($list_key_values);
// Returns ['0.foo' => 'bar', '1.foo' => 'baz'];

• To return all of the keys and their values from the array except for the ones 
that are specified, we use the array_except function as follows:
array_except($associative, ['foo']);
// Returns ['bar' => 2];

• To only extract some keys from an array, we use the array_only function as 
follows:
array_only($associative, ['bar']);
// Returns ['bar' => 2];

• To return a flattened array containing all of the nested values (the keys are 
dropped), we use the array_fetch function as follows:
array_fetch($list_key_values, 'foo');
// Returns ['bar', 'baz'];

• To iterate over the array and return the first value for which the closure 
returns true, we use the array_first function as follows:
array_first($associative, function($key, $value) {
   return $key == 'foo';
});
// Returns 1

• To generate a one-dimensional array containing only the values that are found 
in a multidimensional array, we use the array_flatten function as follows:
array_flatten($multidimensional);
// Returns [123]

• To extract an array of values from a list of key-value pairs, we use the  
array_pluck function as follows:
array_pluck($list_key_values, 'foo');
// Returns ['bar', 'baz'];

• To get the first or last item of an array (this also works with the values 
returned by functions), we use the head and last functions as follows:
head($array); // Aliases to reset($array)
last($array); // Aliases to end($array)

http://www.it-ebooks.info/


An Arsenal of Tools

[ 108 ]

String and text manipulation
The string manipulation functions are found in the Illuminate\Support namespace 
and are callable on the Str object.

Most of the functions also have shorter snake_case aliases. For example, the 
Str::endsWith() method is identical to the global ends_with() function. We are 
free to use whichever one we prefer in our application.

Boolean functions
The following functions return the true or false values:

• The is method checks whether a value matches a pattern. The asterisk can be 
used as a wildcard character as shown here:
Str::is('projects/*', 'projects/php/'); // Returns true

• The contains method, as shown in the following code, checks whether a 
string contains a given substring:
Str::contains('Getting Started With Laravel', 'Python');
// returns false

• The startsWith and endsWith methods, as shown in the following code, 
check whether a string starts or ends with one or more substrings:
Str::startsWith('.gitignore', '.git'); // Returns true
Str::endsWith('index.php', ['html', 'php']); //  
  Returns true

As you can see from the preceding examples, these methods are handy for validation 
filenames and similar data.

Transformation functions
In some cases, you need to transform a string before displaying it to the user or using 
it in a URL. Laravel provides the following helpers to achieve this:

• This function generates a URL-friendly string:
Str::slug('A/B testing is fun!');
// Returns "ab-testing-is-fun"

• This function generates a title where every word is capitalized:
Str::title('getting started with laravel');
// Returns 'Getting Started With Laravel'

http://www.it-ebooks.info/


Appendix

[ 109 ]

• This function caps a string with an instance of a given character:
Str::finish('/one/trailing/slash', '/');
Str::finish('/one/trailing/slash/', '/');
// Both will return '/one/trailing/slash/'

• This function limits the number of characters in a string:
Str::limit($value, $limit = 100, $end = '...')

• This function limits the number of words in a string:
Str::words($value, $words = 100, $end = '...')

Inflection functions
The following functions help you find out the plural or singular form of a word, even 
if it is irregular:

• This function finds out the plural form of a word:
Str::plural('cat'); 
// Returns 'cats' 
Str::plural('fish');
// Returns 'fish' 
Str::plural('monkey'); 
// Returns 'monkeys'

• This function finds out the singular form of a word:
Str::singular('elves');
// Returns 'elf'

Dealing with files
Laravel 5 includes the excellent Flysystem project for interacting with files both in 
the application filesystem, as well as popular cloud-based storage solutions such 
as Amazon Simple Storage Service (Amazon S3) and Rackspace. Filesystems are 
configured as disks in the config/filesystems.php file. You can then use a consistent 
API to manage files, whether they are located locally or in an external cloud store.

Calling methods directly on the Storage façade will call those methods on the 
default disk as follows:

Storage::exists('foo.txt');

http://www.it-ebooks.info/


An Arsenal of Tools

[ 110 ]

You can also explicitly specify the disk to perform actions on, in case you have more 
than one disk configured, as follows:

Storage::disk('local')->exists('foo.txt');

You can read and write data to files as follows:

Storage::put('foo.txt', $contents);
$contents = Storage::get('foo.txt');

You can also prepend or append data instead as follows:

Storage::prepend('foo.txt', 'Text to prepend.');
Storage::append('foo.txt', 'Text to append.');

You can copy and move files with the aptly-named methods as follows:

Storage::copy($source, $destination);
Storage::move($source, $destination);

And you can also delete files, either one at a time or multiple files in one go, by 
supplying an array of files to delete, as shown in the following code:

Storage::delete('foo.txt');
Storage::delete(['foo.txt', 'bar.txt']);

There are also various other helpful methods that allow you to retrieve useful 
information about a file as follows:

Storage::size('foo.txt');
Storage::lastModified('foo.txt');

Apart from working with files, you can work with directories. To list all files within a 
particular directory use the following code:

Storage::files('path/to/directory');

The preceding code will only list files in the current directory. If you wanted to list 
all files recursively (that is, files in the current directory and any subdirectories), then 
you can use the allFiles method as follows:

Storage::allFiles('path/to/directory');

You can create directories as follows:

Storage::makeDirectory('path/to/directory');

And you can also delete directories as follows:

Storage::deleteDirectory('path/to/directory');

http://www.it-ebooks.info/


Appendix

[ 111 ]

File uploads
Handling file uploads is easy in Laravel 5. The first step is to create a form that will 
send files when submitted:

{!! Form::open(['files' => true) !!}

This will set the enctype attribute to multipart/form-data. You then need an 
HTML file input:

{!! Form::file('avatar') !!}

On submission, you can access the file from the Request object in your controller 
actions as follows:

public function store(Request $request) 
{ 
  $file = $request->file('avatar'); 
}

From here, you will normally move the file to a directory of your choice:

public function store(Request $request)
{
  $file = $request->file('avatar');
  $file->move(storage_path('uploads/avatars'));
}

In the preceding example, $file is an instance of the Symfony\Component\
HttpFoundation\File\UploadedFile class, which provides a number of handy 
methods for interacting with the uploaded file.

You can get the full path to the file as follows:

$path = $request->file('avatar')->getRealPath();

You can get the name of the file as uploaded by the user as follows:

$name = $request->file('avatar')->getClientOriginalName();

You can also retrieve just the extension of the original file as follows:

$ext = $request->file('avatar')->getClientOriginalExtension();

http://www.it-ebooks.info/


An Arsenal of Tools

[ 112 ]

Sending e-mails
Laravel's Mail class extends the popular Swift Mailer package, which makes sending 
e-mails a breeze. The e-mail templates are loaded in the same way as views, which 
means you can use the Blade syntax and inject data into your templates:

• To inject some data into a template located inside resources/views/email/
view.blade.php, we use the following function:
Mail::send('email.view', $data, function($message) {});

• To send both an HTML and a plain text version, we use the following 
function:
Mail::send(array('html.view', 'text.view'), $data,  
$callback);

• To delay the e-mail by 5 minutes (this requires a queue), we use the  
following function:
Mail::later(5, 'email.view', $data, function($message) {});

Inside the $callback closure that receives the message object, we can call the 
following methods to alter the message that is to be sent:

• $message->subject('Welcome to the Jungle');

• $message->from('email@example.com', 'Mr. Example');

• $message->to('email@example.com', 'Mr. Example');

Some of the less common methods include:

• $message->sender('email@example.com', 'Mr. Example');

• $message->returnPath('email@example.com');

• $message->cc('email@example.com', 'Mr. Example');

• $message->bcc('email@example.com', 'Mr. Example');

• $message->replyTo('email@example.com', 'Mr. Example');

• $message->priority(2);

To attach or embed files, you can use the following methods:

• $message->attach('path/to/attachment.txt');

• $message->embed('path/to/attachment.jpg');

http://www.it-ebooks.info/


Appendix

[ 113 ]

If you already have the data in memory, and you do not want to create additional 
files, you can use either the attachData or the embedData method as follows:

• $message->attachData($data, 'attachment.txt');

• $message->embedData($data, 'attachment.jpg');

Embedding is generally done with image files, and you can use either the embed 
or the embedData method directly inside the body of a message, as shown in the 
following code snippet:

<p>Product Screenshot:</p>
<p>{!! $message->embed('screenshot.jpg') !!}</p>

Easier date and time handling with 
Carbon
Laravel bundles Carbon (https://github.com/briannesbitt/Carbon), which 
extends and augments PHP's native DateTime object with more expressive 
methods. Laravel uses it mainly to provide more expressive methods on the date 
and time properties (created_at, updated_at, and deleted_at) of an Eloquent 
object. However, since the library is already there, it would be a shame not to use it 
elsewhere in the code of your application.

Instantiating Carbon objects
Carbon objects are meant to be instantiated like normal DateTime objects. They do, 
however, support a handful of more expressive methods:

• Carbon objects can be instantiated using the default constructor that will use 
the current date and time as follows:

 ° $now = new Carbon();

• They can be instantiated using the current date and time in a given timezone 
as follows:

 ° $jetzt = new Carbon('Europe/Berlin');

• They can be instantiated using expressive methods as follows:
 ° $yesterday = Carbon::yesterday();

 ° $demain = Carbon::tomorrow('Europe/Paris');

https://github.com/briannesbitt/Carbon
http://www.it-ebooks.info/


An Arsenal of Tools

[ 114 ]

• They can be instantiated using exact parameters as follows:
 ° Carbon::createFromDate($year, $month, $day, $tz);

 ° Carbon::createFromTime($hour, $minute, $second, $tz);

 ° Carbon::create($year, $month, $day, $hour, $minute, 
$second, $tz);

Outputting user-friendly timestamps
We can generate human-readable, relative timestamps such as 5 minutes ago, last 
week, or in a year with the diffForHumans() method as follows:

$post = App\Post::find(123);
echo $post->created_at->diffForHumans(); 

Boolean methods
Carbon also provides a handful of simple and expressive methods that will come in 
handy in your controllers and views:

• $date->isWeekday();

• $date->isWeekend();

• $date->isYesterday();

• $date->isToday();

• $date->isTomorrow();

• $date->isFuture();

• $date->isPast();

• $date->isLeapYear();

Carbon for Eloquent DateTime properties
To be able to call Carbon's methods on attributes stored as DATE or DATETIME types in 
the database, you need to list them in a $dates property in the model:

class Post extends Model {
  // ...
  protected $dates = [ 
    'published_at',
    'deleted_at', 
  ];
}

You don't need to include created_at or updated_at, as these are automatically 
treated as dates.

http://www.it-ebooks.info/


Appendix

[ 115 ]

Don't wait any longer with queues
Queues allow you to defer the execution of functions without blocking the script. 
They can be used to run all sorts of functions, from e-mailing a large number of users 
to generating PDF reports.

Laravel 5 is compatible with the following queue drivers:

• Beanstalkd, with the pda/pheanstalk package
• Amazon SQS, with the aws/aws-sdk-php package
• IronMQ, with the iron-io/iron_mq package

Each queue system has its advantages. Beanstalkd can be installed on your own 
server; Amazon SQS might be more cost-effective and require less maintenance, as 
will IronMQ, which is also cloud-based. The latter also lets you set up push queues, 
which are great if you cannot run background jobs on your server.

Creating a command and pushing it onto  
the queue
Jobs come in the form of commands. Commands can be either self-handling or 
not. In the latter case, a corresponding handler class would take the data from the 
command class and then act upon it.

Command classes reside in the app/Commands directory, and command handler 
classes can be found in the app/Handlers/Commands directory. Classes for a 
command and its handler can be generated with an Artisan command as follows:

$ php artisan make:command CommandName --handler --queued

The --handler option tells Artisan to create a handler class (omitting this option 
would create a self-handling command class only), and the --queued option 
designates that this should be added to the queue, instead of being handled 
synchronously.

You can then use the Queue façade to add the command to the queue:

Queue::push(new SendConfirmationEmail($order));

Alternatively, you can dispatch commands using the command bus. The command 
bus is set up by default in controllers using the DispatchesCommands trait. This 
means in your controller actions you could use the dispatch method:

public function purchase(Product $product)
{

http://www.it-ebooks.info/


An Arsenal of Tools

[ 116 ]

  // Create order
  $this->dispatch(new SendConfirmationEmail($order));
}

Commands are simple classes that contain the data needed to execute an action—the 
handler then performs the actual processing at a later stage using the data provided 
by the command. An example may be sending a confirmation e-mail after an order is 
placed. The command for this will look like the following:

<?php namespace App\Commands;

use App\Order;
use Illuminate\Contracts\Queue\ShouldBeQueued; 
use Illuminate\Queue\InteractsBeQueued;
use Illuminate\Queue\SerializesModels; 

class SendConfirmationEmail extends Command implements  
  ShouldBeQueued {

  use InteractsWithQueue, SerializesModels;

  public $order;

  public function __construct(Order $order) {
    $this->order = $order;
  }
}

The handler—when executed by the queue—will then perform the actual sending 
of the e-mail, passing the order to the e-mail template to display the details of the 
customer's purchase as follows:

<?php namespace App\Handlers\Commands;

use App\Commands\SendConfirmationEmail;
use Illuminate\Contracts\Mail\Mailer;
use Illuminate\Queue\InteractsWithQueue;

class SendConfirmationEmailHandler {

  public function __construct(Mailer $mail) {
    $this->mail = $mail;
  }

  public function handle(SendConfirmationEmail $command) {
    $order = $command->order;
    $data = compact('order');
    $this->mail->send('emails.order.confirmation', $data,  
      function($message) use ($order) {

http://www.it-ebooks.info/


Appendix

[ 117 ]

      $message->subject('Your order confirmation');
      $message->to(
        $order->customer->email,
        $order->customer->name
      );
    });
  }
}

As command handlers are resolved via the service container, we can type-hint 
dependencies. In the preceding case, we need the mailer service, so we type-hint the 
contract to get an implementation. We can then use the mailer to send an e-mail to 
the customer using the order data received from the command class.

The app/Commands directory will be renamed app/Jobs 
from Laravel 5.1 to indicate it is primarily for queued jobs.

Listening to a queue and executing jobs
The following are the functions used for listening to a queue and executing jobs:

• We can listen to the default queue as follows:
$ php artisan queue:listen

• We can specify the connection on which to listen as follows:
$ php artisan queue:listen connection

• We can specify multiple connections in the order of their priority as follows:
$ php artisan queue:listen important,not-so-important

The queue:listen command has to run in the background in order to process the 
jobs as they arrive from the queue. To make sure that it runs permanently, you have 
to use a process control system such as forever (https://github.com/nodejitsu/
forever) or supervisor (http://supervisord.org/).

Getting notified when a job fails
To get notified when a job fails, we use the following functions and commands:

• The following event listener is used for finding the failed jobs:
Queue::failing(function($job, $data) {
  // Send email notification
});

https://github.com/nodejitsu/forever
https://github.com/nodejitsu/forever
http://supervisord.org/
http://www.it-ebooks.info/


An Arsenal of Tools

[ 118 ]

• Any of the failed jobs can be stored in a database table and viewed with the 
following commands:
$ php artisan queue:failed-table // Create the table 
$ php artisan queue:failed // View the failed jobs

Queues without background processes
Push queues do not require a background process but they only work with the iron.
io driver. Push queues will call an endpoint in your application when a job is received, 
rather than to a queue that is handled by a constantly-running worker process. This 
is handy if you do not have the ability to define the processes, which run on your 
application's server (such as is the case on shared hosting packages). After signing up 
for an account on iron.io and adding your credentials to app/config/queue.php, you 
use them by defining a POST route that receives all the incoming jobs. This route calls 
Queue::marshal(), which is the method responsible for firing the correct job handler:

Route::post('queue/receive', function() {
  return Queue::marshal();
});

This route then needs to be registered as a subscriber with the queue:subscribe 
command:

$ php artisan queue:subscribe queue_name  
  http://yourapp.example.com/queue/receive

Once the URL is subscribed on http://iron.io/, any newly created jobs with 
Queue::push() will be sent from Iron back to your application via a POST request.

Where to go next?
The following is a list of the resources and sites that you can visit to keep up with the 
latest changes in Laravel:

• http://twitter.com/laravelphp on Twitter for regular updates
• http://laravel.com/docs for the complete documentation
• http://laravel.com/api for the browsable API
• http://laracasts.com for screencast tutorials

http://iron.io/
http://twitter.com/laravelphp
http://laravel.com/docs
http://laravel.com/api
http://laracasts.com
http://www.it-ebooks.info/


[ 119 ]

Index
A
actions  43
application

application namespace, setting  26
attributes  24
engine, turning off  77
entities  24
fine-tuning  78
generators  79
inspecting  76, 77
interacting with  76, 77
internals, fiddling with  77
planning  24
relationships  24
route  24, 25
routes, caching  78
starting  25

application namespace
setting  26

application, securing
about  100
cookies  102
Cross-site request forgery (CSRF)  100
Cross-site scripting (XSS) attacks  101
HTTPS, forcing on sensitive  

data exchange  103
mass assignment, using  102
SQL injection, avoiding  101

Ardent
URL  98

array helpers
about  105
usage, examples  106, 107

Artisan Anywhere
URL  76

Artisan commands
anatomy  81
creating  80
rolling out  80
scheduling  84
writing  82, 83

assertions  68, 69
attributes  24

B
Bcrypt algorithm  92
Blade

mastering  34
master view, creating  34-36

boolean functions  108
boolean methods, Carbon  114
Bootstrap CSS framework

URL  35

C
Carbon

about  49
boolean methods  114
date, handling  113
for Eloquent DateTime properties  114
objects, instantiating  113, 114
time, handling  113
URL  50, 113
user-friendly timestamps, outputting  114

cats
adding  39-43
deleting  39-43
editing  39-43

closure-based routes  43

http://www.it-ebooks.info/


[ 120 ]

collections
about  62
key existence, checking  63, 64

command-line interface (CLI)
working with  16

commands
scheduled commands output,  

viewing  85, 86
scheduling  84, 85

Composer  15
convention over configuration  47
Create-Retrieve-Update-Delete (CRUD)  24
Cross-site request forgery (CSRF)  100
Cross-site scripting (XSS) attacks  101

D
data

deleted models, including in results  53
deleting  52
hard-deletes  52, 53
retrieving  48-50
saving  50, 51
soft-deletes  52, 53
storing, in pivot table  58

database
Eloquent models, creating  29, 30
preparing  28, 29
schema, building  30-33
seeding  33, 34

DomCrawler component
URL  74

dot notation  105

E
Eloquent conventions

about  47, 48
URL  64

Eloquent models
creating  29, 30

e-mails
sending  112, 113

end-to-end testing
about  70
batteries  71
database, testing with  72, 73
framework assertions  71

rendered views, inspecting  74
users, impersonating  72

entities  24
exceptions

expecting  69

F
files

dealing with  109, 110
uploads  111

flash data  35
Flysystem project  109
foreign key  33
form requests  98, 99
frameworks

need for  2

H
has-many-through relationship  58
homemade tools

limitations  2
Homestead

about  17
databases, connecting to  21
installing  17-20
usage  20
websites, adding  20, 21

HTTP exceptions
handling  27

HTTPS
forcing, on sensitive data exchange  103

HTTP status codes
URL  27

I
inflection functions  109

J
Jesse O'Brien's cheat sheet

URL  105

L
Laravel

conventions  8

http://www.it-ebooks.info/


[ 121 ]

creating  21, 22
exploring  12, 13
features  5-7
modifications  75
naming  8
resources, URL  118
responsibilities  8
service container  12
structure  10, 12
to rescue  2
version changes  13, 14

Laravel 4.3  13
Laravel 5  13

M
MAMP  17
many-to-many polymorphic relations  60
many-to-many relationship  56
mass assignment

about  30, 51, 52
managing  102

master template  34
master view

creating  34-36
middleware  94-97
model events

about  61
event listeners, registering  61, 62
model observers  62

N
Node Package Manager (npm)  15

O
one-to-many relationship  55
one-to-one relationship  55
overloading  43

P
page, cat

displaying  38
PHP applications

developing, approach  3

embracing  4, 5
HTTP foundation  3

PHP Extension and Application  
Repository (PEAR)  16

PHPUnit
URL  69

Plain Old PHP Objects (POPOs)  62
polymorphic relations  59

Q
query scopes  54
queues

about  115
command, creating  115, 116
job failure, notifications  117
jobs, executing  117
listening to  117
without background processes  118

R
Read-Eval-Print Loop (REPL)  77
redirections

performing  27, 28
relationships

about  24, 55
has-many-through relationship  58
many-to-many polymorphic relations  60
many-to-many relationship  56, 57
one-to-one relationship  55
polymorphic relations  59

resource controllers  45
route-model binding  38
routes

about  24, 36
authenticating  92-94
HTTP exceptions, handling  27
moving, to controllers  43, 44
overview page  36-38
parameters, restricting  27
redirections, performing  27, 28
route parameters, restricting  27
views, returning  28
writing  26

http://www.it-ebooks.info/


[ 122 ]

S
Silex  43
Slim  43
SQL injection

avoiding  101
string manipulation  108

T
testing

benefits  66
tests

anatomy  66, 67
benefits  66
tasks  66

text manipulation  108
transformation functions  108

U
unit testing

assertions  68, 69
exceptions, expecting  69
interdependent classes in isolation,  

testing  70
objects, cleaning up  69
scene, preparing  69
with PHPUnit  68

user input, validating
form requests  98, 99

users, authenticating
about  87
database schema, creating  90-92
middleware  94-96
routes, authenticating  92-94
user input, validating  97, 98
user model, creating  87-89
views, authenticating  92-94

V
Vagrant

URL  18
validation rules

URL  97
view composers  40
views

authenticating  92-94
returning  28

VirtualBox
URL  17

Virtual Machines (VMs)  17

W
WampServer  17

http://www.it-ebooks.info/


Thank you for buying  
Laravel 5 Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective 
MySQL Management, in April 2004, and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order  
to continue its focus on specialization. This book is part of the Packt Open Source brand,  
home to books published on software built around open source licenses, and offering 
information to anybody from advanced developers to budding web designers. The Open 
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty 
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would 
like to discuss it first before writing a formal book proposal, then please contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

www.packtpub.com
http://www.it-ebooks.info/


Getting Started with Laravel 4
ISBN: 978-1-78328-703-1              Paperback: 128 pages

Discover Laravel – one of the most expressive, robust, 
and flexible PHP web application frameworks around

1. Provides a concise introduction to all the 
concepts needed to get started with Laravel.

2. Walks through the different steps involved in 
creating a complete Laravel application.

3. Gives an overview of Laravel's advanced 
features that can be used when applications 
grow in complexity.

4. Learn how to build structured, more 
maintainable, and more secure applications 
with less code by using Laravel.

Learning Laravel 4 Application 
Development
ISBN: 978-1-78328-057-5              Paperback: 256 pages

Develop real-world web applications in Laravel 4 
using its refined and expressive syntax

1. Build real-world web applications using the 
Laravel 4 framework.

2. Learn how to configure, optimize and deploy 
Laravel 4 applications.

3. Packed with illustrations along with lots of tips 
and tricks to help you learn more about one of 
the most exciting PHP frameworks around.

 
Please check www.PacktPub.com for information on our titles

http://www.it-ebooks.info/


Laravel Starter
ISBN: 978-1-78216-090-8              Paperback: 64 pages

The definitive introduction to the Laravel PHP web 
development framework

1. Learn something new in an Instant! A short, fast, 
focused guide delivering immediate results.

2. Create databases using Laravel's migrations.

3. Learn how to implement powerful relationships 
with Laravel's own "Eloquent" ActiveRecord 
implementation.

4. Learn about maximizing code reuse with  
the bundles.

Laravel Application Development 
Cookbook
ISBN: 978-1-78216-282-7              Paperback: 272 pages

Over 90 recipes to learn all the key aspects of Laravel, 
including installation, authentication, testing, and the 
deployment and integration of third parties in your 
application

1. Install and set up a Laravel application and 
then deploy and integrate third parties in your 
application.

2. Create a secure authentication system and build 
a RESTful API.

3. Build your own Composer Package and 
incorporate JavaScript and AJAX methods  
into Laravel.

Please check www.PacktPub.com for information on our titles

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: An Introduction to Laravel
	The need for frameworks
	The limitations of homemade tools
	Laravel to the rescue

	A new approach to developing PHP applications
	A more robust HTTP foundation
	Embracing PHP

	Laravel's main features and sources of inspiration
	Expressiveness and simplicity
	Prettifying PHP

	Responsibilities, naming, and conventions
	Helping you become a better developer

	Structure of a Laravel application
	The service container and request lifecycle
	Exploring Laravel
	Changes in Version 5 from Version 4

	Summary

	Chapter 2: Setting Up a Development Environment
	Meeting Composer
	Working with the command line
	Meet Homestead
	Installing Homestead
	Everyday Homestead usage
	Adding additional websites
	Connecting to your databases


	Creating a new Laravel application
	Summary

	Chapter 3: Your First Application
	Planning our application
	Entities, relationships, and attributes
	The map of our application

	Starting the application
	Setting the application namespace

	Writing the first routes
	Restricting the route parameters
	Handling HTTP exceptions
	Performing redirections
	Returning views

	Preparing the database
	Creating Eloquent models
	Building the database schema
	Seeding the database

	Mastering Blade
	Creating a master view

	Back to the routes
	The overview page
	Displaying a cat's page
	Route-model binding

	Adding, editing, and deleting cats

	Moving from simple routing to powerful controllers
	Resource controllers

	Summary

	Chapter 4: Eloquent conventions
	Retrieving data
	Filtering records

	Saving data
	Mass assignment

	Deleting data
	Soft deletion
	Including deleted models in results


	Query scopes
	Relationships
	One-to-one
	Many-to-many
	Storing data in the pivot table

	Has-many-through
	Polymorphic relations
	Many-to-many polymorphic relations

	Model events
	Registering event listeners
	Model observers

	Collections
	Checking if a key exists in a collection

	Summary

	Chapter 5: Testing – It's Easier 
Than You Think
	The benefits of testing
	The anatomy of a test
	Unit testing with PHPUnit
	Defining what you expect with assertions
	Preparing the scene and cleaning up objects
	Expecting exceptions
	Testing interdependent classes in isolation

	End-to-end testing
	Testing – batteries included
	Framework assertions
	Impersonating users
	Testing with a database
	Inspecting the rendered views

	Summary

	Chapter 6: A Command-line Companion Called Artisan
	Keeping up with the latest changes
	Inspecting and interacting with your application
	Fiddling with the internals
	Turning the engine off
	Fine-tuning your application
	Caching routes
	Generators

	Rolling out your own Artisan commands
	Creating the command
	The anatomy of a command
	Writing the command

	Scheduling commands
	Viewing output of scheduled commands

	Summary

	Chapter 7: Authentication and Security
	Authenticating users
	Creating the user model
	Creating the necessary database schema
	Authentication routes and views
	Middleware
	Validating user input
	Form requests


	Securing your application
	Cross-site request forgery
	Escaping content to prevent cross-site scripting (XSS)
	Avoiding SQL injection
	Using mass assignment with care
	Cookies – secure by default
	Forcing HTTPS when exchanging sensitive data

	Summary

	Appendix: An Arsenal of Tools
	Array helpers
	The usage examples of array helpers

	String and text manipulation
	Boolean functions
	Transformation functions
	Inflection functions

	Dealing with files
	File uploads

	Sending e-mails
	Easier date and time handling with Carbon
	Instantiating Carbon objects
	Outputting user-friendly timestamps
	Boolean methods
	Carbon for Eloquent DateTime properties

	Don't wait any longer with queues
	Creating a command and pushing it onto 
the queue
	Listening to a queue and executing jobs
	Getting notified when a job fails
	Queues without background processes

	Where to go next?

	Index



